

International Journal of Electronic Engineering and Computer Science

Vol. 3, No. 3, 2018, pp. 39-48

http://www.aiscience.org/journal/ijeecs

* Corresponding author

E-mail address:

Agile Methodologies: Useful Approaches for
Software Process Improvements over Traditional
Methodologies

Naseer Ahmad*

Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

Abstract

Now a days the business market is going to be extremely energetic, and organizations regularly transforming their software

requirements in order to be compatible with existing business market. These organizations also give order to the software

development teams for rapid delivery of software products in order to fulfil their requirements. The traditional software

developments methodologies fail in order to meet these demands of particular organizations or customers. However, traditional

developments approaches such as water fall model, spiral model, V model, or object oriented approaches, carry on to control

the development of systems a small number of decades and a lot of effort has been done to enhance these traditional

methodologies, Agile software development methodology carry its individual set of narrative tests that should be managed to

convince the customer or an organization that put order for a particular software product through before time and consistent

delivery of the valuable software product. In this paper, we illustrate the main facts and features of agile software development

methodology that enhances the development process of software product to fulfil the quick changes of software product in the

business market.

Keywords

Agile, Traditional, XP, Scrum, Methodology

Received: May 6, 2018 / Accepted: June 15, 2018 / Published online: August 6, 2018

@ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license.

http://creativecommons.org/licenses/by/4.0/

1. Introduction

There are large numbers of people who have a question in

their mind that “What is Agile Software Development

Methodology?” And they found different answers about this

particular question. The Agile Manifesto is closed under this

definition.

In order to develop a software product an evolutionary and

incremental approach which is presented in an extremely

shared method with the help of self-organizing groups under

a suitable control framework with “just sufficient” ceremony

that generates tremendous results in a very profitable and

sensible mode which fulfil the changing requirements of its

stakeholders.

In fact Agile software development methodology is a mixture

of various software development methodologies that are

based on the incremental and iterative development

approaches, in which needs and their results develop

throughout teamwork among self-organizing, cross-efficient

groups or teams [1]. During the conference of software

process methodologists that were seventeen in number in

2001 for the purpose of enhancements in software

development, the word “Agile” came into existence. These

methodologists observed that there are lot of qualities and

features in their methods; therefore they make a decision to

give name such processes “Agile”. The word “Agile” means

in the sense of software that the processes are light and

enough. However, the appearance of agile development

methodologies came into existence in the mid of 1990s, when

40 Naseer Ahmad: Agile Methodologies: Useful Approaches for Software Process Improvements over Traditional Methodologies

the software development methodologies like eXtreme

Programming (XP), Scrum, Feature Driven Development

(FDD), and also like Adaptive Software Development (ASD)

began to come into view [13]. In the field of software

development, launching of agile methodologies was done in

2001 in which old and new concepts related to software

development was merged in order to get improvements in

software processes. Consequently, the word “agile” was

selected and the Manifesto for its software development was

outlined and also tools and methodologies that would

distribute the significances and principles for agile software

development.

The significances and standards of Agile Manifesto explain

the key components of agility that be supposed to be

embedded in any particular technique that declares to be

agile. The agile manifesto emphasises the significances or

values and items are given below in the table that are still

supposed important too:

Table 1. The Agile Manifesto [3].

Agile Values Agile Items

Individuals and Interactions over Processes and tools

Working software over Comprehensive documentation

Customer collaboration over Contract negoation

Responding to change over Following plan

The twelve principles related to agile software development

process are described as under:

1. Delivery of valued software in advance and continuous to

the particular customer is main objective of agile software

development methodologies.

2. Warm welcome to clients when they need changes in

software, yet behind schedule in development process.

The control of agile processes change for the customer’s

aggressive improvement.

3. Provide regular delivery of software product, starting a

pair of weeks and ending at a pair of months, with a liking

to the minimum timescale.

4. A team work of software developers with business people

should be done collectively during the entire software project.

5. Development of software project should be around the

provoked individual. Must provide support and suitable

environment to individuals they need and have

expectations from them to fulfil the task.

6. Face-to-face communication is best and suitable

technique to express the information to and within a

software development team.

7. Key measure of development is the working of software.

8. Agile methodologies encourage maintainable software

process improvement. The sponsors, developers as well as

customers must be capable to preserve a stable velocity

for ever.

9. The enhancement in agility is obtained through regular

awareness to the technical superiority and appropriate

software design.

