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Abstract 

In this paper we consider vibrations of cylindrical and conical baffled fuel tanks partially filled with a liquid. The liquid is 

supposed to be an ideal and incompressible one and its flow introduced by the vibrations of a shell is irrotational. The problem 

of the fluid-structure interaction was solved using the single-domain and multi-domain reduced boundary element methods. 

The rigid baffled tanks with different annular orifices were considered. The dependencies of frequencies via the orifice radius 

at different values of filling level were obtained numerically for vibrations of the fluid-filled tanks with and without baffles. 
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1. Introduction 

Sloshing is defined as the motion of free surface of a liquid in 

a partially filled tank or container. The inadequate slosh 

suppression can lead to failure of spacecrafts. For example, 

the early Jupiter flight was unsuccessful because the stepped-

pitch program has stepping intervals near the fundamental 

slosh frequency and the sloshing arisen thereinafter caused 

the vehicle to go out of control. 

Since the launch of the early space rockets, controlling the 

slosh of liquid fuel within a launch vehicle has been a major 

design concern. Moreover, with today’s large and complex 

spacecraft, a substantial mass of fuel is necessary to place 

them into orbit and to perform orbital maneuvers. Slosh 

control of propellant is so a significant challenge to 

spacecraft stability. Mission failure has been attributed to 

slosh-induced instabilities in several cases [1-2]. 

The most precise computation of the liquid motion and slosh 

forces involves solving complex equations of non-linear fluid 

mechanics and is extremely cumbersome. 

When liquids slosh in a closed container one can observe the 

multiple configurations (modes) in which the surface may 

evolve. Commonly, the different modes can be defined by 

their wave number α (number of waves in circumferential 

direction) and by their mode number n. 

In view of minimising the crucial loads, preventing structural 

failure and governing the fluid position within the tank, 

extensive experimental and theoretical studies have been 

carried out since several decades. 

Baffles are commonly used as the effective means of 

suppressing the magnitudes of fluid slosh, apart from 

enhancing the integrity of the tank structure, although only a 

few studies have assessed roles of baffles design factor. 
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The effect of size and location of baffle orifice on the slosh 

has been reported in only two studies involving rectangular 

[3] and a generic [4] cross-section tank. Popov et al in [3] 

studied the effect of size and location of the orifice of a 

transverse baffle using a 2-dimensional rectangular tank 

model. In this study the authors also investigated the effects 

of an equalizer and alternate baffle designs on the magnitude 

of transient slosh force and moments, and concluded that an 

equalizer has negligible effect on liquid slosh, while a multi 

orifice baffle behaves similar to a conventional single orifice 

baffle. 

It would be noted that anti-slosh properties of baffles designs 

have been investigated through laboratory experiments 

employing small size tanks of different geometry [5-8]. 

These have generally studied damping properties from free 

oscillations or slosh under harmonic or single-cycle 

sinusoidal inputs. 

The overview of the research on the topic [9-12] 

demonstrates that the dynamic response of structures 

containing the liquid can be significantly influenced by 

vibrations of their elastic walls and their interaction with the 

sloshing liquid. The most of research have described the 

fluid-structure interaction neglecting gravity effects. The 

considerable results were obtained in [9, 10]. Bermudez A. et 

al. considered in [9] vibrations of 2D elastic vessel partially 

filled by an incompressible fluid under the gravity force. 

Here the only 2D rectangular tank was under consideration. 

The research work [10] of Gavrilyuk I. et al. is devoted to the 

vibration analysis of baffled cylindrical shells, but both shells 

and baffles were rigid. In this work the authors used the 

analytical method. So there are some limitations in proposed 

methods, and each new form of tank will be required new 

investigations. 

With respect to all the numerical work, which has been done, 

it is fair to say that there is still no fully efficient numerical 

method to deal with the sloshing in fluid-structure 

interactions of the baffled tanks. 

The novelty of proposed approach consists in possibility to 

study the influence of both rigid and elastic baffles in the 

liquid-filled tanks in the form of shells of revolution of 

arbitrary meridian profiles and with different filling levels. 

In practice, the effect of baffles usually can be seen after the 

baffle has been installed. The proposed method makes it 

possible to determine a suitable place with a proper height for 

installation of the baffles in tanks by using numerical 

simulation. 

2. Problem Statement 

Consider the shell structure with installed internal baffles for 

damping sloshing. The structure and its sketch are shown in 

Figure 1. 

 

 
Figure 1. Shell structure with internal baffle. 

Denote the wetted part of the shell surface through σ and the 

free surface of a liquid as S0. The shell surface σ consists of 

four parts, 1 2 bot bafS S S Sσ = ∪ ∪ ∪ . Here S1 and S2 are 

cylindrical surfaces of first and second fluid domains, Sbot is 

the surface of the tank bottom and Sbot is the baffle surface. 

In this study the contained liquid is assumed to be inviscid 

and incompressible one and its flow induced by vibrations of 

the shell is irrotational. 

