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Abstract 

Quantum Monte Carlo (QMC) technique is a legitimate and influential tool for searching accurate approximate solutions of 

many body Schrӧdinger equations for atoms. The purpose of this study is to explore the application of this technique to find 

the ground state energies for He, Li, B and C (n=2-6). A modified n-parameters trial wave function is proposed which leads to 

good result in comparison with other trial functions presented before. To estimate the ground state energies, quantum 

variational principle with trial wave functions and random number is used to generate a large number sample of electron 

locations. In addition, equilibrium states of Energies as well as standard deviations are plotted. The experimental data are 

presented for comparison. 
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1. Introduction 

To study the complex quantum systems, Quantum Monte 

Carlo comprehends a large family of computational methods 

whose common aim is to find the estimated results by using 

mathematical simulation. Furthermore, Variational Monte 

Carlo (VMC) is a quantum Monte Carlo method that applies 

the variational method to approximate the ground state of a 

quantum system. In quantum Chemistry calculations, VMC 

method has become a dominant tool [1-3] to approximate 

ground state energy and other properties. Recent applications 

of the VMC method in computational dynamics shows that 

VMC has become a valuable method because of a wide 

variety of wave function forms for which analytical 

integration would be difficult. These method gives the 

opportunity to choose freely the trial wave function in 

analytical form which is one of the major advantage for using 

this method and trial wave function can contains highly 

sophisticated term in such a way that electron correlation is 

explicitly taken into account [4-5]. Atoms are electron based 

system that means electron plays a crucial role and that is 

why this method is extremely useful to study physical cases. 

In case of simplest few-body systems or two-electron system, 

VMC method provides exact approximations of the ground 

and excited state energies and properties of atomic and 

molecular arrangements [6]. Generally the correlated wave 

function in VMC is constructed as the product of function 

and correlation factor, which includes the dynamic 

correlations between the electrons, typical wave function and 

the exact wave function such as the spin and the angular 

momentum of the atom [7]. However, the combination of 

direct calculation of the difference delta between a true wave 

function and a trial wave function with importance sampling 

is used to greatly reduce systematic and statistical error. 
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Considering the wave function and the dissimilar correlation 

features, the atoms He to C (Helium to Carbon) has been 

widely studied [8–11]. The Hartree-Fock solution has been 

used as common option for the typical wave function. To 

work with greater number of electrons the Hartree-Fock 

solution shows some problems to estimate the ground state of 

energy. First of all in the consideration of relativistic effects 

and the other is that it takes more time to calculate these 

systems. As the number of electrons increases both effects 

are increases. 

In recent years researchers have been trying to develop an 

approach for constructing trial wave functions in order to 

calculate the ground state energy of the atoms and achieve 

high level of accuracy. The inter-electronic distances in the 

wave function included by the correlation effect was 

introduced in the Hylleraas [12]. In 2006, the ground state 

energy of the atoms Li through Kr has been studied using 

Jastrow correlation factor times a model function with 17 

variational parameters by VMC method [7]. The obtained 

results showed a great improvement over all the previous 

results. In 2003, calculations on the ground state of boron 

atom have been done using the single and 150 term wave 

functions constructed with Slater orbitals by M. B Ruiz [13]. 

Although there is no fast way to get accurate wave functions 

for the atoms and some five-electron atomic ions, most of 

these studies search for accurate results but nevertheless 

compact wave functions. From this point of view, [14-18] 

suggested a simple nearby trial function for the ground state 

of the atoms which provided a precise accurate energy in 

such a way that it could considered as the most accurate 

among existent few-parameter trial functions. In the present 

study, VMC method is going to use to study two to six- 

electron system (He to C), which may be studied by using 

Monte Carlo Simulation process with random number and 

different form of trial wave functions. Accordingly, a 

compact n parameters wave function is considered to obtain 

the ground state energy. 

