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Abstract 

The Schmidt model is one of the classical methods used for developing Stirling engines. The Schmidt analysis is based on the 

isothermal expansion and compression of an ideal gas. However with the recent innovation in technology, the Schmidt analysis 

needs to be improved upon as this analysis has been found to include phenomenon which contradicts the real behavior of the 

Stirling engine. In this paper the Schmidt analysis used in the performance prediction of the gamma-type Stirling engine is 

derived and lapses in this model is identified orderly. Other popular models developed by various individuals including their 

assumptions and limitations are described in this paper. 
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1. Introduction 

During the 1950’s, a number of studies were performed to 

develop empirical correlations for estimating the Stirling 

engine performance parameters based on power output and 

the engine efficiency [1]. The Beale number as described by 

Koichi in 1998 is a common method used to empirically 

predict or estimate the power output of the Stirling engine 

[2]. Professor William Beale, of Sunpower Inc. in Athens, 

Ohio, conformed that the power output of many Stirling 

engines can be approximated by Equation (1). 

P = Be *Pmb* f* Vob                              (1) 

This can be rearranged as: 

Be = 
����	�	��� = constant                             (2) 

The equation was found by Beale to apply roughly to various 

kinds and sizes of Stirling engines for which information 

were accessible including free piston machines and those 

with kinematic linkages. In many cases, the engines operated 

with heater temperature gradient ranging between 65°C and 

650°C. Figure 1 shows the plot of Beale number versus 

heater temperature. The result of Equation (2) is a 

dimensionless group which is known as the Beale number. In 

Martini's report, another strategy exists to estimate the 

performance of a Stirling engine, in support to Beale's 

equation. The equation utilizes the process temperatures [1]. 

This method was found by West and is given by: 

P = F
.
n

.
Pmw

.
Vo. 

�	
���	∓	��                           (3) 

Where, 

F = 0.35 (West factor) 
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Figure 1. Beale number as a function of the heater temperature. 

Source: [1] 

In order to find an appropriate correlation for calculating the 

power output of the Stirling engine precisely that of the 

gamma configuration, Kongtragool, and Wongwises in 2003 

investigated the experimental performance of a gamma type 

Stirling engine [3]. They came to the conclusion that the 

Beale’s formula was not valid for conditions in which there 

were high-temperature ratio. However, they recommended 

that the original Beale formula and the mean pressure based 

power output formula with a certain magnitude of the factor 

F (0.25 – 0.35) representing mechanical loss and friction 

coefficient would make it possible to accurately predict the 

engine’s power output. The mean pressure equation is similar 

to the West equation given as follows: 

P = Fopmw fVp

�	
	���	
	��                        (4) 

In order to improve further, the empirical correlations for 

predicting the Stirling engine performance, [4] analysed a 

wide range of experimental results and applied methods of 

the dynamic similarity and quasi-static simulations for 

various types of Stirling engines. They used dimensionless 

analysis to characterize the gas leakage and mechanical 

power losses present in an actual Stirling engine. The 

dimensionless mechanical power losses were determined 

using the empirical data. Several Stirling engines were 

modeled. Prieto et al. found that such correlation based on 

dimensionless analysis of the engine’s working process and 

different losses in the cycle provided more accurate 

prediction of the performance of the Stirling engines. 

Empirical models provide a quick way to estimate the 

relationship between the overall size of an engine and its 

power output, but they are not very useful as detailed design 

tools for Stirling engines [5]. 

The Schmidt isothermal model was published in 1871 by 

Professor Gustav Schmidt of the German Polytechnic 

Institute [2]. The Schmidt analysis is a pure mass balance for 

the working gas of the Stirling engine. It is based upon the 

theory of an isothermal expansion and compression of an 

ideal gas. This method allows using some simplifications to 

calculate the pressure distribution as a function of the crank 

angle as well as the determination of the cycle work. An 

advantage of this analysis is that the equation set can be 

solved in a closed form and so there is no need to use 

numerical procedures. The limiting factor of this model is 

that most assumptions are based on ideal condition; the only 

non-ideal condition is the assumption of sinusoidal 

continuous variation of the piston movement as against the 

discrete movement of the ideal cycle. [6] Presented a model 

which takes into account the effectiveness of the drive 

mechanism in the Schmidt theory to analyze the engine 

performance of the gamma type configuration. The results of 

experiments on a 10 kW gamma type Stirling engine 

demonstrated that the mechanical effectiveness of the engine 

has a strong influence on the shaft power of engine. Martini 

presented an isothermal model based on Schmidt theory and 

taking into account heat losses and pressure losses. The 

temperatures of hot and cold gases were obtained by taking 

into account temperature drops in the heater and cooler. His 

model was validated using the experimental data obtained 

from GPU-3 Stirling engine. There was 20% error compared 

to experimental results [7]. Finkelstain developed an 

adiabatic analysis. His model defined an adiabatic 

compression and expansion spaces whilst all heat exchangers 

were treated as perfect heat exchangers with isothermal [8]. 