10. For exploiting the quantity of work not having to be

completed, simplicity is core part of agile manifesto.

11. The suitable and accurate software architectures,

requirements, and software designs come into view from

self-organising teams.

12. At continuous time periods, the team replicates on how to

turn out to be more successful, then refrains and corrects

its behaviour as a result.

These twelve principles, we can assume as main thoughts

that should be implanted in the practical work related to

software project development that claims to be agile [3]. The

rapid delivery of the software product does not term as agility

in software development but also the rapid adaptation to

modifying requirements. Firstly, the agile methodology is

used when the characteristics of the software product

incremental changes, mainly those characteristics that have

not been contained in the early requirements documents.

Secondly, some agile approaches try to reduce the risks by

developing the software in small time intervals, known as

iterations. Particular tasks are assigned to iterations in order

to release working software product at the ending of iteration

which fulfils minimal maximum priority requirements.

Working software is key measure for making guess of

development progress. When all iterations are completed

then the remaining requirements are reprioritized. Therefore,

the agile methodologies “hold” change, centre of attention is

simplicity and also these methodologies highlight the face-to-

face communication over the written document [4].

Traditional methodologies are organized by in order

sequence of steps such as requirement definition, planning,

deployment, building and testing. First, the user requirements

are suspiciously acknowledged on fullest level. After this the

common software architecture is pictured and the real coding

begins and then the different types of testing and the absolute

deployments are done. The main thought here is the

comprehensive apparition of the resultant project prior to the

building begins, and working one sided through the pictured

resultant structure. The traditional methodologies need the

customer to offer the comprehensive idea of the accurate

requirements regarding the proposed software. In this paper I

will explain the related work in II section, Agile Software

Development Methodologies in section III, Traditional

Software Development Methodologies in section IV, finally I

will provide conclusion in the section V.

 International Journal of Electronic Engineering and Computer Science Vol. 3, No. 3, 2018, pp. 39-48 41

2. Related Work

The business requirements in order to response quickly to the

surroundings in a novel, gainful and competent way is

convincing the usage of agile methodologies to the

developing softwares. Shine Technologies, Cutter

Consortium and Standish Group done some surveys and they

provide the estimation of usage of agile methodologies every

year on the behalf of percentage. Like as the mobile devices

have minimized the need for traditional landline telephones.

Similarly the agile methodologies take the place of traditional

software development methodologies in this period. The

agile software development methodologies have bright and

leading future. Normally, there are number of characteristics

and features of software development project can take

advantage from an agile methodology and some can take

advantage from a more analytical traditional methodology.

Every software project is different when it comes in the

environment of methodologies. It is the universal truth that

there is no “one-size-fits-all” solution [2]. The growing sum

of interest has been compensated to the agile methodologies

in the early days by equally researchers and practitioners,

therefore, producing an increasing body of experimental data

on various characteristics of agile software development.

Separately from the personal methodologies and practical

works of agile development, challenging issues have

occurred, like the scalability issues of agile development for

large and multisite projects, and the ability of the agile

methodologies with current standards. Additionally, there is

some misunderstanding with respect to relationship among

ad hoc coding and the agile development. It has been

suggested that the main reason for this misunderstanding is

slowly technique of agile development. In general, the

current agile development methodologies such as XP for

software implementation and Scrum for the project

management of agile methodology, both seems to suggest a

quite restricted approach to accomplishing the tasks of

software development. In addition, researches represent that

by implementing various agile methodologies and practices,

individual agile development groups can achieve a method

that fulfils the objectives of CMMI level 2. Therefore, there

is still a requirement to expand the agile software

development methodologies to meet such CMMI

requirements related to additional organisational level

performances [3].

3. Agile Software Development
Methodologies

As compared to traditional software development

methodologies agile methodologies significantly improve the

software processes in number of ways because it is extremely

shared and evolutionary approach. In these days agile

methodologies become much popular in the field of software

engineering. Agile methodologies are incremental, iterative,

and evolutionary model of software development. In agile

methodologies the whole application is dispersed in the

incremental elements or units sometime known as iterations

and every iteration has a small development time, fixed and

rigorously adheres as well. Due to small iterations the agile

methodologies proposes an opportunity for quick, visible and

inspiring software development.

Figure 1. Iterative and Incremental Agile Development Process [1].