2. Mathematical Model 

2.1. The Many Bodies Stationary 

Schrödinger Equation 

Let us consider a system of quantum particles interacting via 

Coulomb potentials for the many bodies stationary 

Schrödinger equation. Since the masses of nuclei and 

electrons differ by three orders of magnitude or more and the 

Hamiltonian is given by [19] 

�� = − �
�∑ ∇	� −	 ∑ 
�

|����| + ∑ �
|���|��		,�               (1) 

Where, i and j represents the electrons and I runs over the 

ions with charges 	�� . Throughout the calculation, atomic 

units 	�� = ℎ = � = 4�� = 1  has used for simplicity, 

where ��  the mass of electron	�, is the charge of electron 

and �  is the permittivity of a vacuum. The Schrödinger 

equation is 

�Ψ =	# Ψ 

⟹− �
�∑ ∇	�Ψ + %Ψ = # Ψ	                        (2) 

Here, ∇	�  is the Laplacian operator, Ψ is any trial solution, 

and #  is the ground state energy of atoms. % represents the 

electrostatic potential in the molecule is given by 

% = 	∑ �
�
|����| + ∑ �

|���|��		,�                        (3) 

Here, the first summation works over all electrons and nuclei, 

where �� and &� are the nuclear charges and locations 

respectively. The second summation works over all pairs of 

electrons. To evaluate the lowest eigenvalue, the variational 

principle shows us [20] that from (2), 

'()*+)*,-.
')*/01 ≥ #                                   (4) 

The limit of equality holds not only for the accurate solution 

of 	Ψ , but also for estimated solutions, called variational 

estimates of the ground-state energy. The left-hand side of 

equation (4) is usually quite close to	# . The main problem is 

how to evaluate the high dimensional integrals; this is 

impossible to do analytically and not feasible even 

numerically. But, Monte Carlo is the process that can easily 

simulate high dimensional integrals. 

Let us preliminary illustrate the local Energy by, 

#3 = +)
) = − �

�
∑ ∇�/� )

) + %                       (5) 

Rewritten the left side of (4) as 

'45)*/-.
')*/-.

                                      (6) 

It is the best way to get an estimation of	# 	by averaging the 

10000 values of 	#3 . Unluckily, this estimate will be very 

imprecise since random model of configurations tolerates at 

this point, there are no relationship to 6�  of equation (6). 

Observing the progressive sample averages of 	#3 , no 

systematic change happened but after reaching a so-called 

equilibration found only random variations. After reaching in 

equilibrium state, reduce the statistical error of the final 

estimate by changing the configuration for as many steps 

(called iterations) as feasible. This is not much difficult to 

calculate, to do so, combining all the individual sample 

averages into one. But there is one more little snag; the result 

has an error proportional to the step size. The step size should 
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be accustomed to yield a reasonable amount of rejections, say 

between 10% and 30%. 

2.2. Variational Monte Carlo for the Atom 

Variational Monte Carlo (VMC) is based on a straight 

application of Monte Carlo integration to explicitly 

correlated many-body wave functions. The variational 

principle of quantum mechanics states that a trial wave 

function’s energy will be greater than or equal to the energy 

of the exact wave function. Optimized forms of many-body 

wave functions enable to determine the accurate of 

expectation values. Variational Monte Carlo is a method of 

computing the total energy and its variance, 

〈�〉 = ∑ ()*+)*,�
∑ 9)*/:�

                               (7) 

	;� = ∑ <+)*�4=)*>/)*/�
?∑ 9)*/:� @/                            (8) 

Here, H is the Hamiltonian, ΨA is the value of the trial wave 

function at the Monte Carlo integration point	&	 . The constant 

#  is fixed at a value close to the desired state in order to 

start the optimization in the proper region. The exact wave 

function is able to give both the lowest value of � and a zero 

variance. It is possible when minimization of variance 

favours those wave functions which have a constant local 

energy. Previous studies have shown that the rate of 

convergence of a variational calculation can be tremendously 

accelerated by using basis functions which satisfy the two-

electron cusp condition and which have the correct 

asymptotic behaviour [17]. Unfortunately, the integrals of 

such functions can hardly be evaluated rationally. Because in 

this method uses Monte Carlo integration and can easily 

build into the trial wave function many features which will 

accelerate convergence. 

