
International Journal of Energy and Sustainable Development

Vol. 2, No. 1, 2017, pp. 1-7

Economic Viability of a Proposed Run-off Scheme Small Hydropower Plant at Onuaku River, Abia State, Nigeria

O. A. Chinyere^{1, *}, E. A. Ajani¹, E. O. Ojo¹, N. R. Obasi², C. Okonkwo²

Abstract

In this study the financial and economic feasibility of a proposed small hydropower plant at Onuaku River in Aku community of Abia state, Nigeria was evaluated using indicators like the Net Present Value (NPV), Payback Period, Benefit Cost Ratio (BCR) and Internal Rate of Return (IRR) to ascertain the feasibility and viability of the project. Here the breakeven point of the project, cash flow, present and future value of project as well as the expected yearly revenue of the project is shown in advance within the economic life or span of the project. With an investment cost of less than \(\frac{1}{2}\)12million, a NPV of three million six hundred and thirty thousand, fifty seven naira fifty eight kobo (¥3,630,057.58) was gotten at the 30 years life span of the project with an IRR of 14.25%. Also from the analysis a project Payback Period of ten years which is timely enough for the client or investor to recover the investment made on a project that can span up to thirty years (minimum) - fifty years (maximum). The BCR of the project from analysis is 1.23 which is above unity. Hence the results from the analysis above have provided additional information for the decision makers, client and the design engineer and scientist to see reasons why this project should be embarked on using the mentioned economic tools.

Keywords

Small Hydropower, Feasibility, Renewable, Energy, Onuaku River

Received: January 22, 2017 / Accepted: February 21, 2017 / Published online: June 15, 2017

@ 2017 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. http://creativecommons.org/licenses/by/4.0/

1. Introduction

All living things depend on energy for survival, and modern civilizations will continue to thrive only if existing sources of energy can be developed to meet the growing demands, hence Energy is "Life", Energy is "Existence", it is the dividing line between the rich and the poor, between the developed, developing and the underdeveloped [10]. Energy and poverty reduction are not only closely connected with each other, but also with the socioeconomic development, which involves productivity, income growth, education, and health [9].

The standard of living of a given country can be directly related to the *per capita* energy consumption. The per capita energy consumption is a measure of the per capita income as well as a measure of the prosperity of a nation [11]. For a country to grow beyond its subsistence economy, tackle the problem of poverty, the country will need to have minimum access to energy services for the larger proportion of its population. However, in Nigeria energy supply has been epileptic in nature, causing the socio-economic status of the country to be downgraded. The Council for Renewable Energy of Nigeria estimates that power outages brought about a loss of 126 billion naira (US\$ 984.38 million)

¹Department of Engineering Infrastructure, Renewable Energy (Small Hydropower) Unit, National Agency for Science and Engineering Infrastructure (NASENI), Idu, Abuja, Nigeria

²Department of Mechanical Engineering, Ahmadu Bello University, Zaria, Nigeria

^{*} Corresponding author

annually [4]. Nigeria as a nation has started feeling the impact of adverse climate change, that may be attributed to the overdependence on fossil fuel fired power plants which is the main source of Greenhouse Gas emissions (GHG), coupled with activities of manufacturing industries, oil prospecting firms and deforestation, to mention but a few.

Renewable Energy (RE) has been identified as the only alternative of addressing these problems. RE is energy derived from an energy source that can regenerate itself through natural processes within a relatively short period; unlike fossil type resources that take millions of years to form and which is not regenerative. Examples of such energy sources include: Hydropower, wind, solar, tidal, biomass, wave, ocean thermal and geothermal. Hydropower amongst other renewable sources mentioned offers a clean and sustainable source for rural power, 24hours a day and even all through the year, provided there is water to power the turbines, causing little or no emissions to the ecosystem [10].

Inspite of abundance water resources that abound in all states and local government areas in Nigeria, hydropower remains an underutilized resources for electric power generation in Nigeria. Hydropower is the power generated by using the potential energy stored in flowing water. It is a renewable energy source suitable for rural electrification in developing countries like Nigeria. It is a proven technology that can be connected to the main grid, used as a stand- alone/ off-grid mode [8].

