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Abstract 

In the article, properties of solutions to one specific kind stochastic ordinary differential equation system are examined. This 

system simulates the Brownian walks which active particles make along the x -axis due to the permanent white noise action. In 

order to study the system solution properties, a number of snapshots of experimental 1-dimensional frequency distribution 

function that is build up on base of the found solutions is made. Watching these snapshots we find that there exists a parameter 

domain such that the system under study can serve as a mathematical model of process of tunnelling ― a penetration of 

elementary particle through a prohibitive potential barrier. 
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1. Introduction 

In the elementary particle physics, there is the elementary 

particle “tunnelling” phenomenon, i.e. its penetration through 

a prohibitive potential barrier. Since the given phenomenon 

in its nature is statistical, obviously that it is impossible to 

build up a deterministic mathematical model of this 

phenomenon. Therefore, one should concentrate efforts on 

search of its stochastic mathematical model. In doing so first 

what should be taken into account is that the particles in 

nature possess certain properties that vary in process of their 

interaction with the medium, where they are contained. In 

other words, these particles are “active” by their own nature 

as against the “passive” ones which have no such the kind 

properties at all. It is plain that this “activity” must certainly 

be reflected in any model that is proposed to consideration. 

Second, it is clear also that the active particles interact with 

the external medium, so say, “actively” in the sense that the 

interaction process consists in varying of both the properties 

of particles that undergo action of the external medium on 

ones and the properties of the medium itself to resist to 

movement of the particles. The latter ones are modifying in 

the course of time due to the aforesaid interaction too. Taking 

into account these circumstances it is plain that creating of a 

stochastic mathematical model of the aforementioned 

phenomenon one should reflect in the model the “activity” of 

its particles by means of introducing of parameters and 

variables which must describe the active properties of the 

particles. (On existence of such kind the particle 

characteristics one could guess observing results of 

simulation of the Brownian particle walk dynamics of the 

stochastic mathematical model that are presented in the next 

section.) 

In what follows, we consider the simplest such kind model. It 

includes one active parameter (the particle “natural internal 

frequency”) and one active variable (the particle “vivacity”) 

only. As a reader can be convinced later oneself a presence of 
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such the kind parameters and variables allows single selected 

active particles to visit space domains which are closed for the 

passive (usual) ones can never visit the aforesaid domains. 

As a whole a problem of how determinism and chance 

interplay each other in nature phenomena stays one of the 

most important fundamental questions standing in front of 

science up till now. Widespread systematic investigations 

directed to research the given problem are started recently 

relatively. In doing so random walk researching is making 

both in random and non-random environments [1]. 

Investigations showed to researchers’ surprise that a 

stochastic action of random noise stabilizes behaviour of 

system dynamics rather than insets chaos inside it very often 

[2-4]. There are a lot of references (see, e.g., [5-7]), where 

influence of noise on the particles dynamics and their 

Brownian random walk are studied. Methods used for 

solving and simulating of solutions to the stochastic 

differential equations which model random processes are 

permanently developed [8-12]. However one aspect of the 

problem ― what is a sort of particles which the noise acts 

on, ― as far as we know, was never considered early. As it is 

easily see from observation and comparing of their 

histograms for experimental 1-dimensional frequency 

distribution function, the active particles and passive ones 

give a very distinct different response on the white noise 

action. 

Our approach to studying of the Brownian walk dynamics of 

the active particles that undergo a persistent action of the 

standard white noise consists in simulation of this dynamics 

with aid of two stochastic ordinary differential equations and, 

in general, goes on the studies in [13-15]. 

2. Mathematical Model 

For creating the mathematical model of the particles 

dynamics, it is assumed that i) they do not interact each other 

and ii) dynamics of all particles controls by the same 

stochastic ordinary differential equations. In order to reduce a 

quantity of numerical computations and to simplify analysis 

of results of numerical experiments, we restrict ourselves 

with considering of the simplest among the others model. 