Agile development methodologies are lightweight processes

that are based on small iterative phases or cycles. By this

characteristic these methodologies dynamically occupy the

users to create, prioritize, and investigate the requirements

and also rely on implicit knowledge of team as opposed to

documentation. The practice of agile methodologies is

customer oriented, changing requirements, suitable for small

development teams in projects in indistinct and lightweight

software development model. While traditional software

development methodologies such as waterfall model and

spiral models usually known as heavyweight software

development methodologies which we will discuss in

upcoming section.

Agile software development methodologies emphasize rapid

delivery to the customers. These methodologies are iterative

based and perform incremental development of the software

products, and on every successful delivery of the software

product iteration, it also deliver the software product

augmentation to the customer, therefore agile methodologies

are fulfilling the customer satisfaction via before time and

nonstop delivery of valuable software. While the lifecycle

traditional development methodologies based on delivery of

the software product only after the whole completion of the

software development process and before that customers

have no any accurate idea about the software product that is

being developed.

The key variation among traditional development

42 Naseer Ahmad: Agile Methodologies: Useful Approaches for Software Process Improvements over Traditional Methodologies

methodologies and agile methodologies is the approval of

change. This is the skill to reply to change that often decides

the success and failure rate of the software project. The

traditional methodologies do not allow change and freeze the

functionality of the software product. Agile methodologies

essentially welcomes the changing requirements also addition

or elimination of characteristics throughout the development

lifecycle. Since agile methodologies are iterative based so it

is easy too accept requirement changes during the

development of the software product. The framework of agile

development allows both clients and software developers to

change the requirement throughout the software project, on

the other hand the authority is only in the hands of clients to

accept, reject, and prioritize the ever changing needs.

Figure 2. Requirement Change Management in Agile and Traditional

Development Methodologies [1].

Agile development methodologies allow active customer

participation and feedback too. The customers make

participation and achieve higher priority in agile

development techniques instead of any traditional

approaches. The face to face communication among

customers and development teams happen in agile

development approach. The customers say warm welcome

for active involvement in software projects as it permits to

manage the project and process of development is much clear

to customers, also they kept advanced. This customer

participation reduces or overcome one of the most frequent

issues on software projects: “What the customers will accept

at the end of the software project varies from what customers

told the developers at beginning”. This participation of

customers helps them to form a reasonable vision of the

software product. Agile development methodologies also

help to reduce cost and time as compared to the traditional

development methodologies. Now we will discuss different

methodologies in this section that falls in the category agile

software development methodologies.

3.1. Extreme Programming (XP)

The best known first agile software development

methodology is Extreme Programming (XP) (Beck 2000)

that holds the property of fundamental process model for its

parent approach that is agile development approach and it has

been approved and adapted by its descendants. Additionally,

the foundation of XP begun in 1990s when Kent Black tried

to discover a enhanced approach of doing software

development when he was managing a software project at

Daimler Chrysler and this enhanced approach called XP

methodology and confirmed to be a booming methodology.

The main variation in this approach is that it focuses on

adaptability instead of predictability and the reason behind

this methodology is that the development of software is much

flowing practice in which requirements cannot be completely

predicted from starting but will forever change as projects

progress. Therefore, it is essential to have a methodology in

software development that is proficient to adapt to changing

requirements at any stage of the software development life

cycle. Kent Black in his experiments he found four

dimensions which latterly became the philosophies of XP and

if we implement these dimensions effectively then we can

improve the processes of software project. These four

dimensions are:

1. You need to improve your communication among

stakeholders.

2. You need to look for simplicity.

3. You need to get feedback of customers and project

manager on how effectively you are performing.

4. You need to constantly carry on with courage.

Even though, XP uses common practices that are commonly

used in other development methodologies, XP goes further

by implementing these common practices at extreme level

and these practices are given below in the table.

Table 2. Why it’s called eXtreme [6].

Good Practices Pushed to Extreme

Code Reviews Pair programming, code review all the time

Testing Provide unit testing as well as functional (customer) testing

Design Refactoring. Making it part of everyone’s daily business

Simplicity Always provide simplest design

 International Journal of Electronic Engineering and Computer Science Vol. 3, No. 3, 2018, pp. 39-48 43

Good Practices Pushed to Extreme

Architecture Metaphor, defining and refining architecture continuously

Integration Testing Provide continuous integration

Short Iterations Provide small iterations (the planning game)

XP provides 28 rules and best practices and can be packed

together into simple twelve rules that are:

1. User Stories (Planning): User stories are like use cases but

are not the similar as use cases. User stories are used for

time estimation for the purpose of release planning

meeting. This technique is helpful for customers because

they define the specifications of new application and will

be the baseline of the project team for management and

cost estimation of the project as well.