Under these suppositions, there exists a velocity potential Φ 

defined as 

. 

This potential satisfies the Laplace equation. 

The equations of motion of the two media (the shell, σ, and 

the fluid with the free surface, S0, (see Fig.1)) can be written 

in the following form 

( ) ( )+ =L U M U Pɺɺ ,                               (1) 

where U is the vector-function of displacements, P is the 

fluid pressure on a moistened surface of the shell, and L and 

z
V

y
V

x
V zyx ∂

Φ∂=
∂
Φ∂=

∂
Φ∂= ;;
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M are the operators of elastic and mass forces. 

Let us consider the right-hand side of Equation (1). Notice 

that the vector P points in the normal direction to the 

considered shell because an ideal fluid produces only a 

normal pressure on a moistened body. The modulus of vector 

P is denoted as p=P . Assuming that the natural velocity 

of the fluid is zero, the value p, according to the Cauchy-

Lagrange integral, can be represented as follows 

( ) 0l tp gz pρ ′= − Φ + + , 

where Φ is the velocity potential, g is the free fall gravity 

acceleration, z is the vertical coordinate of a point in the 

liquid, p0 is the atmospheric pressure and ρl is the fluid 

density. To obtain the boundary equations on the free surface 

we have formulated dynamic and kinematics boundary 

conditions. The dynamic boundary condition consists in 

equality of the liquid pressure on the free surface to 

atmospheric one. The kinematics boundary condition 

requires that liquid particles of the free surface remain on it 

during all the time of subsequent motion. So 

0

0

0; 0
S

S

p p
n t

ζ∂Φ ∂= − =
∂ ∂

, 

where an unknown function ( ), , ,t x y zζ ζ=  describes the 

form and location of the free surface. Thus, we obtain the 

following boundary value problem to define the velocity 

potential Φ: 

2 0∇ Φ = , 
w

t

∂
σ∂

Φ ∂=
∂n

, 
0

0

0; 0
S

S

p p
t

ζ∂Φ ∂= − =
∂ ∂n

. 

Here w indicates the normal component of the shell 

deflection, n is an external unit normal to the shell wetted 

surface namely, ( ),w = U n . 

Reduce the problem under consideration to the following 

system of differential equations: 

( ) ( ) p+ =L U M U nɺɺ ; 0lp gz p
t

ρ ∂Φ = − + + ∂ 
; 0∆Φ =  

with the next set of boundary conditions relative to Φ 

w

t

∂
σ∂

Φ ∂=
∂n

, 
0S t

ζ∂Φ ∂=
∂ ∂n

, 
0

0
s

gz
t

∂Φ + =
∂

 

and fixation conditions of the shell relative to U. 

To define coupled modes of harmonic vibrations let represent 

the vector U in the form U=u exp(iωt), where ω is an own 

frequency and u is a mode of vibration of the considered 

shell with a fluid. 

3. The Mode Superposition 
Method for Coupled Dynamic 

Problems 

Let seek modes of shell vibration with the liquid in the form 

1

N

k k

k

c
=

=∑u u ,                               (2) 

where ck are unknown coefficients and uk are the normal 

modes of vibrations of the empty shell. In other words, a 

mode of vibration of the shell filled by fluid is determined as 

a linear combination of normal modes of its vibration without 

liquid. 

The following relationships are fulfilled 

2( ) ( ) , ( ( ), )k k k k j kjδ= Ω =L u M u M u u .      (3) 

Hence 

2( ( ), )k j k kjδ= ΩL u u ,                     (4) 

where Ωk is the k-th frequency of empty shell vibrations. The 

above relationships show that the abovementioned shell’s 

modes of vibration must be orthonormalized with respect to 

the mass matrix. 

Represent Φ as a sum of two potentials 1 2Φ = Φ + Φ  as it 

was proposed by Gnitko V. et al. in [13]. Then represent the 

potential Φ1 as the following series expansion 

1 1
1

N

k k

k

c φ
=

Φ =∑ ɺ .                         (5) 

Here time-dependant coefficients ck are defined in Equation 

(2). 

To determine ϕ1k we have the following boundary value 

problems: 

1 0
k

φ∆ = , 1k

k
w

∂φ
σ∂

=
n

, 
0

1 0k S
φ = .              (6) 

Here ( ),k kw = u n . It would be noted that the solution of 

boundary value problem (6) was done in [14]. 

