
 
International Journal of Electronic Engineering and Computer Science 

Vol. 1, No. 1, 2016, pp. 40-44 

http://www.aiscience.org/journal/ijeecs 

 

 

* Corresponding author 

E-mail address: ko_mi_na@yahoo.co.jp (K. Nagata), nakamura@pipelining.jp (T. Nakamura) 

The Two Quantum Measurement Theories and the 
Bell-Kochen-Specker Paradox 

Koji Nagata1, *, Tadao Nakamura2 

1
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea 

2
Department of Information and Computer Science, Keio University, Yokohama, Japan 

Abstract 

We review a property of a new measurement theory based on the truth values. The results of measurements are either 0 or 1. 

The measurement theory accepts a hidden variable model for a single Pauli observable. Therefore we can introduce a classical 

probability space for the measurement theory in this case. And we can measure the single Pauli observable by using the 

measurement theory based on the truth values. Our discussion provides a new insight to formulate quantum measurement 

theory, by using the measurement theory here based on the truth values. In this paper, we discuss the fact that the projective 

measurement theory (the results of measurements are either +1 or -1) says the Bell, Kochen, and Specker (BKS) paradox for 

the single Pauli observable. Therefore, we cannot introduce a classical probability space for the measurement theory in this 

case. Our discussion says that we cannot measure the single Pauli observable by using the projective measurement theory 

without the BKS paradox. 
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1. Introduction 

The projective measurement theory (cf. [1-6]) gives at times 

remarkably accurate numerical predictions. 

From the incompleteness argument of Einstein, Podolsky, and 

Rosen (EPR) [7], a hidden-variable interpretation of quantum 

mechanics has been an attractive topic of research [3, 4]. One 

is the Bell-EPR theorem [8]. Another is the 

no-hidden-variable theorem of Kochen and Specker (the KS 

theorem) [9]. Greenberger, Horne, and Zeilinger discover [10, 

11] the so-called GHZ theorem for four-partite GHZ state. 

And, the Bell-KS theorem becomes very simple form (see also 

Refs. [12-16]). 

The Leggett-type nonlocal hidden-variable theory [17] is 

experimentally investigated [18-20]. The experiments report 

that quantum mechanics does not accept the Leggett-type 

nonlocal hidden-variable theory. These experiments are 

performed in four-dimensional space (two parties) in order to 

study a nonlocality of the hidden-variable theory. However 

there are debates for the conclusions of the experiments. See 

Refs. [21-23]. 

For the applications of quantum mechanics, an 

implementation of a quantum algorithm to solve Deutsch’s 

problem [24-26] on a nuclear magnetic resonance quantum 

computer is reported firstly [27]. An implementation of the 

Deutsch-Jozsa algorithm on an ion-trap quantum computer is 

also reported [28]. There are several attempts to use 

single-photon two-qubit states for quantum computing. 

Oliveira et al. implement Deutsch’s algorithm with 

polarization and transverse spatial modes of the 

electromagnetic field as qubits [29]. Single-photon Bell states 

are prepared and measured [30]. Also the decoherence-free 

implementation of Deutsch's algorithm is reported by using 
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such a single-photon and by using two logical qubits [31]. 

More recently, a one-way based experimental implementation 

of Deutsch's algorithm is reported [32]. In 1993, the 

Bernstein-Vazirani algorithm was reported [33]. It can be 

considered as an extended Deutsch-Jozsa algorithm. In 1994, 

Simon's algorithm was reported [34]. An implementation of a 

quantum algorithm to solve the Bernstein-Vazirani parity 

problem without an entanglement on an ensemble quantum 

computer is reported [35]. A fiber-optics implementation of 

the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms 

with three qubits is discussed [36]. A quantum algorithm for 

approximating the influences of Boolean functions and its 

applications is recently reported [37]. 

We review a property of a new measurement theory based on 

the truth values [38]. The results of measurements are either 0 

or 1. The measurement theory accepts a hidden variable model 

for a single Pauli observable. Therefore we can introduce a 

classical probability space for the measurement theory in this 

case. And we can measure the single Pauli observable by 

using the measurement theory based on the truth values. Our 

discussion provides new insight to formulate quantum 

measurement theory, by using the measurement theory based 

on the truth values. 

In this paper, we discuss the fact that the projective 

measurement theory (the results of measurements are either 

+1 or -1) says the Bell, Kochen, and Specker (BKS) paradox 

for the single Pauli observable. Therefore, we cannot 

introduce a classical probability space for the measurement 

theory in this case. Our discussion says that we cannot 

measure the single Pauli observable by using the projective 

measurement theory without the BKS paradox. 