2. Small Releases (Building Blocks): At early stages the XP

team put a very simple system into the production, and

perform implementation continuously on every small

cycle.

3. Metaphor: The XP team often use a common set of names

as well as common description of the system that is

helpful for communication and development.

4. Collective Ownership: It means that whole code belongs

to all XP programmers. This lets the XP team to perform

rapid development, because when a change is required,

the change is done without any delay.

5. Coding Standard: XP team perform development in pairs

to share the ownership of the whole code, all XP

programmers need to perform software development or

coding in the same way, with particular rules that give

guarantee about code communicates clearly.

6. Simple Design: The program that is developed with XP

methodology should provide simplest design that fulfils

the customer’s current requirements means that always

look for the implementation of the system which is simple

and easy as possible yet covers all the required

functionality of the system.

7. Refactoring: The application that is built with XP

methodology should be consistently regulated and

improved by all XP team members. For effective

implementation good communication among XP team

members is necessary to avoid duplication.

8. Testing: The main focus of XP team members is on

validation of the application at all times means that every

small release of the application must pass validation tests

before being final release.

9. Pair Programming: XP programmers do their

programming in pairs. All code implementation by two

programmers is done on a single computer or machine but

they work together. The key advantage of pair

programming is better software at lower cost as compared

to the programming working alone.

10. Continuous Integration: The application builds are

completed number of times a day. This maintains the all

XP programmers on the same page, and performs rapid

development; also programmers can avoid the

fragmentation since they perform continuous integration

of the code together.

11. 40-hour Workweek: XP programmers work 40 hours only

in a week because tired programmers make much errors

and faults. XP team members do not work much overtime,

which keeps the programmers fresh, active and healthy.

12. On-site Customers: The customers should be the essential

part of the software project. The customers must be

available all the times at development site because he/she

realizes that the project progress is going on right track

[6].

XP process or practices can be represented with the help of

diagram given below:

Figure 3. XP practices or process [7].

3.2. Scrum

Scrum belongs to the family of agile software development

methodologies and it can be implemented to almost any

project; however, this is often used in software development.

For rapid changes in requirements or in highly emergent

requirements, Scrum is much suitable for these conditions. It

suggests every sprint starts with a concise planning meeting

and also contains the review facility for better development

of the software products. The model of this methodology

proposes that the progress of the projects through a series of

44 Naseer Ahmad: Agile Methodologies: Useful Approaches for Software Process Improvements over Traditional Methodologies

sprints and these sprints are time boxed that are no longer

than one month; these sprints are often of two weeks long.

Every team member of the Scrum methodology figure out

that how many elements they can assign to for planning the

meeting at the beginning of sprint, and after this a spring

backlogging is maintained that is the list of activities to

perform during each sprint. The Scrum team members take a

small set of elements from initiative to code and functionality

test during the sprint of Scrum methodology. Finally

elements are done, meaning coded and functionality tested as

well as integrated into the developing system. To synchronize

the performance of team member the Scrum model visualizes

the daily sprints as they communicate the performance of the

sprint. Finally, The Scrum review is conducted by the Scrum

team to expresses the new functionality to any other

stakeholder who desires to offer the feedback that could

affect the upcoming sprint [14].

The product itself is primary artefact in the Scrum

development methodology. The Scrum model supposed the

team members to get the product to a potentially shippable

state after final completion of every sprint. Another artefact

of Scrum methodology is product backlog. Product backlog

provide the complete list of activities that stay to be

additional to the software product. The owner of the product

set priorities of the activities and team members perform

their tasks according to the desired priorities of the product

owner. Other additional artifacts of the agile development

methodology are sprint burn down chart and release burn

down chart. These charts show the remaining work of the

sprints.