Countries all around the world are trying to supply their increasing demands for electricity with clean energy technologies. Hydropower as sustainable and renewable resource is one of the major sources of power, which the country looks forward to in the nearby future, though a significant portion of the economically viable hydropower potential of Nigeria has not been harnessed, thus very few hydropower plants are under construction and in program to harness this economically viable potential [8]. Hydropower is one of the most attractive sources of renewable energy, however the inability to convince investors through proper economic viability analysis or insufficient technical knowhow on the part of the design engineer to conduct proper economic feasibility and financial viability of such projects has greatly militated against the growth and development of the scheme in Nigeria, coupled with other factors, as there are many SHP projects abandoned and others yet to be harnessed. These set back has had its own fair share in the limited or total lack of access to electricity in rural communities, as SHP projects are mostly rural targeted projects, hence a major cause of underdevelopment and limited wealth generation capabilities amongst rural dwellers, as constant and available electric supply, drives the growth of cottage and small scale industries, by providing light, heat and power for productive uses and communication, that results in improved life styles and economies of rural dwellers.

The economic analysis compares and shows if a project should be embarked on, or abandoned. From an economic view point a hydropower plant, differs from a conventional thermal plant, because its investment cost per kW is much higher but the operating cost are extremely low, since there is no need for fuel [5].

This research work seeks to address basically the economic viability of SHP projects and its computation for financial investment decision using economic indicators like Net Present Value (NPV), Internal Rate of Return (IRR), Benefit Cost Ratio (BCR), to ascertain the breakeven point of the project, cash flow, present and future value of project as well as the expected yearly revenue of the project is shown in advance within the economic life or span of the project.

2. Materials and Methods

2.1. Study Site

River Onuaku is a stream and is located in Isuikwato local government Area of Abia State in Nigeria. The town is named after the river and is between latitude 5°54'2.63" and Longitude 7°32'45.56". The area is accessible through the Okigwe - Afikpo road or through the Lekweri – Obiagu road detouring from the Port Harcourt – Enugu Express way. It was estimated from the last census of 2006 to have a population of 8,500. The Onuaku area is located in the tropical forest zone described as the Guinea savannah. However the primary rain forest has been extensively modified athropogenic activities e.g farming, bush burning, etc hence replaced by the "desired" savannah. This consists mainly of tall grasses, shrubs and a few trees. Patches of forests still exist in the area.

The area is extensively a low-lying terrain of about 50 - 135m above sea level. The major stream is the Onuaku River from which the settlement took its name. The area has two distinct seasons; the rainy (wet) season and the dry season. The rainy season spans from April to October with a double maxima in July and September. A mean rainfall range of 1750m- 2000mm [7] is experienced. The air temperature range between 26.2 - 28°C, but lower temperature occur during harmattan periods of December and January and higher temperature in other times up to 30 - 32°C [8].

The dry season spans from November and March. However the months of November and March are not completely dry as some rainfall could be experienced periodically with a dry season minimum flow between the range of 2-3m³/s. The Onuaku River is an all season river with the highest / full

discharge during the rainy season between May and October. The river has its source from the Inyi Ike and flows south easterly and empties into Ivo River.

2.2. Technical Details

The detailed technical feasibility study was carried out by the team of Engineers and Scientists spanning from different discipline from the National Agency for Science and Engineering Infrastructure (NASENI), through field work. The power to be generated for the SHP was determined largely based on the demand of the local community and survey was carried in 2014 to collect information, regarding the demand for power in the locality and the villager's willingness to pay for the electricity supplied. In the demand survey the head count of the villagers according to households and rural demand, such as for offices, schools and so on were also calculated. The feasibility analysis also included the survey regarding hydrological, geographical and topographical information needed, prior to the actual design of the system components. The site survey was also carried out to determine the flow (Q), and head (H) required for the required power output of the project. The gross head was measured to be 7.8m by on field design survey by the use of a topographic map of that area and a digital altimeter with precision of $(\pm/-1m \text{ to } \pm/-5m)$. The flow of $0.04\text{m}^3/\text{s}$ (lean flow) and 0.346m³/s (wet flow) were gotten using the Velocity Area Method of flow measurement amongst other methods, like the weir method, salt dilution method, slope area method. The method employed for the flow measurement is thought to be accurate and quick. The summary of the data available from the feasibility analysis is provided in table 1.