2. The Measurement Theory 
Based on the Truth Values 
and a Hidden Variable Model 

We review the new measurement theory meets a hidden 

variable model of a single spin observable. Assume a spin-1/2 

state ρ . Let ��  be a single Pauli observable. We have a 

quantum expected value as 

Tr[ρ��]                         (1) 

We derive a necessary condition for the quantum expected 

value for the system in a spin-1/2 state given in (1). We have 

0≤	 (Tr[ρ��])� ≤ 1                 (2) 

It is worth noting here that we have (Tr[ρ��])�=1 if ρ is the 

pure state lying in the x-direction. Hence we derive the 

following proposition concerning quantum mechanics when 

the system is in the state lying in the x-direction 

(Tr[ρ��])���� =1               (3) 

(Tr[ρ��])����  is the maximal possible value of the product. It 

is worth noting here that we have (Tr[ρ��])� = 0 when the 

system is in the pure state lying in the z-direction. Thus we 

have 

(Tr[ρ��])���� =0              (4) 

(Tr[ρ��])����  is the minimal possible value of the product. In 

short, we have 

(Tr[ρ��])���� = 0	and	(Tr[ρ��])���� =1  (5) 

In what follows, we derive the above proposition (5) assuming 

the following form: 

Tr[ρ��] = � ���(�)�(��, �),          (6) 

where λ denotes some hidden variable and �(�� , �) is the 

hidden result of measurements of the Pauli observable ��. We 

assume that the values of �(�� , �) are either 1 or 0 (in ħ/2 

unit). 

Let us assume the hidden variable theory of the single spin 

observable based on the new measurement theory. In this case, 

the quantum expected value in (1), which is the average of the 

hidden results of the new measurements, is given by 

Tr[ρ��] = � ���(�)�(��, �)           (7) 

The possible values of the hidden result �(�� , �) are either 1 

or 0 (in ħ/2 unit). The same expected value is given by 

Tr[ρ��] = � ��′�(�′)�(�� , �′)         (8) 

because we only change the notation as λ→ λ′. Of course, the 

possible values of the hidden result �(��, �′) are either 1 or 0 

(in ħ/2 unit). By using these facts, we derive a necessary 

condition for the expected value for the system in the spin-1/2 

state lying in the x-direction. We derive the possible values of 

the product (Tr[ρ��])�. We have 

(Tr[ρ��])� 

=����(�)�(�� , �) × ���′�(�′)�(�� , �′) 
=����(�) ∙ � ��′�(�′)�(��, �)�(�� , �′) 
≤ "���(�) ∙"��#�(�#)|�(�� , �)�(��, �#)| 
=����(�) ∙ � ��#�(�#) = 1              (9) 

Clearly, the above inequality can have the upper limit since the 

following cases are possible: 

‖&�|�(�� , �) = 1'‖=‖&�′|�(�� , �′) = 1'‖   (10) 

and 
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‖&�|�(�� , �) = 0'‖=‖&�′|�(�� , �′) = 0'‖   (11) 

Thus we derive a proposition concerning the hidden variable 

theory based on the new measurement theory (in a spin-1/2 

system), that is, (Tr[ρ��])� ≤ 1 . Hence we derive the 

following proposition concerning the hidden variable theory: 

(Tr[ρ��])���� =1                 (12) 

We derive another necessary condition for the expected value 

for the system in the pure spin-1/2 state lying in the z-direction. 

We have 

(Tr[ρ��])� 

=����(�)�(��, �) × � ��′�(�′)�(�� , �′) 
=����(�) ∙ � ��′�(�′)�(�� , �)�(��, �′) 
≥ "���(�) ∙ "��#�(�#)(0) 
=(0)(� ���(�) ∙ � ��#�(�#)) = 0      (13) 

Clearly, the above inequality can have the lower limit since the 

following cases are possible: 

‖&�|�(�� , �) = 1'‖=‖&�′|�(�� , �′) = 0'‖   (14) 

and 

‖&�|�(�� , �) = 0'‖=‖&�′|�(�� , �′) = 1'‖   (15) 

Thus we derive a proposition concerning the hidden variable 

theory based on the new measurement theory (in a spin-1/2 

system), that is, (Tr[ρ��])� ≥ 0 . Hence we derive the 

following proposition concerning the hidden variable theory 

(Tr[ρ��])���� =0                  (16) 

Thus from (12) and (16) we have 

(Tr[ρ��])���� = 0	and	(Tr[ρ��])���� =1      (17) 

Clearly, we can assign the truth value “1” for the two 

propositions (5) (concerning quantum mechanics) and (17) 

(concerning the hidden variable theory based on the new 

measurement theory), simultaneously. Therefore, the new 

measurement theory meets the existence of the hidden 

variable theory of the single spin observable. 

3. The Projective Measurement 
Theory and the BKS Theorem 

We discuss the fact that the projective measurement theory 

(the results of measurements are either +1 or -1) says the Bell, 

Kochen, and Specker (BKS) paradox for the single Pauli 

observable. Therefore we cannot introduce a classical 

probability space for the measurement theory in this case. Our 

discussion says that we cannot measure the single Pauli 

observable by using the projective measurement theory 

without the BKS paradox. 