Scrum methodology also includes roles of different

stakeholders or members related to the Scrum. One role is

ScrumMaster and it perform the role of coach of the Scrum

team, and responsible for to train the practitioners in order to

achieve highest level of performance. The ScrumMaster is

unlike the traditional project managers in number of ways in

Scrum process. ScrumMaster does not permit day-to-day

indications to the team members and does not commit task to

the Scrum individuals. A good ScrumMaster allows the team

to focus maniacally throughout the sprint on the objective

they have chosen. On the other hand, the focus of the

ScrumMaster to help the team members to do the best that

they can be, the owner of the product works to guide the

team members to the right objective. It is the duty of the

Product Owner to prioritize the backlog throughout the

Scrum development because he/she is the second role of the

Scrum methodology that has its own importance in Scrum

development. Another duty of the Product Owner is to

guarantee it’s up to balance as much is studied about the

product to be built, the team, it users and so on. The Scrum

team itself is final and main role of the Scrum methodology

project management. Even though, the Scrum individuals

may join the Scrum team with different job titles, and these

titles are unimportant. This methodology describes that every

member gives in what the approach they implement to

complete the task of every sprint. This does not indicate that

the tester will be probable to architect the system again; the

Scrum individuals will use their time performing in what the

regulation they performed before implementing the agile

Scrum model. But with Scrum, the Scrum individuals are

supposed to perform away from their favourite rules and

regulations at any time performing so probable for the good

quality of the Scrum team. One approach to supposition of

the interlocking life of these three illustrated roles in the agile

development methodology is as a race car. The team of

Scrum methodology itself act like a car, ready to speedup the

car in which direction you want. The product owner play the

role of the driver of Scrum car, that make sure the he/she is

driving the car in right direction. The ScrumMaster Play the

role of chief mechanic that keeps the car well tuned and

working at it best it can be [8].

3.3. Feature Driven Development (FDD)

Feature Driven Development (FDD) belongs to the family of

agile methodologies and it is appeared in last 15 years as a

substitute to the waterfall development methodology. This

methodology is introduced by the Project Manager Jeff De

Luca and Peter Coad 1997 and Jeff De Luca was a brilliant

project manager of a software development organization of in

Singapore. Jeff De Luca recognized that the given task is not

possible to complete in time in the presence of available

resources by using the traditional approach of software

development because the problem domain was so much

complicated and difficult. Jeff De Luca discovered the

concept of FDD and modelling in color technique with the

help of his partner Peter Coad. After discovering the concept

of FDD and modelling in color technique Peter Coad publish

his book “Java Modeling in Color with UML” in 1999.

FDD is an agile approach that is highly and short iterative,

offers precise and significant improvement and status

information with smallest overhead and interruption for

software developers, delivers regular and concrete

operational results at all stages, emphasizes product quality at

all stages and is liked by customers, project managers and

software developers.

While developing the software process, at each level

communication is essential part of the project and no

progress can be done without effective communication

among clients, managers as well as developers. If we assume

that the developers are communicating each other through

communication channels then we can realize that the project

is going on right track. As the size of the software product

 International Journal of Electronic Engineering and Computer Science Vol. 3, No. 3, 2018, pp. 39-48 45

increases the complexity also increased. We can say that the

size of the software product is directly proportional to the

complexity of the software product. FDD has the ability to

decompose the larger problem in very small problems that

can be addressed in a minimum time scenario, usually of 2

weeks. The decomposed problems which are independent to

each other minimize the demand of communication. FDD

also decomposes the project into small iterations so that

space in time among test and analysis is minimized. If we

discover the bugs earlier then we can minimize the cost of

fixing bugs.

Different people have different ideas about the quality of the

software product. An end user can talk about the software

quality in terms of response time, software reliability, ease of

use of the product. Software developers can talk about the

quality of the software product in terms of quality parts of the

design, ease of maintenance, ease of improvement and

enhancement, patterns, compliance to standards, and

meetings.

The project managers look the software product quality in

sense of available resources, product delivery in time,

delivery of quality product within budget and ease of

maintenance and improvement. They also look at the product

that how well it meets the user’s requirements. Does this

permit them to fulfil a regular business requirement and be

proactive in meeting the risks that are always present in the

business market? This makes essential to see the quality as a

variety, with inner quality at one point and outer quality at

other point. The concept of product quality in FDD is

enlarged so as not to test the code only, but also contain the

elements such as coding style, coding standard, measuring

the audits and metrics in the code.

There are six key roles defined in FDD. First key role in

FDD is of Project Manager who leads the project and is

responsible for reporting progress, managing the budget and

equipment, resources, and space, etc.

The key responsibility of overall designing the system is of

Chief Architect (CA). His/her responsibility is to run the

workshop design sessions in which the FDD team

communicates in the system design. The facilitation,

technical and modeling skills are required for work. CA

pushes the project with the help of technical barriers tackling

the project.