As reported by [9], Qvale developed a model for predicting 

the heat input, work output, and indicated efficiency of a 

Beta type Stirling engine based on adiabatic and sinusoidal 

conditions. Results of his model compared favorably with the 

test data over a range of engine speed (1500 to 3000 rpm). 

Rio devised a model by developing further Qvole's work on 

the adiabatic second-order model. Rio used the same basic 

assumptions as Qvole but changed the formulation of the 

problem so that nonsinusoidal piston displacements could be 

specified. Rio’s model was typically based on Stirling 

refrigeration. Lee Allan developed an adiabatic analysis in 

1973, which provides a unique power loss mechanism which 

involves the cyclic heat transfer loss. Model by [10] involved 

an adiabatic and isothermal analysis with objectives in low 

temperature ratio applications; Shoureshi developed two 

Stirling engine mathematical models. The complete model 

was an improvement of Rio’s adiabatic model. For 
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mechanical friction loss, Shoureshi developed a correlation 

based on internal combustion engine data. In 1977, Urieli in 

an attempt to establish basic trends, presented a simplified 

closed form analysis based on idealized cycles but without 

the mechanical or thermodynamic restriction imposed by 

Schmidt on the alpha type Stirling engine [11]. In particular 

he examined the effect of non isothermal compression and 

expansion. The major assumption made was that all particles 

of working fluid undergo the same process throughout the 

cycle. The result of his analysis showed that it is possible to 

operate the ideal Stirling cycles at high volume compression 

ratio for high power output and efficiency however, it seemed 

detrimental to operate the non-ideal Stirling at high volume 

compression ratio. In 1983, Roy and Tew developed a model 

which was referred to as the common pressure analysis. They 

used the conservation of mass, energy, and equation of state 

to determine the thermodynamics of the gas at each node. 

Several simplifications were used to minimize the numerical 

integration. The momentum equation was totally ignored and 

a common pressure through each gas nodes was assumed 

during each time step. Roy and Tew compared their model 

with experimental data from the GPU-3 Stirling engine. 

When the regenerator friction factor was increased by factors 

of 4.0 and 2.6 for hydrogen and helium, respectively, the 

model over predicted both brake power and efficiency by 5 t 

o 30% [12]. 

2. Derivation of the Schmidt 
Model for Gamma Type 
Stirling Engine 

In the Schmidt model, the gamma types Stirling engine is 

considered as having five control volumes serially connected 

together as appeared in Figure 2. This comprises of a 

compression space c, expansion space e, heater h, cooler k, 

and regenerator r. Every cell is considered as a homogeneous 

element, the gas is represented by its instantaneous mass m, 

volume V, absolute temperature T and pressure P with suffix 

c, k, r, h, and e representing the particular cell. 

 

Figure 2. Control volumes of the ideal Isothermal model. 

 

Figure 3. Temperature profile of the ideal isothermal model. 

The condition made in this analysis is that the gas in the 

expansion space and the heater is at constant upper source 

temperature and gas in compression space and the cooler is at 

constant lower temperature. Hence the isothermal condition 

assumed makes it conceivable to generate a basic expression 

for the working fluid pressure as a function of the volume 

variations. To get closed form solution, Schmidt accepted 

that the volumes of the working spaces fluctuate sinusoidally. 

The assumed isothermal condition of the working spaces and 

heat exchangers suggests that the heat exchangers including 

the regenerator are very effective. The beginning stage of the 

analysis is that the total mass of gas in the engine is constant 

as follows: 

M = mc + mk + mr + mh + me                    (5) 

Substituting the ideal gas law given by Equation (6) 

m = 

���                                 (6) 

We obtain 

P����� � ���� �	���� �	���� �	�	��� = MR                (7) 

With specific end goal to evaluate the total mass of gas in the 

void space of the regenerator, the lengthwise distribution of 

the working fluid temperature must be known. [11] 

demonstrated that for real regenerators, the temperature 

profile is linear, and consequently, it was expected that the 
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ideal regenerator has a temperature profile which is linear 

between the hot temperature and cold temperature, as shown 

in Figure 4. 

The assumption of a linear temperature profile can be 

numerically defined by the equation of a straight line as 

follows: 

T(x) = 
���	–	������  + Tk                         (8) 

 

Figure 4. Regenerator linear temperature profile. 