Therefore, in the model under creature, (ϊ) a dimension of 

space where the particles make their Brownian walk is equal 

to 1, (ϊϊ) there are two only space parameter that provide 

influence the space on the particles, one of which describes 

an “observable ” (friction-like) interaction particles with 

space and the other may provide the “hidden” accumulation 

of one only specific (energy-like) particle characteristic, and 

(ϊϊϊ) changing of the aforesaid particle characteristic value 

depends on both the “observable” and “hidden” interaction of 

the particles with the space. A concrete form of the 

expressions using for creating of the model under study is 

borrowed from [13-15]. In there, the similar model is used 

for simulation of the Brownian walk of the oscillator in plane 

with non-linear non-homogeneous friction. Anyway we 

research numerically solutions of the following system of 

stochastic ordinary differential equations: 

2( ) exp[ ( ) ( )] ( ) ( )+ ⋅ + ⋅ = ⋅ɺɺ ɺ
winerx t ax t b t x t f W tΓ ζ ,    (1) 

2( ) exp[ ( ) ( )] ( ) ( )+ ⋅ + ⋅ + = ⋅ɺɺ ɺ
winert ax t b t t c f W tζ Γ ζ ζ ζ . 

Here x  be the space particle co-ordinate, 2| |ζ ζ= be its 

vivacity, 2c ω= , and 0ω ≥  be its natural internal 

frequency. By ( )
winer

W t  is denoted the total instantaneous 

stochastic force acting on the particle at time t . This is the 

Gaussian white noise with correlations giving by its first and 

second: ( ) 0=winerW t , ( ) ( ) ( )= −ɶ ɶ
winer winerW t W t t tδ ) 

moments respectively. (For generating of such the kind noise, 

the standard Wiener’s process is used usually.) The particle is 

called active when 0ω > and passive otherwise, i.e. when 

0ω = . All parameters are constants. In doing so 0Γ > ,

0>f , 0a > . As for b , then it is supposed always that 

0b < . Considering Eq. (1) in detail it is not difficult to 

analyse qualitatively how varying of different parameters 

influence on dynamics of the Brownian particle walk. Such a 

kind analysis is done in [13-14] for the system similar to Eq. 

(1) although different. So, it is stated there the parameters 

like Γ , f are paired in a sense that simultaneous identical 

increasing of them does in general not change dynamics of 

the random particle walk qualitatively. Increasing one of 

them, say, Γ  results in suppressing of the random walk and, 

on the contrary, increasing of f  leads to its wide-spreading. 

Thus, in order to balance contribution of Γ  and f  in 

dynamics of solution to Eq. (1) one should take their values 

identical, say, equal to 1. The physical significance of Γ  and 

f  is a general level of the space interaction with the particles 

and a maximal power of the white noise influence on the 

particles respectively. By the same manner, one can study the 

rest of parameters and estimate their influence on dynamics 

of the Brownian particle walk. Consider, for instance, a , the 

coefficient of non-linearity of the space resistance to the 

particles movement. It is evident that the more the value of 

a  the higher the friction barrier rises in the positive half-axis 

and the less the space friction to the particle displacement in 

the negative one. As for the watching of phenomenon of the 

active particle penetration over the prohibitive friction 

barrier, it is clear that, in order to have a possibility to 

observe this phenomenon, the value of a must be balanced 
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with ox , the particle start point coordinate. Really, the 

aforementioned phenomenon is, as we shall see further, a 

result of long-time evolution of the well-developed Brownian 

walk of the particles. It is evident that if the particles start in 

the closest barrier vicinity, one can then obtain such the kind 

well-developed Brownian walk only in the end of its very-

very long evolution. On the contrary, if the start point is 

removed too far away from the barrier to the left, then the 

Brownian walk dynamics of the particle can develop so 

stormy that will lead to underflow/overflow and, as a 

consequence, will not give a possibility to watch the 

aforementioned phenomenon. Thus, the values of a and ox

are paired in the sense that they have to be balanced too, etc. 

A propos, in [13-14], there is a full analysis for parameters of 

the model very similar that is studied here. 

Analysing the expression
2exp[ ( ) ( )]Γ ⋅ +ax t b tζ  

characterizing a medium resistance to the Brownian particle 

walk we want to notice that its main feature is a dynamical 

dependence on 
2 ( )tζ . This yields a very different medium 

response ― resistance at the same medium point ― to 

moving of particles having different vivacity. In doing so if 

0b > , then the more the particle vivacity the more the 

medium resistance to its moving at the same space point and 

vice versa : if 0b < , then the more the particle vivacity the 

less the medium resistance to its Brownian walk at the same 

space point. The latter can result in an appearance of single 

active particles penetrating much deeper inside the positive 

semi-axis than the other ones. As it will be well-seen further 

such kind events occur in fact. We would attract attention 

here to that a role which the vivacity-variable plays in the 

model is similar in a sense that an energy plays usually. As 

for ω  ― the natural internal frequency parameter, ― the 

one determines the active particle response size on the white 

noise action. 