The day-to-day developing tasks are the duties of

Development Manager (DM). It is the duty of DM to address

daily conflicts for resources when chief programmers do not

perform well among themselves to ease the role needing

efficient technical skill.

The Chief Programmers are well trained and experienced

software developers and they involve themself in designing

the project activities, high level requirement analysis and also

they are responsible for leading the team of three developers

to six developers with the help of low level analysis, design

and develop the novel software features.

Under the supervision of Chief programmers, Class Owners

perform as developers of small teams; they design, code, test

and specify the requirement features by the new systems.

Final role in FDD is of Domain Experts, they can be end

users, business analysts, sponsors, or any mixture of these

persons. They have effective knowledge about application

and the developers depend on them to deliver the accurate

system. They require efficient verbal, written and

presentation skills. Their skills and presence in the project are

extremely serious to the progress or success of the software

being built.

There are some supporting roles in FDD, such Language

Guru who is responsible for to be skilled in particular

language. To setup, maintain and to run the consistent build

process is the responsibility of Build Engineer. The

responsibility of Tool smith to create the small development

tools for software development teams, data conversion team

and also for test teams. The responsibility of the System

Administrator is to configure, manage, troubleshoot, and

networking of the work stations particular to the project

team. In additional roles the role of Tester is to verify the

software product functions meets the user requirements or

not. The Deployers convert the current data into the new

design required by the new software system. The Technical

Writer document and organize online and written user

documentation [9].

3.4. Adaptive Software Development (ASD)

Adaptive Software Development (ASD) is an approach

software development process that developed beyond rapid

application development. It represents the principle that

regular adaptation of the process to performance at hand is

the common status of concerns. ASD has four phase’s

process model that are communication and planning,

analysis, design and development, and testing and

deployment. In the communication and planning phase, the

project documentation and specification is take place, which

are composed of probability and risk assessment, are

organized. The analysis phase starts in the condition that the

customer gives approval on the behalf of acceptance of first

phase. The software quality will be agreed in analysis phase

with the help of documentation. In this phase system analysts

elicit detailed information and also user’s requirements. In

design and development phase ASD model make use of

prototype approach to validate the design and development

46 Naseer Ahmad: Agile Methodologies: Useful Approaches for Software Process Improvements over Traditional Methodologies

requirements. The test cases for every increment are arranged

at the start of the testing and deployment phase. Unit testing

is carried out in this phase followed by the integration testing

between different modules. After this the complete system

test is carried out, followed by system acceptance test which

is the final test to validate increment from client. In this

phase the main deployment actions are installation, training

and security [15].

ASD is the combination of three steps, Speculation,

Collaboration and Learning, and each step is revolving

around program coding. In the speculation phase the

programmer try to understand the precise nature of the

software product and customer’s requirements. The

speculation phase depends on bug and customer reporting to

facilitate the project. If reporting is not provided by the

customer then the software developers make use of

fundamental requirements outlined by the customer. The

collaboration phase happened or made when the individual

software developers coagulate what they are every

performing and how to attach their parts. There is no need of

additional information and external input to the software

developers to address this phase of the software. In the

learning phase, the latest version of the product is released to

the customers. This creates the bug and customer reporting

used while speculation phase of the project, and cyclic

repetition is done itself [10].

4. Traditional Development

Methodologies

Traditional methodologies are often called heavyweight

software development methodologies and these are based on

in order sequence of steps, such as initial requirements

definition, solution building, testing and employment.

Traditional methodology requires defining and documenting

an established requirements bundle at the start of the project.

There are number of traditional development methodologies

but in this paper I will discuss only two methodologies:

Waterfall model and Spiral model.

4.1. Waterfall Model

The software engineers during the 1960s, were used the

“code and fix” method. The software developer named

Christophe Thibuat said that “one year for slamming code,

one year for debugging”. In 1970 the waterfall methodology

was proposed by Winston Royce. There are defined phases in

waterfall methodology that accentuate a structured series

among these phases and these phases are consists of number

of activities and deliverables. These activities and

deliverables necessarily completed before the subsequent

phase can start. The phases in waterfall methodology are

named differently to each other and the main thought about

first phase to capture that what the system will perform or do,

customer’s requirements related to the system and software.