Table 1. Summary of Data Gotten from the Feasibility Analysis on for Onuaku SHP Project.

Project Name	Onuaku SHP Project
Catchment Area	$4.28 \times 10^6 \mathrm{m}^2$
Gross head	7.8m
Net head	6.99m
Penstock length	166m each
Design discharge	$0.04 \text{ m}^3/\text{s} - 0.346 \text{ m}^3/\text{s}$
Number of turbines	1
Capacity	17kW to be locally fabricated
Turbine type	Cross flow
Net Production	92,845.44
River source	Inyi-ike/ Evo river
No of households	
Length of weir	3m
Scheme type	Run- off- river

2.3. Economic Tools or Indicators

The various equations used to appraise the economic viability of this project were gotten from literature and certain assumptions were also made based on the economic realities of the time. Such equations are discussed below. a) **Present Value**; it describes a monetary amount now, i.e. at a point in time other than that at which it is paid or received. It is mathematically given as [3]

$$=\frac{1}{(1+r)^n}\tag{1}$$

Where

r = Discount rate (%)

n = time (years)

b) **Payback Method (PBP)**; the PBP method determines the number of years required for the investment capital to be offset by resulting benefits. It is mathematically given as [1]

Payback Period
$$=\frac{\text{capital investment cost}}{\text{Annual Cash inflows}}$$
 (2)

c) **Net Present Value**; in the NPV method, the revenues and cost of a project are estimated and then discounted and compared with the initial investment. The preferred option is that with the highest Net Present Value. Projects with negative NPV should be rejected, because the Present Value of the Stream of benefits is insufficient to recover the cost of the project. The NPV is mathematically given as [6];

$$NPV = \sum_{j=1}^{30} \frac{(B_j - C_j)}{(1 + i_s)^j}$$
 (3)

Where

n = Project life Span of 30 years

j = Increment in years

 B_i = Benefit at j years

C_i= Cost of O & M at j years

i_s= Discount rate

d) Internal Rate of Return (IRR); the IRR is the discount rate, at which the present value of the periodic benefits (revenues less operating and maintenance cost) is equal to the present value of the initial investment [5]. In other words, the method calculates the rate of return an investment is expected to yield. The preferred option is that with the IRR greatest in excess of a specified rate of return or discount rate. Mathematically the IRR is given as [6]:

$$NPV = \sum_{j=1}^{30} \frac{(B_j - C_j)}{(1 + EIRR_s)^j} = 0$$
 (4)

Where

EIRR = the value or rate of IRR that equals the NPV to zero.

Hence we calculate by interpolation the discount rate that makes the NPV to be Zero by the formula below;

e) **Benefit Cost Ratio (BCR) or Profitability index**; the BCR or Profitability index is the discounted net revenues divided by the initial investment. The preferred option is that

with the ratio greatest in excess of one. In any event, a project with a benefit cost ratio of less than one should generally be discarded. Mathematically the IRR is given as [5]

$$B/C = \frac{\sum_{j=1}^{30} \frac{B_j}{(1+i_S)^j}}{\sum_{j=1}^{30} \frac{C_j}{(1+i_S)^j}}$$
 (5)

Where the parameters have the same meaning as previous equation above.

Furthermore the computations were successfully carried out

using an excel based platform to show the different cash flow analysis of the respective indicators used.

3. Results and Discussion

3.1. Results

The results of the cost of the project after a proper bill of engineering measurement and evaluation, the estimated cost of the project is summarised in Table 2.

Table 2. Estimated cost of project.