To determine the potential Φ2 it is necessary to solve the 

problem of fluid vibrations in rigid vessel including 

gravitational force. It leads to following representation of 

potential Φ2: 
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2 2
1

M

k k

k

d φ
=

Φ =∑ ɺ ,                         (7) 

where functions ϕ2k are natural modes of liquid sloshing in 

the rigid tank. To obtain these modes we have solved the next 

sequence of boundary value problems: 

2 0
k

φ∆ = ; 2

1

0;k

S

∂φ
∂

=
n

 2 0;k

S

∂φ
∂

=
n bot

              (8) 

0

2 2; 0k k

S

g
n t t

φ φς ζ∂ ∂∂= + =
∂ ∂ ∂

.                 (9) 

Differentiated the second equation in relationship (9) with 

respect to t and substitute there the expression for tς ′  from 

the first one of (9). Suppose hereinafter that 

( ) ( )2 2, , , , ,ki t

k kt x y z e x y z
χφ φ= . Obtain the sequence of 

eigenvalue problems with following conditions on the free 

surface for each ϕ2k : 

2
2

2
k k

k
n g

φ χ φ∂
=

∂
.                        (10) 

The effective numerical procedure for solution of these 

eigenvalue problems using boundary element method was 

introduced in [13, 15]. 

Finally, the following relation for determining the potential Φ 

was obtained: 

1 2
1 1

N M

k k k k

k k

c dφ φ
= =

Φ = +∑ ∑ ɺɺ .                  (11) 

It follows from Equation (11) that function ζ can be written 

as 

1 2

1 1

N M
k k

k k

k k

c d
n n

φ φζ
= =

∂ ∂
= +

∂ ∂∑ ∑ .                (12) 

So, the total potential Φ satisfies the Laplace equation and 

non penetration boundary condition 

0∆Φ = ; w

t

∂
σ∂

Φ ∂=
∂n

 

due to validity of relations (6), (8). Noted that Φ also satisfies 

the condition 

0S
t

ζ∂Φ ∂=
∂ ∂n

 

as a result of representation (12). 

When functions ϕ1k and ϕ2k are defined, substitute them in 

Equation (1) and obtain the system of the ordinary differential 

equations as it was done by E. Stelnikova et al. in [16]. 

4. Systems of the Boundary 
Integral Equations and 

Multi-domain Approach 

To define functions ϕ1k and ϕ2k use the boundary element 

method in its direct formulation [17]. Dropping indexes 1k 

and 2k we can write the main relation in the form 

( )0

0 0

1 1
2

S S

P q dS dS
P P P P

πφ φ ∂= −
− ∂ −∫∫ ∫∫ n

, 

where 0S Sσ= ∪ . 

In doing so, the function ϕ, defined on the surface σ, presents 

the pressure on the moistened shell surface and the function 

q, defined on the surface S0, is the flux, q
φ∂=

∂n
. 

To apply the multi-domain approach divide the fluid domain 

into two sub-domains Ω1 and Ω2 shown in Figure 2. 

Introduced the artificial interface surface Sint. 

The boundaries of sub-domains Ω1 and Ω2 are denoted as 

1 bot 1 baf intS S S SΣ = ∪ ∪ ∪  and 2 baf int 1 0S S S SΣ = ∪ ∪ ∪ . 

The fluxes on interface surface will be denoted at both sides 

of the interface surface as 
int

1 int 1; ;
S

q S
φ∂= ⊂ Σ

∂n

int

2 int 2;
S

q S
φ∂= ⊂ Σ

∂n
, and on the free surface we denote the flux 

as 
0

0 .
S

q
φ∂=

∂n

 

Let introduce the next denominations: ϕ1 and ϕ2 are the 

potential values in nodes at the external boundaries of the 

tank in sub-domains Ω1 and Ω2 respectively. 

The potential and flux values on the interface surface will be 

ϕ1i and 1q , if int 1;S ⊂ Σ  and ϕ2i and 2q  if int 2S ⊂ Σ , 

respectively. 

On the free surface denote the potential values in nodes as ϕ0 

and the flux values as 
0

0 .
S

q
φ∂=

∂n

 The fluxes on the rigid 

surfaces are equal to zero. 

 
a) 
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b) 

Figure 2. Fluid sub-domains. 

Introduce here the next denominations for rigid parts of the 

structure: 1 1 bot bafS S Sσ = ∪ ∪  and 2 2 bafS Sσ = ∪ . On the 

interface surface Sint the next equalities are valid [17]: 

2 1 1 2;
i i

q qφ φ= = − . 

On the rigid parts the following conditions are valid 

1 2

0; 0.
σ σ

φ φ∂ ∂= =
∂ ∂n n

 

Consider now the boundary value problem for determining 

the potential Φ2. As in [13] using the relation 
2

0 0q
g

χ φ=  and 

introducing the reduced frequency 
2

2

g

χω = we obtain the 

following system of singular integral equations: 

( )
1 int

int

1 0 1 1 1 int

0 0

1 int 0 1

0

1 1
2

1
0; ;

σ

πφ φ σ φ

σ

∂ ∂+ +
∂ − ∂ −

− = ∈
−

∫∫ ∫∫

∫∫

i

S

S

P d dS
P P P P

q dS P
P P

n n
 (13) 

( )
1

int

1 0 1 1

0

1 int 0 int

0

1
2

1
0;

σ

πφ φ σ∂+
∂ −

− = ∈
−

∫∫

∫∫

i

S

P d
P P

q dS P S
P P

n
; 