The summation of mass of gas contained in the void volume 

of the regenerator, is obtained by 

mr = � ρdV� �!                                    (9) 

Where "	 is the density, 

dVr, = Ardx                                 (10) 

Where dx is the derivative volume for constant free flow area 

A, and Vr = ArLr. 

Where Ar can be written as: 

Ar=
����                                       (11) 

Substituting (10), (11) and the ideal gas law p = "	 RT in 

Equation (9) thus: 

mr = 
���� � #$���
����%����&��!  dx                    (12) 

Integrating Equation (12) and simplifying: 

mr = 
��
	'()����*�	���
	���                                   (13) 

Defining the effective mean temperature (T) of the 

regenerator, in terms of the ideal gas equation of state: 

mr = 
������                                          (14) 

Next, comparing Equations (13) and (14) we obtain: 

Tr =	���
���'(	������                                     (15) 

Given the volume variations Vc and Ve we can evaluate 

Equation (13) for pressure as being a function of the volume 

variation of the expansion and compression space. 

P = 
+�

�����%	����%	��	,-	�
��������.	���%	����%	�	���

                  (16) 

The work done by the Stirling engine for a single cycle can 

be obtained by the cyclic integral of pdV 

W = We + Wc = ∮pdV1 � ∮pdV2 3 ∮p 45��5θ � 5�	5θ 6 dθ	 (17) 

Considering the energy equation of the ideal isothermal 

model from the perspective of energy flow, the transfer of 

heat into and out of the system occurs at the cold and hot 

temperatures Tk and Th. Enthalpy is transported into the cell 

by method for mass flow mi and temperature Ti, and out of 

the cell by method for mass flow mo and temperature To as 

shown in Figure 5. 

 

Figure 5. Generalized cell of energy flow. 

The statement of the energy equation for the working gas in 

the generalized cell is as follows: 

 

We know that: 

Specific enthalpy hs = cp T                           (18) 

Specific internal energy us = cv T                    (19) 

Where cp and cv are the Specific heat capacities of the 

working fluid (gas) at constant volume and pressure. 

Therefore substituting in Equation (18) we have: 

dQ + (cp Ti mi - cp To mo) = dW + cv d(m T)  (20) 

Equation (21) is the non-steady flow energy equation in 

which kinetic and potential energy terms have been ignored. 

In the Schmidt isothermal model for the compression and 

expansion spaces, and additionally for the cooler and heater, 

we have T= Ti = To, a constant value. Moreover, from mass 

conservation equation, the difference in the mass flow (m8 i- 
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m8 o) is equal to the rate of the mass amassing inside of the 

cell dm. Equation (20) along these lines simplifies to: 

dQ + cp d(Tm) = dW + cv d(Tm)                     (21) 

dQ = dW – Rd(Tm)                               (22) 

For the assumed ideal gas, the gas constant (R) is given by: 

R = cp - cv                                      (23) 

Hence, 

cp =R
99
#                                    (24) 

cv = R
99
#	                                   (25) 

With 

λ = 
1:1;                                       (26) 

Qc = Wc, Qe = We                             (27) 

So also, for the heat exchanger spaces, since work done is 

zero we have: 

Qk = 0, Qh = 0, Qr = 0                           (28) 

Hence, the cycle efficiency can be given accordingly by: 

η=
<=	                                           (29) 

For the ideal regenerator Qr = 0. This is due to the fact that 

the heat exchange between the regenerator and the working 

fluid is internal. There is no transfer of heat externally 

between the regenerator and the open environment. 

In order to unravel these equation sets, the working space 

volume variations Vc and Ve and the derivates dVc and dVe 

with respect to crank angle θ needs to be known. 

To solve the differential equation set, Schmidt made an 

assumption of a sinusoidal variation in the expansion and 

compression space as over a solitary cycle. 

 

Figure 6. Sinusoidal volume variation of compression and expansion space of the gamma type Stirling engine. 