Items	Cost (N)	
Direct costs		
Civil Engineering	7,602,722.85	
Turbine- generator (Locally Fabricated)	1,209,155.85	
Total Direct cost Foreseen	8,812,155.85	
Contingencies (unforseen)		
10% of electromechanical cost	120,943.3	
10% of civil engineering	760,272.285	
Total direct cost (contingencies plus total direct cost foreseen)	9,693,371.43	
Indirect Cost		
Engineering cost (12% of direct & contingencies)	1,163,204.57	
Admin & others (5% of direct & contingencies)	969,373.143	
TOTAL CAPITAL COST	11,232,184	

3.1.1. Expected Revenue

With a net production of 92,845.44kWh, all year round, the power generation is projected using a tariff rate of 12.38 Naira per kWh of electricity as at 2014 [2]

Hence the expected yearly revenue is calculated thus as

- = Energy produced yearly x tariff rate
- $= 92,845.44 \times 12.38$
- = N1, 149,426 Naira

3.1.2. Payback Period

With a project cost of N11.2 million, and a varied net cash flow as shown in table 3 below, the project would be completely paid for in;

Payback period =	_ Investment cost		
	Annual cash flow		
_	_ 11,232,184		
_	1,149,421		
=	= 10years (approx)		

3.1.3. Net Present Value

Table 3 below shows that the cash flow analysis gave an NPV of 3,630,057.58 at the 30 years life span of the project base on the following assumptions.

- a) 12% discount rate [13]
- b) Project life span of 30 years (5]
- c) 9.5% of energy escalation on annual benefits [7]

Table 3. Cash Flow Analysis for Project NPV: from equation (3).

YEAR	CAPITAL COST (N)	O&M(5% Capital cost) (₦)	ANNUAL BENEFIT(9.5% Escalation) (♣)	NET ANNUAL BENEFIT (₦)	PRESENT VALUE FACTOR (i=12%)	NET PRESENT VALUE(NPV) (₦)
1	11,232,184			-11,232,184	0.892857	-10028735.71
2		561,609.20	1,149,421	587,811.80	0.797194	468599.9681
3		589689.66	1258616	668,926.30	0.71178	476128.5525
4		619174.143	1378185	759,010.40	0.635518	482364.8128
5		650132.85	1509112	858,979.20	0.567427	487407.8628
6		682639.493	1652478	969,838.20	0.506631	491350.212
7		716771.467	1809463	1,092,691.60	0.452349	494278.1881
8		752610.041	1981362	1,228,752.00	0.403883	496272.3317
9		790240.543	2169591	1,379,350.90	0.36061	497407.7669
10		829752.57	2375703	1,545,950.10	0.321973	497754.5487
11	11,821,464.70	871240.198	2601394	1,730,154.20	0.287476	497377.9877
12		914802.208	2848527	1,933,724.70	0.256675	496338.9552

YEAR	CAPITAL COST (N)	O&M(5% Capital cost) (₦)	ANNUAL BENEFIT(9.5% Escalation) (♣)	NET ANNUAL BENEFIT (N)	PRESENT VALUE FACTOR (i=12%)	NET PRESENT VALUE(NPV) (₦)
13		960542.319	3119137	2,158,594.60	0.229174	494694.1681
14		1008569.44	3415455	2,406,885.50	0.20462	492496.4571
15		1058997.91	3739923	2,680,925.20	0.182696	489795.0165
16		1111947.8	4095216	2,983,268.00	0.163122	486635.6395
17		1167545.19	4484261	3,316,716.10	0.145644	483060.9375
18		1225922.45	4910266	3,684,343.70	0.13004	479110.5467
19		1287218.57	5376741	4,089,522.90	0.116107	474821.3206
20		1351579.5	5887532	4,535,952.40	0.103667	470227.5107
21		1419158.48	6446847	5,027,688.90	0.09256	465360.9363
22		1490116.4	7059298	5,569,181.50	0.082643	460251.1422
23		1564622.22	7729931	6,165,309.00	0.073788	454925.5482
24		1642853.33	8464275	6,821,421.40	0.065882	449409.5872
25		1724996	9268381	7,543,384.80	0.058823	443726.8361
26		1811245.8	10148877	8,337,631.20	0.052521	437899.1376
27		1901808.09	11113020	9,211,212.20	0.046894	431946.7143
28		1996898.49	12168757	10,171,858.70	0.041869	425888.2756
29		2096743.42	13324789	11,228,045.70	0.037383	419741.1181
30		2201580.59	14590644	12,389,063.50	0.033378	413521.2191
						3,630,057.58

3.1.4. Internal Rate of Return

The IRR is an indicator to measure the financial return on investment of an income generating project and is used in investment decision. In general the decision rule is that as long as the IRR of the project is greater than discount rate or the hurdle rate, then you accept the project.