3. Simulation Result Analysis 

In order to find the experimental frequency distribution 

function, Eq. (1) is solved as Ito’s process associated with 

this equation system. As initial conditions are taken 

(0) ox x= , where 0ox ≤ ; and (0) 0x =ɺ , (0) 0ζ = , (0) 0ζ =ɺ  

always. We consider a set consisting of 3072 particles and 

find its Brownian walk way for times from 0t =  till 248t = . 

After completion of every Ito’s process, in order to watch for 

changing of the experimental frequency distribution function 

shape we form a number of snapshots which pick up instant 

view of the aforesaid function at certain times t . Usually it is 

62, 124, 186, 248t = . Why are these t  chosen? There is 

nothing specific in choice of these exact quantities of t . One 

can take the others of t . We take the given of t  in order to 

lighten observation for changing of external form of graph the 

experimental 1-dimensional frequency distribution function. At

62,t =  the one is almost standard bell-shaped. At 124,t =  the 

one loses the aforesaid form and appears “a tail” going to the 

left-hand half-axis. Starting from times 186,t ≥  one can hope 

to watch the appearance of the active particles penetrating over 

the prohibitive friction barrier. 248t =  is the end of 

computation by time. However in order to monitor changing of 

the distribution function shape in more details, there are the 

snapshots for various other (186, 248)t∈  in the article. 

First to start a discussion of the simulation results one 

should attract reader’s attention to that the results under 

review below are a little fraction of all those we have and 

are picked out for presentation here as the most informative 

ones. So, the first two series of graphs analysed below are 

computed with 7.5ox = − . However numerical experiments 

were done with the same parameter values for 0ox = and

10.0ox = −  too. Their results helped to realize that 

7.5ox = −  is one of the most suitable choices in order that 

to show an existence of the tunnelling effect for the 

parameter values under consideration. It is one example 

only but one can present a lot of such the kind examples. 

Therefore, we would like to call reader’s attention to 

conclusions we make lean on all totality of available 

knowledge (including the one obtained in the numerical 

experiments whose results do explicitly not shown in the 

article) rather than only analysis of the graph series that are 

presented below. We want to notice reader’s attention to this 

matter one more. 

In order to improve a presentation and in doing so to simplify 

understanding of the numerical experiment results, there are 

used two kinds of histograms simultaneously in the article. 

The first of them permits to look at for the Brownian walk of 

small enough fraction of the particles (that can consist of 

alone particle even) and the other one permits to watch for 

the Brownian walk of the most particles of. 

At first to start analysing of the first two series of graphs 

presented below one should explain that a choice 7.5ox = −
 

is not accidental. Because before to make computations with 

this initial value, the numerical experiments (for the very 

same parameter values and initial data) are made for 0ox =  

and 10ox = − . Their results are different. So, the 

computations with 0ox =  were successfully fulfilled for all 

times up to 248t = . But their results are trivial in a sense 

that the ones do not demonstrate an existence of the 

tunnelling effect. As for 10ox = − , the computations were not 
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finished here because were cancelled due to both underflow 

and overflow. In light of the said above the choice 7.5ox = −  

seems to be natural. 

In what follows we present two kinds of graphs which we 

call by Histograms and S-Histograms. On all the graphs, the 

horizontal and vertical coordinate axes are the space ( x ) and 

the 1-dimensional frequency distribution function ones 

respectively. The first two series of histograms are computed 

with the same but one parameter values and with identical 

initial data. Precisely, 1, a 0.03125, b 0.025, f 1Γ = = = − = , 

7.5ox = −  there however c  has different values. Namely: 

900c = in Ser.1, 909c = in Ser.2. Why are the very same 

picked out? This is the result both of the accumulated 

experience of analytical study of Eq. (1) as well as numerical 

simulations of its solutions and comfortableness for operating 

and analysing of them. 