The second phase illustrates that how it will be implemented

or designed. The third phase illustrates that from where the

software developers start their coding. The fourth phase of

waterfall methodology illustrates system testing. The fifth

phase focused on task implementation like training and

documentation. On the other hand, in engineering domain,

the term waterfall is used as common name to all sequential

development methodologies. The waterfall model lifecycle is

as under:

Figure 4. Waterfall Model Lifecycle [11].

4.2. Spiral Model

Spiral model also belongs to the category of traditional

development methodologies and was defined by Barry

Boehm that was based on experience with number of

refinements of waterfall model as implemented to the large

software projects. Spiral model combines the elements of

design and prototyping-in-stages, in an attempt to together

the benefits of top-down as well as bottom-up approaches.

Spiral model consists of four main phases that are:

1. Determine Objective: In this phase the precise goals for

the phase of project are recognized.

2. Identify and Resolve Risks: In this phase main risks are

identified, analysed and information is collected to

minimize the risks.

3. Development and Test: In this phase a precise model is

selected for upcoming phase of software development.

4. Planning the next Iteration: In this phase the project

review is take place and new plans are drawn up to the

upcoming round of the spiral [2].

The Barry Boehm’s spiral model is given below:

 International Journal of Electronic Engineering and Computer Science Vol. 3, No. 3, 2018, pp. 39-48 47

Figure 5. Barry Boehm’s Spiral Model [12].

5. Conclusion

Agile methodologies are based on iterations and increments

and these are nowadays much famous in the software

development industries. Through, in number of software

industries, at the adoption stage the agile development

methodologies must begin to well-established processes of

small, medium and large industries. There is growing

requirement to have a reasonable knowledge of agile

methodologies in using in the software development

organizations; also the enough knowledge – the advantages

of agile approaches for the purpose to accept the agile

approaches into there software development techniques and

for covering their active business requirements [1].

Traditional methodologies use predictive approach and

phases instead of iterations. The traditional methodologies

are process oriented as well as tool oriented. Comprehensive

documentation is carried in traditional methodologies while

in agile the main focus is on development instead of

documentation.

References

[1] A B M Moniruzzaman and Dr Syed Akhter Hossain,
“Comparative Study on Agile software development
methodologies”, Global Journal of Computer Science and
Technology (c) Volume 13 Issue 7 Version I 12 Jul 2013.

[2] M. A. Awad, “A comparison between Agile and Traditional
Software Development Methodologies”, The University of
Western Australia, 2005, pp. 2-47

[3] Outi Salo, “Enabling Software Process Improvement in Agile

Software Development Teams and Organizations”, University
of Oulu, for public discussion in the Auditorium L10,
Linnanmaa, January 12th, 2007, pp. 24-26

[4] Ngoc Tuan Nguyen, “How software process improvement
standards and agile methods co-exist in software
organizations?”, Thesis M.Sc. Business Information
Technology, Enschede, August 2010, pp. 18-21

[5] caslino, “Traditional Vs Agile Software Development”, Feb
04, 2014
http://www.optimusinfo.com/blog/2014/02/04/traditional-vs-
agile-software-development.html

[6] Wilfrid Hutagalung, “Extreme Programming”, 2006
http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/
#waterfall

[7] http://cachesys.com/cachesys/methodology.html

[8] “Scrum Methodology”
http://www.mountaingoatsoftware.com/agile/scrum

[9] Sadhna Goyal, “Feature Driven Development, Agile
Techniques for Project Management and Software
Engineering”, Technical University Munich, 2008, pp. 3-7

[10] http://www.umsl.edu/~sauterv/analysis/6840_f09_papers/Nat/
Agile.html#ASD

[11] Chong Chang, “Selecting an Appropriate Software
Development Lifecycle (SDL) Model in an Agency
Environment”, 16 Aug 2012.
http://www.metia.com/seattle/chong-chang/2012/08/sdl-
model-in-an-agency-environment/

[12] http://leansoftwareengineering.com/2008/05/05/boehms-
spiral-revisited/

[13] Bret Rudnick, “Agile Versus Traditional – A Tale of Two
Methodologies”, Sheraton System Architectures Workshop,
2013, pp. 8-16

48 Naseer Ahmad: Agile Methodologies: Useful Approaches for Software Process Improvements over Traditional Methodologies

[14] Booch Grady, “Object Solutions: Managing the Object-
Oriented Project”, Addison Wesley, 1995.

[15] Pittman Mathew. “Lessons Learned in Managing Object-
Oriented Development”, IEEE Software, January 1993, pp.
41-52.