2.3. The Trial Wave Function 

The calculations for the particle atom obtained previously 

using trial wave functions which takes the form [18]: 

Ψ�<r�, r�> = Exp?−α<r�>@RHI<α , r�>YI,K<L̂�> 
Ψ�<r�, r�, rN> = Exp?−α<r� + r�>@RHI<α , rN>YI,K<L̂N> 

ΨN<r�, r�, rN, rO> = Exp?−α<r� + r� + rN>@RHI<α , rO>YI,K<L̂O> 
ΨO<r�, r�, rN, rO, rP> = Exp?−α<r� + r� + rN + rO>@RHI<α , rP>YI,K<L̂P> 
ΨP<r�, r�, rN, rO, rP, rQ> = Exp?−α<r� + r� + rN + rO + rP>@RHI<α , rQ>YI,K<L̂Q>                       (9) 

Where, the symbol L̂A ; R = 	1,2,3,4,5,6 denotes the angular 

variables of L	 and the function VWX<Y , L	>Z�,[<L̂	>  is the 

hydrogen-like wave function in the nl-state with effective 

charge Y . 

These wave functions were used to calculate the energy of 

atoms ground state with quite accurate results. In the present 

paper some modifications has introduced to these trial wave 

functions in order to get more perfect results. Firstly, 

considering the correlation between each two electrons and in 

order to include the electron-electro correlation multiplying 

the form of this trial wave function by the following factor: 

\?L	�@ = #&] ^ ��
_<�`a��>b                       (10) 

which expresses the correlation between the two electrons i 

and j due to their Coulomb repulsion. That is,\to be small 

when L	�  is small and to approach a large constant value as 

the electrons become well separated which is expected. Then, 

for the ground-state of the atoms (He to C), Eq. (9) reduces to 

the following form: 

Ψ�<r�, r�> = Exp?−α<r�>@RHI<α , r�>YI,K<L̂�>c \?L	�@	��
 

Ψ�<r�, r�, rN> = Exp?−α<r� + r�>@RHI<α , rN>YI,K<L̂N>c \?L	�@	��
 

ΨN<r�, r�, rN, rO> = Exp?−α<r� + r� + rN>@RHI<α , rO>YI,K<L̂O>c \?L	�@	��
 

ΨO<r�, r�, rN, rO, rP> = Exp?−α<r� + r� + rN + rO>@RHI<α , rP>YI,K<L̂P>c \?L	�@	��
 

																											ΨP<r�, r�, rN, rO, rP, rQ> = Exp?−α<r� + r� + rN + rO + rP>@RHI<α , rQ>YI,K<L̂Q>∏ \?L	�@			��                    (11) 
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where i, j indices the run over the electrons number. The 

variational parameters α and e  will determined for each 

value of Z by minimizing the energy. The function YI,K<L̂W>of 

equation (11) is constant for the ground-state of atoms 

3. Result and Discussion 

For finding an accurate approximation of# , repeating the 

simulation process with significantly more iterations and then 

calculating the average of the #3 values. In this research 

paper, this close to�14.552	atomic units for Beryllium, -

24.5540 atomic units for Boron with an average acceptance 

rate of about 85%-90%. The best way isto implement the 

same program independently 5 to 10 times to find the 

corresponding statistical error and combine the individual 

results. This procedure improves the estimate to 

�14.552	atomic units with the standard error of ±0.06979 

for the case of Beryllium. Figure 1 shows the number of 

iteration required (100 times) to estimate the ground-state 

energy for atoms (He to C). 

Table 1. Comparison of Approximate values of atoms ground state energies 

with experimental values. 

Atom VMC Method Exact Values (Experimental) 

Helium �2.939367 	 �2.9033864 [21]	
Lithium �7.365826 	 �7.47693 [22]	
Beryllium �14.55243 	 �14.64627 [23]	
Boron �24.55402 	 �24.541246	[7]	
Carbon �37.26656 	 �37.80828	(11, 	

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1. Approximate values for 10000 iterations of VMC to reach stable 

ground state of energy (a) Lithium (b) Beryllium (c) Boron (d) Carbon. 