If to take into account the said above on the parameter pairs 

and balance of their values, a choice of the parameter values 

becomes plain. Namely: 1, f 1Γ = =  guarantee the same level 

of action both the space and white noise on the particles, 

0.03125a =  permits to form the relatively modest (near the 

start point) barrier, 0.025b = −  provides the vivacity 

accumulation enough to overcome the prohibitive friction 

barrier which rises permanently with penetration of the active 

particle in depth of the positive half-axis. As for values of c , 

one should tell the truth ― the suitable values of c are found 

experimentally. Namely: with the small values of c , say, 

from 1 to 100, we do not observe of the tunnel effect for the 

time 248t = . 

As for the big values of c , say, for 1500c ≥ , it leads to 

underflow/overflow. In particular if 10000c ≥ , then 

underflow/overflow happens almost immediately. 

Let us analyse graphs presented in Ser.1 and Ser.2 in detail. 

Observing the S-Histograms shown in Figs. 1-2 of Ser.1 it is 

easy to see that there is one only active particle that has 

penetrated inside the positive semi-axis of x  which is 

protected by the prohibitive barrier of permanently rising 

(friction) resistance to its movement and prolong to move 

there. In Fig. 3, one can watch two such the kind particles 

already. However in the whole such the kind particles are 

very a little; considerably more the ones go far away inside 

the negative semi-axis of x  during making of their Brownian 

walk. One more interesting aspect of the penetration 

dynamics which we can watch in Fig. 3 is that one of the 

“tunneling” particles penetrates in the right x − axis half 

considerably deeper than a rest of the particles in the left x −
axis half. In doing so, as it is well-seen from the Histogram in 

Fig. 4 of Ser.1, the most fraction of the particles remains near 

the point where they start from and prolongs to make the 

Brownian walk there. Comparing this dynamics with that 

presented in Figs. 5-8 of Ser. 2 one can agree with that, on 

the whole, they look similar each other. But there are many 

differences between them too. The most evident and of 

interest is that, in Figs. 5-6 of Ser.2, we watch the almost 

simultaneous appearance of two the active particle in the 

domain protected by the permanently rising prohibitive 

friction barrier. Moreover, in Fig. 7, one can already see three 

such kind the particles. Although on the whole, it is well-seen 

from the Histogram in Fig. 8, dynamics of the most active 

particles fraction runs nearby the point they start. Let us 

attract attention to a time of appearance of the “tunnelling” 

particles is close to time 200t = . Thus, appearance of such 

kind the particles is a product of the long-time Brownian 

walk of the particles which undergo the persistent white 

noise action. 

Our next step is to study a dependence of the Brownian 

particle walk dynamics behaviour on c . Situation is not 

simple here. First of all we should tell that considerable 

increasing of its value, say, up to 8000c =  leads to a 

practically instant cancellation of numerical experiment due 

to overflow or/and underflow. Moreover, even respecting 

modest increasing of the value of c , say, to 1000 1600÷  can 

yield and does really yield (but in later times) the aforesaid 

cancellation. As for the values of c  that vary nearby 900, we 

tried to find the upper initial data ox  limit which can yet 

provide penetration of a few particles far away to the right 

for the time under examination. In order to do this, a number 

of the numerical experiments with the same parameter values 

as those in Ser. 1-2 are made and found in doing so that the 

limit under seeking is about 2.5ox = − . Graphs of Ser. 3 

represent the numerical experiment results that are computed 

with 1,Γ =  0.03125,a =  0.025,b = − 1f = , 903c = , 

2.5ox = −  and confirm the just aforesaid indirectly. In 

particular, even the appearance by itself of some the 

“tunnelling” particles which penetrate to the right x − axis 

half happens at time about 216t = . In doing so the 

penetration dynamics which one can watch in Figs. 9-11 of 

Ser. 3 develops visibly quickly and in the end of observable 

times, we find, first, that one of the “tunnelling” particles 

penetrates in the right x − axis half again considerably deeper 

than a rest of the particles in the left x − axis half and, 

second, one of the penetrating active particles runs quickly in 

the depth of the positive x − axis while two the other 

(penetrating active) particles “stop” their run to the right after 

some while of developing of their dynamics. Although, it is 

well-seen from Fig. 12 of Ser. 3, the Brownian walk of the 

most fraction of the particles continues to concentrate nearby 

their start point 2.5x = −  again. 
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Fig. 1. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 236. 