( )
int2

int 0

0

2 0 2 2 1 int

0 0

1 int 0 0

0 0

2
0 0 0 2

0

1 1
2

1 1

1
0; ;

σ

πφ φ σ φ

φ

ω φ σ

∂ ∂+ +
∂ − ∂ −

∂+ +
− ∂ −

− = ∈
−

∫∫ ∫∫

∫∫ ∫∫

∫∫

i

S

S S

S

P d dS
P P P P

q dS dS
P P P P

dS P
P P

n n

n
 

( )
int2

0 0

1 0 2 2 1 int

0 0

2
0 0 0 0 0 int

0 0

1 1
2

1 1
0; ;

i

S

S S

P d q dS
P P P P

dS dS P S
P P P P

σ

πφ φ σ

φ ω φ

∂+ + +
∂ − −

∂+ − = ∈
∂ − −

∫∫ ∫∫

∫∫ ∫∫

n

n

 

( )
int int2

0

2 2 1 int 1 int

0 0 0

2
0 0 0 0 0 0

0

1 1 1

1
2 0;

i

S S

S

d dS q dS
P P P P P P

P dS P S
P P

σ

φ σ φ

πφ ω φ

∂ ∂+ + +
∂ − ∂ − −

− = ∈
−

∫∫ ∫∫ ∫∫

∫∫

n n
 

Suppose, that there are n1 points of collocation distributed on 

the surface σ1; n12 – distributed on the interface surface Sint; 

n2 points distributed on the surface σ2 and n0 points 

distributed on the free surface S0. On each surface, beside Sint, 

the number of unknowns coincides with the number of 

collocation points. On the interface surface the number of 

unknowns equals twice the number of collocation points. So 

the total number of unknowns is n1+ 2n12+ n2+ n0. This 

number coincides with number of equations in (13). It would 

be noted that 
0

1
0

P P

∂ =
∂ −n

 if both points P and P0 belong 

to Sint. 

It would be noted that there are two types of kernels in the 

integral operators introduced above. Namely 

( )

( )
0

0

0

1
, ;

1
, ; .

σ ψ ψ

σ ψ ψ σ

∂=
∂ −

= ∈
−

∫∫

∫∫

S

S

A S dS
P P

B S dS P
P P

n
      (14) 

Introducing denominations 1Sɶ  = 1 1 bot bafS S Sσ = ∪ ∪ , 2Sɶ =Sint, 

3Sɶ = 2 2 bafS Sσ = ∪  and 4Sɶ =S0 put them in the following 

expressions 

( ) ( ), ; ,ij i j ij i jA A S S B B S S= =ɶ ɶ ɶ ɶ . 

So the system of integral equations (13) may rewritten in the 

following form 

11 1 12 1 12 1 0 1

21 1 22 1 22 1 0 int

; ;

; ;
i

i

A A B q P

A A B q P S

φ φ σ
φ φ

+ = ∈
+ = ∈

             (15) 

2

2

2

32 1 33 2 34 0 34 0 32 1 0 2

22 1 23 2 24 0 24 0 22 1 0 int

42 1 43 2 44 0 44 0 42 1 0 0

; ;

; ;

; .

φ φ φ ω φ σ

φ φ φ ω φ

φ φ φ ω φ

+ + − = − ∈

+ + − = − ∈

+ + − = − ∈

i

i

i

A A A B B q P

A A A B B q P S

A A A B B q P S

 

From the first two equations in (15) one can obtain the 

expressions for ϕ1 and ϕ1i as following 

1 2 1 1 2 1; i iF q F qφ φ= = .                      (16) 

Here 

1 1

1
2 11 12 21 12 12 22;

1 1
; ; ;

2 2
q q

F A B A A A A B B A Bφ φ π π
−= = − = −  
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( )2 22 21 2

1
.

2
i

F B A F
π

= −  

Forth equation in (21) becomes 

( )2
1 23 2 24 0 22 1 24 0 0 int

1
;

2
i

A A B q B P Sφ φ φ ω φ
π

= − − − + ∈  

Substituting this relation into third equation in (21) gives 

33 32 23 2 34 32 24 0

32 32 22 1

2
34 32 24 0 0 2

1 1

2 2

1

2

1
; .

2

φ φ
π π

π

ω φ σ
π

   − = − −   
   

 − − 
 

 + − ∈ 
 

A A A A A A

B A B q

B A B P

 

So from third and forth two equations in (15) one can obtain 

the expressions for ϕ2 and ϕ1i as following 

2
2 2 1 3 0 4 0

2
1 2 1 3 0 4 0i i i i

G q G G

G q G G

φ ω φ φ
φ ω φ φ

= + +

= + +
                     (17) 

Here 

1
33 32 23 4 34 32 24

1
2 32 32 22

1
3 34 32 24 0 2

1 1
; ;

2 2

1
;

2

1
; .