In what follows, we cannot derive the proposition (5) 

assuming the following form: 

Tr[ρ��] = � ���(�)�(��, �)      (18) 

where λ denotes some hidden variable, and �(��, �) is the 

hidden result of measurements of the Pauli observable ��. We 

assume that the values of �(�� , �) are either +1 or -1 (in ħ/2 

unit). 

Let us assume a hidden variable model based on the projective 

measurement theory of the single spin observable. In this case, 

the quantum expected value in (1), which is the average of the 

hidden results of the projective measurements, is given by 

Tr[ρ��] = � ���(�)�(��, �)           (19) 

The possible values of the hidden result �(�� , �) are either +1 

or -1 (in ħ/2 unit). The same expected value is given by 

Tr[ρ��] = � ��′�(�′)�(�� , �′)         (20) 

because we only change the notation as λ→ λ′. Of course, the 

possible values of the hidden result �(��, �′) are either +1 or 

-1 (in ħ/2 unit). By using these facts, we derive a necessary 

condition for the expected value for the system in the spin-1/2 

state lying in the x-direction. We derive the possible values of 

the product (Tr[ρ��])�. We have 

(Tr[ρ��])� 

=����(�)�(��, �) × � ��′�(�′)�(�� , �′) 
=����(�) ∙ � ��′�(�′)�(�� , �)�(��, �′) 
≤ "���(�) ∙ "��#�(�#)|�(��, �)�(�� , �#)| 
=����(�) ∙ � ��#�(�#) = 1               (21) 

Clearly, the above inequality can have the upper limit since the 

following cases are possible: 

‖&�|�(�� , �) = 1'‖=‖&�′|�(�� , �′) = 1'‖    (22) 

and 

‖&�|�(�� , �) = −1'‖=‖&�′|�(�� , �′) = −1'‖  (23) 

Thus we derive a proposition concerning the hidden variable 

theory based on the projective measurement theory (in a 

spin-1/2 system), that is, (Tr[ρ��])� ≤ 1. Hence we derive the 

following proposition concerning the hidden variable theory 

(Tr[ρ��])���� =1             (24) 

We derive another necessary condition for the expected value 
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for the system in the pure spin-1/2 state lying in the 

z-direction. 

We introduce an assumption that Sum rule and Product rule 

commute with each other [39]. We do not pursue the details of 

the assumption. To pursue the details is an interesting point. It 

is suitable to the next step of researches. We have 

(Tr[ρ��])� 

=����(�)�(�� , �) × ���′�(�′)�(�� , �′) 
=����(�) ∙ � ��′�(�′)�(��, �)�(�� , �′) 
≥ "���(�) ∙"��#�(�#)(−1) 
=(−1)(� ���(�) ∙ � ��#�(�#)) = −1      (25) 

Clearly, the above inequality can have the lower limit since the 

following cases are possible: 

‖&�|�(�� , �) = 1'‖=‖&�′|�(�� , �′) = −1'‖   (26) 

and 

‖&�|�(�� , �) = −1'‖=‖&�′|�(�� , �′) = 1'‖   (27) 

Thus we derive a proposition concerning the hidden variable 

theory based on the projective measurement theory (in a 

spin-1/2 system), that is, (Tr[ρ��])� ≥ −1. Hence we derive 

the following proposition concerning the hidden variable 

theory 

(Tr[ρ��])���� =-1               (28) 

Thus from (24) and (28) we have 

(Tr[ρ��])���� = −1	and	(Tr[ρ��])���� =1    (29) 

Clearly, we cannot assign the truth value “1” for two 

propositions (5) (concerning quantum mechanics) and (29) 

(concerning the hidden variable theory based on the projective 

measurement theory), simultaneously. In fact, we are in the 

BKS contradiction. Therefore, the projective measurement 

theory does not meet the existence of the hidden variable 

theory of the single spin observable. 

4. Conclusions 

In conclusions, we have reviewed a property of a new 

measurement theory based on the truth values. The results of 

measurements have been either 0 or 1. The measurement 

theory has accepted a hidden variable model for a single Pauli 

observable. Therefore we can have introduced a classical 

probability space for the measurement theory in this case. And 

we can measure the single Pauli observable by using the 

measurement theory based on the truth values. Our discussion 

has provided new insight to formulate quantum measurement 

theory, by using the measurement theory based on the truth 

values. 

In this paper, we have discussed the fact that the projective 

measurement theory (the results of measurements are either 

+1 or -1) says the Bell, Kochen, and Specker (BKS) paradox 

for the single Pauli observable. Therefore we cannot 

introducea classical probability space for the measurement 

theory in this case. Our discussion has said that we cannot 

measure the single Pauli observable by using the projective 

measurement theory without the BKS paradox. 
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