 

Fig. 2. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 242. 

 

Fig. 3. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 248. 

 

Fig.4. Histogram of experimental 1-dimensional frequency distribution 

function at t = 248. 

 

Fig. 5. S-Histogram of experimental 1-dimensional frequency distribution 

function at t=186. 

 

Fig. 6. S-Histogram of experimental 1-dimensional frequency distribution 

function at t=200. 

 

Fig. 7. S-Histogram of experimental 1-dimensional frequency distribution 

function at t=215. 

 

Fig. 8. Histogram of experimental 1-dimensional frequency distribution 

function at t=215. 
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Fig. 9. S-Histogram of experimental 1-dimensional frequency distribution 

function at t =216. 

 

Fig. 10. S-Histogram of experimental 1-dimensional frequency distribution 

function at t =224. 

 

Fig. 11. S-Histogram of experimental 1-dimensional frequency distribution 

function at t =236. 

 

Fig. 12. Histogram of experimental 1-dimensional frequency distribution 

function at t =236. 

 

Fig. 13. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 212. 

 

Fig. 14. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 213. 

 

Fig. 15. Histogram of experimental 1-dimensional frequency distribution 

function at t = 213. 

 

Fig. 16. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 220. 
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Fig.17. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 232. 

 

Fig. 18. S-Histogram of experimental 1-dimensional frequency distribution 

function at t = 238. 

 

Fig. 19. Histogram of experimental 1-dimensional frequency distribution 

function at t = 238. 

The last two series are devoted to study how much the 

Brownian walk dynamics of the particles depends on the 

parameter b  whose value is dominant over that of all the 

other parameters in influence that the vivacity exerts on 

ability of the particles to penetrate through the high friction 

barrier. In Ser. 4 and Ser. 5, its value is equal to 0.0125b = −  

and 0.00625b = −  respectively. These values are more than 

that are fixed before in two and four times respectively. A 

principal result of the numerical experiments fulfilled with 

the given values of b consists in continuation of existence of 

the same Brownian particle walk scenario of that we 

introduce above with. But a realization of this scenario takes 

place with the other start points, namely: 5.5ox = −  in Ser. 4 

and 7.5ox = −  in Ser. 5 while in Ser. 3, 2.5ox = −
 
only. What 

else is worthy to especially notice here is the extremely 

highest speed which the “tunnelling” particle penetrates 

though the friction barriers with. So, comparing Figs. 13-14 

of Ser. 4, we should pay attention to such the event of 

interest: for a time while 212 213t≤ ≤ , the “tunnelling” 

particle runs a distance from 1030x ≈  till 4100x ≈ , i.e. 

almost instantly in a sense. However questions of whether 

this phenomenon of the extremely highest speed of 

displacement and “tunnelling” of the particles is a 

fundamental feature of the model under study or one is 

produced by a special dependence choice of
2exp[ ( ) ( )]Γ ⋅ +ax t b tζ  on the vivacity | ( ) |tζ  and whether 

changing of that to exp[ ( ) | ( )| ]Γ⋅ +ax t b t σζ , where (0,1]σ ∈ , 

can result in disappearance of the given phenomenon remain 

a matter for further consideration in somewhere else. 

As for figures in Ser. 5, they serve to the very important 

purpose to show that increasing of the parameter b values 

leads to a considerable slowing down of the aforementioned 

dynamics. Really, observing successively Figs. 16-18 of Ser. 

5 and comparing them with the previous series figures we 

can plain establish that, in the last case, scattering of the 

particles from the start point runs much slower than in the 

previous ones. It results in turn in a certain visible stagnation 

in development of dynamics of the experimental frequency 

distribution function. In particular, the very same visible 

stagnation and slowing down one can observe in both the 

“tunnelling” particles appearance and their movement in 

depth of the positive x − axis half too. Summarizing all what 

is just said above one can make a conclusion that increasing 

of the value of b  towards 0 cannot lead to cancellation of 

appearance of the “tunnelling” particles penetrating through 

the high friction barrier although can slow down the 

Brownian particles walk dynamics development rather than 

in appearance of the “tunnelling” particles. One more aspect 

distinguishing Ser. 5 experiments from those of Ser. 1-4 is 

limits of displacement of the particles along the x -axis. 