2

φ φ

φ

φ

π π

π

σ
π

−

−

−

 = − = − − 
 

 = − − 
 

 = − ∈ 
 

A A A A G A A A A

G A B A B

G A B A B P

 

2

2

2

32 1 33 2 34 0 34 0 32 1 0 2

22 1 23 2 24 0 24 0 22 1 0 int

42 1 43 2 44 0 44 0 42 1 0 0

;

; ;

; .

φ φ φ ω φ σ

φ φ φ ω φ

φ φ φ ω φ

+ + − = − ∈

+ + − = − ∈

+ + − = − ∈

i

i

i

A A A B B q P

A A A B B q P S

A A A B B q P S

 

( )( )
( ) ( )

( )

2 2
1 23 2 1 3 0 4 0 24 0 22 1 24 0

2 23 2 22 3 23 3 24

4 23 4 24

1
;

2
1 1

; ;
2 2

1
.

2

φ ω φ φ φ ω φ
π

π π

π

= − + + − − +

= − + = − −

= − +

i

i i

i

A G q G G A B q B

G A G B G A G B

G A G A

 

Equating the two expressions for 1I
φ  from equations (16) and 

(17) it is possible to determine q1 as follows 

2
1 3 0 4 0q D Dω φ φ= + ;                                  (18) 

( )
( ) ( )

2
2 2 1 3 0 4 0

1 1

3 2 2 3 4 2 2 4

;

;

i i i i

i i i i i i

F G q G G

D F G G D F G G

ω φ φ
− −

− = +

= − = −
 

So 

2
2 0 0

2
1 0 0

2 4 4 2 3 3

2 4 4 2 3 3

;

;

; ;

; .

i i i

i i i i i i

G D G G D G

G D G G D G

φ ω

φ ω

φ ω

φ ω

φ φ ω φ

φ φ ω φ

= Φ + Φ

= Φ + Φ

Φ = + Φ = +

Φ = + Φ = +

 

Considering the fifth equation in (15) we have 

( ) ( )
( )

22 2
42 0 0 43 0 0 44 0 44 0

2
42 3 4 0 0 0; .

φ ω φ ωφ ω φ φ ω φ φ ω φ

ω φ

Φ + Φ + Φ + Φ + −

= − + ∈

i i
A A A B

B D D P S

 

Finally obtain the following eigenvalue problem 

2
0 0 0A Bφ ω φ− = , 

where 

42 43 44 42 4

42 43 44 42 3

;

.

i

i

A A A A B D

B A A B B D

φ φ

ω ω

= Φ + Φ + +

= − Φ − Φ + −
 

It would be noted that proposed approach may be considered 

as variant of multi-domain BEM (MBEM) where the whole 

domain is divided into several subdomains for having better 

computational performance than using the single-domain 

BEM (SBEM). 

5. Reducing to the System of 

One-Dimensional Equations 

In formulas (14) the surfaces S and σ may be either different 

or coincident ones. If the surface S is the same as σ then 

integrals in (13) are singular and thus the numerical treatment 

of these integrals will have to take into account the presence 

of this integrable singularity. Integrands here are distributed 

strongly non-uniformly over the element and standard 

integration quadratures fail in accuracy. As in [14] replace 

the Cartesian co-ordinates (x, y, z) with cylindrical co-

ordinates (r,  θ, z), and integrate with respect to z and θ taking 

into account that 

( ) ( )22 2
0 0 0 0 02 cosP P r r z z rr θ θ− = + + − − − . 

Use furthermore the cylindrical coordinate system and 

represent unknown functions as Fourier series by the 

circumferential coordinate 

( ) ( ), , , cos ; 1, 2r z r z iψ θ ψ αθ= = ,        (19) 

where α is a given integer (the number of nodal diameters). 

In doing so we obtain the integral operators in following 

form 
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( ) ( )

( ) ( )

0

0

0 0

0

1
, ;

1
, ; .

ψ ψ

ψ ψ σ

Γ

Γ

∂ = Θ Γ
∂ −

= Φ Γ ∈
−

∫∫ ∫

∫∫ ∫

S

S

dS P P P d
n P P

dS P P P d P
P P

     (20) 

Here Γ  is a generator of the surface S, kernels ( )0,P PΘ  and 

( )0,P PΘ  are defined as following 

( )
( ) ( ) ( ) ( )

0

22 2
0 0 0

,

4 1

2
α α α

Θ

  − + − − 
 = − + − −+     
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Numerical evaluation of integral operators (20) was 

accomplished by the BEM with a constant approximation of 

unknown functions inside elements. It would be noted that 

internal integrals here are complete elliptic ones of first and 

second kinds. As the first kind elliptic integrals are non-

singular, one can successfully use standard Gaussian 

quadratures for their numerical evaluation. For second kind 

elliptic integrals we have applied the approach based on the 

following characteristic property of the arithmetic geometric 

mean AGM(a, b) (see [18-20]): 

( )
/ 2

2 2 2 2
0 2 ,cos sin

d

AGM a ba b

π θ π
θ θ

=
+

∫ . 