Table 4 shows that the upper and lower limit of discount gotten by Trial and error method are 12% - 14.52%, hence we calculate by interpolation the discount rate that makes the NPV to be zero.

Lower Discount Rate

+ Diff of two discount rate [\frac{\text{NPV at lower disc rate}}{\text{Sum of NPV at two disc rate}}]

But lower rate = 12%

Difference of two disc rate = 14.52% -12 = 2.52%

NPV at hurdle discount rate of $12\% = \frac{12}{12}$, 630,057.54

NPV at upper discount rate = $\frac{N}{3}$ 13.208

We have

IRR = 12 + 2.52
$$\left[\frac{3,630,057.54}{3,630,057.54+313.208}\right]$$

= 12 + 2.25

$$IRR = 14.25\%$$

Therefore with an IRR of 14.25%, the project NPV becomes zero.

Table 4. Cash Flow Analysis for Project IRR: from equation (4).

Year	Capital Cost(₦)	Net Annual	Present Value	Net Present	Present Value For	Net Present Value
icai	Capital Cost(#)	Benefit(₩)	(i=12%)	Value(N)	IRR (i=14.52%)	For IRR(N)
1	11,232,184	-11,232,184	0.892857	-10028735.71	0.873202295	-9807968.844
2		587,811.80	0.797194	468599.9681	0.762482248	448196.0624
3		668,926.30	0.71178	476128.5525	0.665801248	445371.9889
4		759,010.40	0.635518	482364.8128	0.581379178	441272.8258
5		858,979.20	0.567427	487407.8628	0.507661632	436070.7793
6		969,838.20	0.506631	491350.212	0.443291302	429920.8364
7		1,092,691.60	0.452349	494278.1881	0.387082982	422962.3236
8		1,228,752.00	0.403883	496272.3317	0.338001749	415320.3308
9		1,379,350.90	0.36061	497407.7669	0.295143902	407107.0111
10		1,545,950.10	0.321973	497754.5487	0.257720333	398422.7675
11	11,821,464.70	1,730,154.20	0.287476	497377.9877	0.225041986	389357.3365
12		1,933,724.70	0.256675	496338.9552	0.196507179	379990.776
13		2,158,594.60	0.229174	494694.1681	0.171590519	370394.3676
14		2,406,885.50	0.20462	492496.4571	0.149833235	360631.4392
15		2,680,925.20	0.182696	489795.0165	0.130834725	350758.1151
16		2,983,268.00	0.163122	486635.6395	0.114245182	340823.9995
17		3,316,716.10	0.145644	483060.9375	0.099759155	330872.8006
18		3,684,343.70	0.13004	479110.5467	0.087109923	320942.898
19		4,089,522.90	0.116107	474821.3206	0.076064585	311067.8598
20		4,535,952.40	0.103667	470227.5107	0.06641977	301276.9143

Year	Capital Cost(₦)	Net Annual Benefit(₦)	Present Value (i=12%)	Net Present Value(₦)	Present Value For IRR (i=14.52%)	Net Present Value For IRR(₦)
21		5,027,688.90	0.09256	465360.9363	0.057997896	291595.3783
22		5,569,181.50	0.082643	460251.1422	0.050643896	282045.0472
23		6,165,309.00	0.073788	454925.5482	0.044222366	272644.55
24		6,821,421.40	0.065882	449409.5872	0.038615071	263409.6721
25		7,543,384.80	0.058823	443726.8361	0.033718769	254353.6482
26		8,337,631.20	0.052521	437899.1376	0.029443306	245487.4286
27		9,211,212.20	0.046894	431946.7143	0.025709963	236819.9214
28		10,171,858.70	0.041869	425888.2756	0.022449998	228358.2117
29		11,228,045.70	0.037383	419741.1181	0.01960339	220107.7605
30		12,389,063.50	0.033378	413521.2191	0.017117725	212072.5852
				3630057.584		-313.2083908

3.1.5. Benefit Cost Ratio

and

The benefit cost ratio of the project from discounted O & M cost, discounted investment cost and the discounted Annual benefit from the Table 5 is given by

Discounted benefit= $\frac{1}{2}$ 19,719,913.11

= N16,089,855.52

Total Discounted Cost = $\frac{1}{2}$ 6,061,119.81 + $\frac{1}{2}$ 10,028,735.71

Hence b/c ratio = $\frac{19,719,913.11}{16.089,855.52}$ = 1.23

Table 5. Cash Flow Analysis For Benefit Cost Ratio: from equation (5).