It is clear from figure 1, that after 3000 iteration, energy is 

started to stable. Despite the statistical error, there is clear 

difference between estimate value and the experiment or well 

established value. In accordance with the variational 

principle, the approximate values are not close to the 

experiment values, which are shown in table 1. 

After each step, new estimates of # 	 is computed from 

corresponding weighted averages and combined with the 

usual grand mean. Yet, this procedure faces two different 

problems, but it can handle easily. 

First one is, when an electron and nucleus come closer that 

means, electron moves close to nucleus then an unusual low 

value occur for mean deviation, making the corresponding 

weighted value rather large or sometimes larger than all the 

remaining weights combined. The best way is to solve this 

problem in a symmetrical manner by rounding the value to 

the nearest boundary of the interval. 

Second one is, final estimate (grand-mean) of #l  may 

have a small biased value which proportional to the step 

size. For this type of problem can solve by repeating the 

simulation process, at several (say 4 to 5) dissimilar 

values of step size, and by performing a simple 
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polynomial regression getting an unbiased estimate of	#l. 

The final answer can get at the intercept of the resulting 

regression line. 

By using a modified wave function in VMC method 

successfully found the ground state energies for the atoms 

He to C obtained in this work. The iteration averages of 

#3will show that equilibration now takes many more steps 

(about 500, when step size 0.025) than in the case of 

variational simulation. Thus discard the first 1000 results 

and partition the remaining 6000 into six blocks of 1000. 

Then it is produces six such values with step size 0.050 and 

0.075. It is now easy to find the resulting intercept. As for 

example, the following below table 3 shows the estimate for 

Beryllium. 

Table 2. Monte Carlo Result for Boron. 

 Estimate Standard Error P-Value 

1 �24.546707 0.034 2.4747 × 10��O 

x 99.5137 2.48945 3.1413 × 10�n 

&� −796.109 24.6392 7.3521 × 10�o 

The final estimated value of Beryllium is therefore 

−14.66702 ± 0.0012 for the corresponding regression line. 

This is in Reasonable agreement, in view of the nodal error, 

with the exact value of −14.66702  atomic units. This 

visualizes the regression fit is 

Table 3. Monte Carlo Result for Beryllium. 

 Estimate Standard Error P-Value 

1 −14.66702  0.0012  1.0773 × 10��o  

x −1.1796  2.6141  0.6583  

&�  9.4364  5.8729  0.7204  

 

 

(a) 

 

(b) 

Figure 2. Presenting the energies level as a function of (a) Beryllium and (b) Boron by using a set of Monte Carlo points. 

In similar way, Table 4 shows the final estimated ground state 

energies for the atoms (He to C). In all cases, estimated 

values are very close to exact value. Among them Estimated 

value for helium shows very good agreement with exact 

value. 
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Table 4. Estimated Ground state energies, standard errors and P-Values of 

Atoms. 

 Estimate Standard Error P-Value 

Helium -2.90125 0.00032 1.6632×10-25 

Lithium -7.47582 0.0092 1.9856×10-23 

Beryllium -14.6670 0.0012 1.0773×10-28 

Boron −24.5467 0.034 2.4747×10-24 

Carbon -37.2333 0.0019 1.493×10-20 

By using a very large of MC trial function, Table 4 expresses 

the ultimate value of atom’s energy together with standard 

error. Table 4 also shows that the obtained value is good 

agreement with the exact value. B. L. Hammond [1], found 

the ground state energy of Beryllium is �14.66737 using the 

same trail function but without introducing the factor 	\?L	�@. 
It is clear from Table-2 that obtained result is more accurate 

for the Beryllium atom (Z=4) is−14.66702. 

4. Conclusion 

Quantum Monte Carlo procedures provide a framework for 

calculating the ground state energy and properties of 

correlated quantum systems. In this study, the ground state 

energies of Helium to Carbon have been executed with 

standard error and P-value. The obtained values were found 

by using a correlation factor which mainly depends on 

vaiational parameters. To advance the results, the trial wave 

function with the electron-electron correlation factor was 

played a crucial role. Thus, It is important to remember that 

the trial wave functions for QMC calculations could be 

improved by developing new wave function forms and better 

optimisation methods. 
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