Namely: in this series one of the particles runs in the left x −
axis half considerably further then the “tunnelling” particles 

penetrate in depth of the right x − axis half. 

After these principal sentences, let us say some additional 

remarks. As we mentioned already increasing of c  under 

keeping of the rest parameter values results, as a rule, in 

increasing values of ox  which guarantee the “tunnelling” 

particle appearance. However, the numerical experiment 

results under review show that if simultaneously with 

increasing of c  to increase b to the values pointed out above 

one can observe that the aforesaid phenomenon does not take 
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place then at all. In doing so the aforementioned values of ox

must on the contrary decrease. Besides, we want to notice 

attention once more on an extreme fewness of the penetrating 

particles and to stress that their number may be, as it is well-

seen from the presented histograms, even 1 or 2. However 

these few particles penetrate in depth of the positive x − axis 

half very quickly and in doing so considerably far off than 

those particles which penetrate in depth of the negative x −
axis half. A propos a number of latter particles, as it is well-

seen from the S-Histograms, is much more than that of the 

former ones. Nevertheless the Histograms all show that the 

Brownian walks of the most fraction of particles concentrate 

nearby their start point. 

4. Conclusions 

Before to make final conclusions from all what is the 

aforesaid we should attract readers’ attention to that all the 

simulations are fulfilled with aid of a notebook. Hence its 

computational possibilities confined us in making numerical 

experiments. In particular, 3072 being a number of particles 

under study and 248 being a time of observation are 

quantities extremely close to limit for this notebook to make 

computations described above. Nevertheless it is not able to 

prevent us to make entirely substantiated conclusions for 

dynamics of the Brownian walk for sets having more than 

3072 particles for times more than 248. Really, it is plain the 

more particles taking place in the dynamics and the longer 

time of observation of their dynamics the dynamics the more 

statistical probability to observe some event or phenomenon. 

We were convinced in the said above when made series of 

numerical experiments with the 2048 particles during a while 

equal to 186 and, in doing so, do not observe the active 

particle penetration (tunnel effect). After this preface we are 

ready to formulate principal sentences. 

I. Dynamics of the Brownian active particles walk which 

appears and develops due to the white noise action differs of 

respective dynamics for the passive ones. A main feature 

distinguishing distinctly the former from the latter consists in 

an appearance of a very few particles whose vivacity under 

the white noise action rises so much that reaches rates which 

permit for the given particles to overcome the highest friction 

barriers and to penetrate in domains lying beyond the 

barriers. In doing so a size of the active particle ability to 

accumulate the vivacity depends on the size of ω , the 

natural internal frequency or, to be more precise, on 2c ω= . 

Namely: rising of the values of c  results, as one can make 

infer from the numerical experiments, in quick increasing of 

the active particle vivacity. 

II. Existence of such the kind particles defines by a sign 

rather than absolute value of b  entirely. It must be 0b < . As 

for | |b , under condition of keeping the same of all the other 

parameter values as well as initial data, it influences on time 

of appearance of the aforementioned particles. In doing so 

increasing of values of 0b <  towards 0 results either in 

increasing of time that is necessary to spend for observation 

in order to pick up the appearance of particles which 

overcome the friction barriers or in necessity to reduce down 

then the value of ox . 

III. The model under scrutiny allows to realize and to 

explain how cosmic particles can get the very high energy 

travelling in the Universe space. Let us assume that the 

Universe space-time continuum possesses a characteristic 

(for preventing of ambiguousness, let it be designated by b

too) analogous by its influence on the cosmic particles 

energy to that the model parameter of b exerts on the active 

particle vivacity. Let us conjecture additionally that this be 

a function ( , )b b x t=  whose values fluctuate quickly in time 

near by a visible mean value being equal to 0. Since the 

visible value 0 is neutral in the sense that it does not 

influence for energy accumulating by the cosmic particles 

due to their mutual collisions, the characteristic itself b  

may happen unobservable. Thus, there appears a necessity 

to explain the aforesaid phenomenon. The model under 

study allows to realise as a whole mechanics of how the 

cosmic particles in process of only their mutual collisions 

can accumulate such the highest energy that they obtain 

ability to penetrate throughout energetic barriers. 
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