YEAR	O&M (5% Capital	Annual Benefit	Present Value	Discounted	Discounted	Discounted Annual
	cost)(₦)	(9.5% escalation)(₦)	(i=12%)	Capital Cost (₦)	O&M(N)	Benefit (₦)
1			0.8928571	-10028735.71		
2	561,609.20	1,149,421	0.7971939		447711.4158	916311.3839
3	589689.66	1258616	0.7117802		419729.4523	895858.0048
4	619174.143	1378184.5	0.6355181		393496.3616	875861.1744
5	650132.8502	1509112	0.5674269		368902.839	856310.7017
6	682639.4927	1652477.7	0.5066311		345846.4115	837196.6236
7	716771.4673	1809463.1	0.4523492		324231.0108	818509.1989
8	752610.0407	1981362.1	0.4038832		303966.5726	800238.9043
9	790240.5427	2169591.5	0.36061		284968.6618	782376.4288
10	829752.5698	2375702.6	0.3219732		267158.1205	764912.6692
11	871240.1983	2601394.4	0.2874761		250460.7379	747838.7257
12	914802.2082	2848526.9	0.2566751		234806.9418	731145.897
13	960542.3186	3119136.9	0.2291742		220131.508	714825.6761
14	1008569.435	3415454.9	0.2046198		206373.2887	698869.7458
15	1058997.906	3739923.1	0.1826963		193474.9582	683269.9747
16	1111947.802	4095215.8	0.1631217		181382.7733	668018.4128
17	1167545.192	4484261.3	0.1456443		170046.35	653107.2875
18	1225922.451	4910266.2	0.1300396		159418.4531	638528.9998
19	1287218.574	5376741.5	0.1161068		149454.7998	624276.1203
20	1351579.503	5887531.9	0.1036668		140113.8748	610341.3855
21	1419158.478	6446847.4	0.0925596		131356.7576	596717.6939
22	1490116.402	7059297.9	0.0826425		123146.9603	583398.1025
23	1564622.222	7729931.2	0.073788		115450.2752	570375.8234
24	1642853.333	8464274.7	0.0658821		108234.633	557644.2202
25	1724995.999	9268380.8	0.0588233		101469.9685	545196.8046
26	1811245.799	10148877	0.0525208		95128.09544	533027.2331
27	1901808.089	11113020	0.0468936		89182.58948	521129.3037
28	1996898.494	12168757	0.0418693		83608.67763	509496.9532
29	2096743.418	13324789	0.0373833		78383.13528	498124.2534
30	2201580.589	14590644	0.0333779		73484.18933	487005.4084
				-10028735.71	6061119.813	19719913.11

4. Discussion and Conclusion

4.1. Economic Indicators or Ratios

When appraising a project, it is pertinent not to use one method or indicator to show if the project is economically viable, hence several economic tools or indicators were used to ascertain the economic viability of Onuaku SHP project. These tools will be discussed below as they support in determining the viability of the project according to their specific decision rules that support them

a. Payback Period or Breakeven point

With a project cost of ¥11,234,184 million, and a varied net cash flow as shown in Table 3, the project would be completely paid for in 10 years (Year 2021), meaning that an investor will recoup its initial capital within a ten years period, if the project is implemented and put into full operation. This method is the fastest and most used method to show the economic potential of a project, but cannot be relied alone on to ascertain the viability of a project, because it does not show the year to year variations in cash flow and does not take into account the time value of money. According to the rule of dump, the shorter time for the project to pay back its initial investment, the better. From our analysis here, ten years is considerable short a period for an investment that spans over 30 years minimum and 50 years and above, to yield. Hence it is very key to undertake this project.