To define AGM(a, b) there exist the simple Gaussian 

algorithm, described below, 
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n n
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→∞ →∞

= =                  (21) 

It is a very effective method to evaluate the elliptic integrals 

of the second kind. So we have the effective numerical 

procedures for evaluation of inner integrals, but external 

integrals in (20) have logarithmic singularities. So we treat 

these integrals numerically by special Gauss quadratures [17, 

18] and apply the technique proposed in [21]. 

6. Some Numerical Results 

6.1. Cylindrical Shells with Baffles 

Consider the circular cylindrical shell with a flat bottom and 

having the following parameters: the radius is R = 1m, the 

thickness is h = 0.01m, the length L = 2m, Young’s modulus 

E = 2·105 MPa, Poisson’s ratio ν = 0.3, the material’s density 

is ρ = 7800 kg/m3, the fluid density ρl = 1000 kg/m3. The 

fluid filling level is denoted as H. The baffle is considered as 

a circle flat plate with a central hole (the ring baffle), a 

material’s density is ρ = 7800 kg/m3, the fluid density is ρl = 

1000 kg/m3. The fluid filling level is denoted as H. 

The vertical coordinate of the baffle position (the baffle 

height) is denoted as H1 (H1 < H). The radius of the interface 

surface is denoted as R2 (see Fig.1) and 1 2H H H= + . 

The numerical solution was obtained by using the BEM as it 

was described beforehand. In present numerical simulation 

we used 60 boundary elements along the bottom, 120 

elements along wetted cylindrical parts and 100 elements 

along the radius of free surface. At the interface and baffle 

surfaces we used different numbers of elements depending on 

the radius of baffle. 

Here we study the modes and frequencies of baffled tank in 

dependence of two parameters, R2 and H2. In numerical 

simulations consider different values both for R2 and H1. 

First, perform the benchmark testing for the partially filled 

rigid cylindrical shell described above. The filling level was 

H=0.8 m. 

Consider α=0. The analytical solution of R. Ibrahim [10] was 

used for comparison and validation. It can be expressed in 

the following form: 

2

tanh , 1, 2,...k k
k

H
k

g R R

χ µ µ = = 
 

; 

 1
0 cosh coshk k k

k J r z H
R R R

µ µ µφ −     =      
     

. b     (22) 

Here for α=0 values 
k

µ  are roots of the equation ( )0 0
dJ x

dx
= , 

where ( )0J x  is Bessel function of the first kind, ,
k k

χ φ  are 

frequencies and modes of liquid sloshing in the rigid 

cylindrical shell. 

Table 1 below provides the numerical values of the natural 

frequencies of liquid sloshing for nodal diameters α =0. The 

numerical results obtained with proposed MBEM were 
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compared with those received using formulae (22) and with 

results obtained using SBEM by K.G. Degtyarev et al [11]. 

Table 1. Comparison of analytical and numerical results. 

  n=1 n=2 n=3 n=4 n=5 

α=0 
SBEM 3.815 7.019 10.180 13.333 16.480 
MBEM 3.816 7.017 10.177 13.330 16.480 
(22) 3.815 7.016 10.173 13.324 16.470 

These results have been demonstrated the good agreement 

and testified the validity of proposed multi-domain approach. 

Next, we have carried out the numerical simulation of the 

natural frequencies of liquid sloshing via the values of the 

interface surface radius R2 at different position of the baffle 

H1. At first calculate the natural frequencies of unbaffled tank 

at H=1.0m. These results were necessary for comparison with 

data of I. Gavrilyuk et al. [5]. 

Table 2 hereinafter provides the numerical values of the 

natural frequencies of liquid sloshing for nodal diameters α 

=0 and H=1.0m. The numerical results obtained with 

proposed MBEM were compared with those received using 

formulae (22). 

Table 2. Comparison of analytical and numerical results at H=1.0m. 

Modes n=1 n=2 n=3 n=4 n=5 

MBEM 3.828 7.017 10.177 13.330 16.481 
Analytical solution 3.828 7.016 10.173 13.324 16.471 

To validate our multi-domain BEM approach we also have 

calculated the natural sloshing frequencies at H1=H2=0.5m 

and with R2 =0.7m. 

The comparison of results obtained with proposed MBEM 

and the analytically oriented approach presented by I. 

Gavrilyuk et al. in [11] has been demonstrated in Table 3. 

Table 3. Comparison of numerical results for eigenvalues. 

  n=1 n=2 n=3 n=4 

H1=0.5 
MBEM 3.756 7.012 10.176 13.328 
[11] 3.759 7.010 10.173 13.324 

H1=0.9 
MBEM 2.278 6.200 9.609 12.810 
[11] 2.286 6.197 9.608 12.808 

These results also have demonstrated the good agreement and 

testified the validity of proposed multi-domain approach. 