Vc = Vclc + 
�>?�@ �1 B cos�θ B α�� + 

�>?	@ �1 � cos 	θ�  (30) 

Ve = Vcle + 
�>?	@ �1 B cos 	θ�                   (31) 

Substituting for Vc and Ve in Equation (25) and simplifying 

we have: 

P 3 G�
H)����*	%4�>?	I�	 	
	�>?	��>θI�	 %	��,	�	 6%J��	,-	�����	����.	���K%	4�>?	I�� %	�>?	��>θI�� %	�>?�I�� 	
	�>?� ��>�θ.L�I�� %	��,��� 6%	)����*M

                   (32)

P=
G�NO	
	�>?	��>θI�	 	%	�>?	��>θI�� 	
	�>?���>�θ.L�I�� P          (33) 

P=
G�NO	
	4	�>?	I�	 
	�>?	I�� 	61QRθ	
	�>?� ��>�θ.L�I�� P             (34) 

P=
G�NO	
	S4	�>?	I�	 
	�>?	I�� 	61QRθ	%	�>?� ��>�θ.L�I�� TP            (35) 

Where 
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s = U���� � �>?	@�	 �	��,	�	 �	��	'(	�����	����
	��� � �>?	@�� � �>?�@�� � ��,��� � ����V	 (36) 

Given: 

Acosθ + Bcos(θ B α) = Ccos(θ − 	β)          (37) 

Where 

β=tan
-1

 
XRY(Z

([%X)1QRZ                             (38) 

And 

C= 
#
@\(A + B)@ +	(B)@                          (39) 

By utilize the trigonometric substitution of β and c, we can 

simplify Equation (37) as follows: 

β=tan
-1

 

�>?�I�� RY(Z
4	�>?	I�	 
	�>?	I�� %

�>?�I�� 61QRZ
                (40) 

C= 
#
@_4�>?	@�	 −	

�>?	
@�� +

�>?�
@�� 	6

@ +	4�>?�@�� 6
@
    (41) 

Therefore, 

P = 
+�

R%`1QR(θ
	a)                                (42) 

Hence we obtain: 

P = 
+�

R	(#%b1QRc)                                 (43) 

Pmin = 
+�

R	(#%b)                                      (44) 

Pmax = 
+�

R	(#
	b)                                      (45) 

Pmean =
#
@π� pdϕ@π

!                                 (46) 

Pmean = 
+�
@πR � #

(#%b1QRc) 	dϕ@π
!                  (47) 

Pmean = 
+�

R	\#
bI                                    (48) 

5�	
5θ  = 

#
@VRe2 sin θ                           (49) 

5��
5θ  = 

#
@VRe1 sin 	(θ	 − 	α) - #@VRe2 sin θ            (50) 

W = 
+�
@R � 4�>?� RY( 	(θ	
	Z)
	�>?	 RY( θ#%b1QR(c) 6 dθ@π

!  + 

�>?	+�
@R � 4 RY(( θ)

#%b1QR(c)6 dθ@π
!             (51) 

3. Discussions 

Several mathematical models exist to predict the 

performance characteristics of the Stirling engine based on 

various assumptions. These models can assist in the 

improvement of the Stirling engine performance. However, 

there are varying degrees of errors in all these models. Thus, 

the degree of accuracy of a model is a function of the realistic 

assumptions made and number of parameters taken into 

consideration. 

Equation (51) defines a relationship to obtain the work done 

of a gamma type Stirling engine configuration. By taking a 

close look at the Equation (27) to (28) we observe that all the 

heat exchangers in the ideal Stirling engine are not 

functioning and external heat transfer happens across the 

boundaries of the compression space Qc and expansion 

spaces Qe. The implication of this is that the work done in the 

compression and expansion space is a contributory factor of 

only the heat energy Qe and Qc without any external support 

from the heat exchangers. This can be confusing in actual 

sense since Qe and Qc cannot generate their own energy 

independent of the heat exchangers Qh and Qk. This 

unmistakable inconsistency is an immediate result of the 

definition of the Ideal Isothermal analysis where the 

expansion and compression spaces are maintained at the 

heater and cooler heat exchangers temperatures. In real 

engines, the compression and expansion spaces will have a 

tendency to be adiabatic as opposed to isothermal, which 

infers that the net heat transferred over the cycle must be 

given by the heat exchangers. 

4. Conclusion 

Reviews on various numerical and empirical models have 

been discussed. The prevalent Schmidt thermodynamic 

model was derived and constraining factors in this model 

were made known. In the Schmidt analysis, the compression 

and expansion spaces were kept up at the specific heater and 

cooler heat exchanger temperatures. This prompted the 

confusing circumstance that neither the cooler nor the heater 

contributed any net heat transfer over the cycle and 

subsequently were redundant. Based on the Schmidt model, 

the heating energy needed for the system to run happened 

across the boundaries or limit of the isothermal working 

spaces (i.e compression and expansion space). Clearly this 

can't be valid in real systems. In real engines, the working 

spaces will have a tendency to be adiabatic instead of 

isothermal, which infers that the net heat transferred over the 

cycle must be given by the heat exchangers. In this way, it 

will be more realistic to consider an adiabatic condition for 

the system boundary and further account for losses in the real 

system. 
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