b. Net Present Value

From table 3 the project net present value was estimated at N3, 630,057.54. Having returned a positive NPV is an indication that the project is viable according to our decision rule from our literature review. The implication of returning a positive NPV after all discounting have been made to carter for the time or present value of money, is an indication that the project can pay for all its cost and able to withstand variations and fluctuations in price indices. Compared to other investment appraisal techniques such as the IRR and the discounted payback period, the NPV is viewed as the most reliable technique to support investment appraisal decisions.

c. Internal Rate of Return

The IRR is an indicator to measure the financial return on investment of an income generating project. From table 4, the IRR of the project is 14.25% higher than the hurdle rate of 12% that correspond to the opportunity cost of capital; this states that as long as the IRR of the project is greater than the discount rate, the project is viable. The implication of this statement goes as far as letting the investor understand, that even at a higher hurdle rate, say 14.25%, the project will still break even.

d. Benefit Cost Ratio or the profitability index

From table 5, we got that the profitability index of the project is 1.23. According to our decision rule, a project with a benefit of less than one should be discarded. Hence the profitability index of Onuaku SHP site is above unity from calculation. This implies that on every one naira invested in this project, a benefit of 0.23 kobo is realized, which is an 18.7% benefit on every one naira spent. Hence from our decision rule this project is viable based on the result from our calculation.

4.2. Conclusion

A project payback period of ten years is timely enough for the client or investor to recover its initial investment made on a project that can span beyond 50 years with a positive NPV of three million six hundred and thirty thousand, fifty seven naira fifty eight kobo only, (N3, 630,057.58) and an IRR of 14.25% higher than the hurdle rate 12%, and a benefit cost ratio above unity of 1.23 an indication of positive returns on investment.

Hence, the results from the analysis above have provided additional information for the decision makers, client and the design engineer to see reasons why this project will be economically viable based on the economic indicators used.

References

- [1] Abolarin, S. (2012): Lecture note on elements of economics, department of mechanical engineering, Ahmadu Bello University Zaria.
- [2] Aderinokun, K. (2011): PHCN Transferred to NELMCO, Thisday newspaper. Downloaded 11 September 2012 from http://www.thisdaylive.com/articles/phcn-tranferredtonelmco/84995/
- [3] Akinsuilire, O. (2009): financial mgt 7thedition, ceemol Nig .ltd
- [4] Council for Renewable Energy, Nigeria (CREN): Nigeria Electricity Crunch. 2009. available at www.renewablenigeria.org, Google Scholar.
- [5] ESHA (1998): Layman's Guide book on how to develop a Small Hydro Site.
- [6] HRC Training manual on SHP (2006), Hangzhon Regional Center (HRC) for SHP, Domestically called, National Research Institute for Rural Electrification, China.
- [7] National Bureau of Statistics. Downloaded on 14 February 2013 from http://www.premiumtimesng.com/business/130887finance-experts-say-Nigeria-inflation-to-rise-in-secondquarter.html
- [8] NASENI SHP, (2009). Making SHP Deployment for Electricity Generation Viable and Sustainable through the Development of Local Manufacturing Capacity for SHP Equipment.
- [9] Nnaji C, et al.: CIA World Factbook. Edited by: Nnaji CE, Uzoma CC. Nigeria; 2010. http://www.cia.gov/library/publications/the-world-factbook/geos/ni.htmlGoogle Scholar
- [10] NRC (Natural Resources Canada). 2012. Clean Energy Project Analysis: RETScreen Engineering & Cases Textbook. Retrieved August 17, 2012, from Download Free: http://www.retscreen.net/ang/home.php
- [11] Ohunakin, O. S., Ojolo, S. J., Ajayi, O. O. (2011). Small hydropower (SHP) development in Nigeria: An assessment. Renewable and Sustainable Energy Reviews 15, 2006-13.
- [12] Rai GD: Non- Conventional Energy Sources. Khanna Publishers, Delhi; 2004. (Google Scholar)
- [13] Trading Economies, (2012). Financial Rates and Lending-Retrieved November 14, 2013, from http://www.tradingeconomies.com/Nigeria/in....