In all tables we have compared the eigenvalues 2 2 / gω χ=
of the problem described beforehand. 

Figure 3 below demonstrates monotonic dependencies of the 

first 4 eigenvalues denoted over there as F1, F2, F3, F4 on 

the radius of the interface surface denoted by R2 at different 

baffle position H1. From these results one can concluded that 

graphs of Fi as functions of R2 are essentially differ for 

different i and H1. The presence of the baffle has affected 

drastically only on the lower frequencies. Also one can see 

that small baffles (when R2 is relatively large) do not affect 

the lower frequencies. This conclusion corresponds to results 

of I. Gavrilyuk et al. [11]. 
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Figure 3. Eigenvalues versus R2 for H=1 and different H1. 

The three first modes of liquid vibrations are shown on 

Figure 4. Consider R2=0.2m. 

 
Figure 4. Modes of vibrations of un-baffled and baffled tanks. 

Here numbers 1, 2, 3 correspond to the first, second and third 

modes. The value R2=0.2m was chosen based on data 

presented at Figure 3. Combination of R2=0.2m and H1=0.9 

brings to frequencies’ maximal decreasing. From these 

results one can conclude that modes of vibrations of baffled 

and un-baffled tanks are not differ significantly. 

Consider α=1. In this case values 
k

µ  are roots of the 

equation (see the handbook of I.S. Gradshteyn and I.M 

Ryzhik, [12]) 

( ) ( ) ( )1

0 22
dJ x

J x J x
dx

 = −  , 

Table 4 below provides the numerical values of the natural 

frequencies (
2

2

g

χω = ) of liquid sloshing for nodal diameters 

α =1. The numerical results obtained with proposed MBEM 

were compared with those received using formulae (22) and 

with results obtained using SBEM by K.G. Degtyarev et al 

[11]. Consider H=0.8m. 

Table 4. Comparison of analytical and numerical results. 

  n=1 n=2 n=3 n=4 n=5 

α=1 

SBEM 1.657 5.332 8.538 11.709 14.868 

MBEM 1.657 5.332 8.540 11.711 14.889 

(22) 1.657 5.329 8.536 11.706 14.864 

Then we calculated the natural frequencies of un-baffled tank 

at H=1.0m and α=1. These results were necessary for 

comparison with data of I. Gavrilyuk et al. [5]. 

Table 5 hereinafter provides the numerical values of the 

natural frequencies of liquid sloshing for nodal diameters α 

=0 and H=1.0m. The numerical results obtained with 

proposed MBEM were compared with those received using 

formulae (22). 

Table 5. Comparison of analytical and numerical results at H=1.0m and 
α=1. 

Modes n=1 n=2 n=3 n=4 n=5 

MBEM 1.750 5.332 8.538 11.709 14.870 

(22) 1.750 5.331 8.536 11.706 14.864 

Figure 5 below demonstrates monotonic dependencies of 

the first 4 eigenvalues for α=1 denoted over there as F1, F2, 

F3, F4 on the radius of the interface surface denoted by R2 

at different baffle position H1. From these results one can 

concluded that graphs of Fi (i=1, 2, 3, 4) as functions of R2 

are essentially differ for different R2 and H1. The presence 

of baffle has affected drastically only on the lower 

frequencies. Also one can see that small baffles (when R2 is 

relatively large) do not affect even the lower frequencies. 

This conclusion corresponds to results of I. Gavrilyuk et al. 

[11]. 

It would be noted that the values of frequencies both for α 

=0 and α =1 on the left vertical border of these graphs 

coincide with theoretical values for tanks with solid baffles 

at the same values of baffle position H1. Here we have the 

boundary value problem for the two-compartment tank 

where the lower compartment is fully-filled with the liquid. 

But for this compartment the boundary value problem with 

zero Newman boundary condition was obtained. It leads to 

the ambiguous solution, but we have the known constant 

potential due to the known solution of the upper 

compartment with the mixed boundary value problem. For 

cylindrical shells this problem can be solved analytically. 

The liquid above the baffle behaves like a sloshing one 

while liquid below the baffle behaves like a rigid one. 

On the right border of the graphs the values of frequencies 

coincide with ones obtained for the un-baffled tank. 
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Figure 5. Eigenvalues at α=1 versus R2 for H=1 and different H1. 

The three first modes of liquid vibrations are shown on 

Figure 6. Here R2=0.2m and H1=0.9m. 

 
 

Figure 6. Modes of vibrations of un-baffled and baffled tanks, α=1. 

Here numbers 1,2,3,4 correspond to the first, second, third 

and forth modes. These results demonstrate that modes of 

vibrations of baffled and un-baffled tanks at α=1 are differ 

more significantly than ones at α=0. 

6.2. Conical Shells with Baffles 

Conical shells in interaction with a fluid have received a little 

attention in scientific literature in spite of the usage of thin 

walled conical shells is of much importance in a number of 

different branches of engineering. In aerospace engineering 

such structures are used for aircraft and satellites. In ocean 

engineering, they are used for submarines, torpedoes, water-

borne ballistic missiles and off-shore drilling rigs, while in 

civil engineering conical shells are used in containment 

vessels in elevated water tanks. 
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Figure 7. Baffled conical shells of Λ and V shapes. 

The numerical procedure for a conical shell is the same as for 

a cylindrical one. The only distinction consists in formulas 

for the unit normal and coordinates of points at the 

considered solid surfaces. The first estimation was done for 

un-baffled coextensive cylindrical and conical shells with 

equal radiuses of free surfaces. For the cylindrical shell R1 = 

R2 = 0.4m and H = 3.8464m. That corresponds to the 

coextensive Λ-shape conical shell with R2 = 0.4m and R1 = 

1.0m, H=H1+H2=1.0392m and θ=π/6. These sizes were 

chosen for further comparison of our numerical results with 

data of I. Gavrilyuk et al. [13]. First, we have concluded that 

modes of liquid vibrations in both tanks are similar. These 

modes are shown on Figure 8. 

 
Figure 8. Modes of vibrations of the coextensive cylindrical and Λ-shape 

conical shells. 

Here numbers 1, 2, 3 correspond to the first, second and third 

modes. Table 6 below provides the numerical values of the 

natural liquid sloshing frequencies at α =1 for the 

coextensive cylindrical and conical shells. 

Table 6. Comparison of frequencies of the coextensive cylindrical and Λ-
shape conical shells. 

Modes n=1 n=2 n=3 n=4 n=5 

Cylinder 4.6079 13.3504 21.3866 29.3409 37.3589 
Cone 5.6206 13.9162 21.8827 29.7942 37.6864 

As one can see from these results the only first frequency 

differs essentially for these tanks. Moreover, the first 

frequency of the cylindrical tank is less than this one of the 

Λ-shape conical tank. So it is possible to use namely this 

value at detuning the resonance frequency. 

Next, the estimation was done for un-baffled coextensive 

cylindrical and V - shape conical tank with equal radiuses of 

free surfaces. For the cylindrical shell R1 =R2 = 1m and H = 

0.6154 m. That corresponds to the coextensive V -shape 

conical shell with R2 = 1.m and R1 = 0.4m, 

H=H1+H2=1.0392m and θ=π/6. 

The modes of vibrations for both these tanks are shown on 

Figure 9, where numbers 1, 2, 3, 4 correspond to the first, 

second, third and forth modes. It would be noted that modes 

of the V – shape tank differ more essentially from those of 

the coextensive cylindrical tank as compared with the Λ-

shape tank. 

 
Figure 9. Modes of vibrations of the coextensive cylindrical and V -shape 

conical shells. 

Table 7 provides the numerical values of the natural liquid 
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sloshing frequencies at α =1 for the coextensive cylindrical 

and V -shape conical shells. 

Table 7. Comparison of frequencies of the coextensive cylindrical and V – 
shape conical shells. 

Modes n=1 n=2 N=3 n=4 n=5 

Cylinder 1.4952 5.3163 8.5358 11.7059 14.8635 
Cone 1.3052 4.9255 8.1411 11.3169 14.6724 

The first frequencies differ essentially for both tanks and in 

this case the cylinder’s first frequency is grater than that one 

of the V – shape conical tank. With increasing the frequency 

number n the difference between results became smaller. 

As the next step to validate our approach we need to provide 

the comparing our numerical results with data obtained by 

I.Gavrilyuk et al. [13]. Our numerical simulation was 

dedicated to the frequencies 
2

2 k

k
g

χω =  for α =0, 1,2 and k =1 

because these are the lowest natural frequencies that give the 

essential contribution to the hydrodynamic load. In numerical 

simulation consider both V – shape and Λ-shape conical 

tanks and R1 = 1.m and θ=π/6. Noted, that for V – shape tank 

R1 is the free surface radius, whereas for Λ-shape tank R1 is 

the radius of bottom. If R1, R2 and θ are known quantities, 

than the corresponding value of H can be easy found as 

( )1 2 cotH R R θ= − . In Table 8 the results of numerical 

simulation are presented for α =0, 1, 2 and different values of 

R2. The comparison of results obtained by proposed method 

with data of I.Gavrilyuk et al. [13]. The results are in good 

agreement except the data for Λ – shape tank with for α =0 

and R2=0.2m. But was noted in [13] that in this case the low 

convergence was achieved using the proposed here analytical 

method. 

Table 8. Natural frequencies of V – shape and Λ – shape conical tanks. 

 V – shape Λ – shape 

R2 0.2 0.4 0.6 0.8 0.9 0.2 0.4 0.6 0.8 0.9 

α =0, k =1 

[13] 3.386 3.386 3.382 3.139 2.187 24.153 10.014 6.665 4.550 2.683 

MBEM 3.389 3.390 3.391 3.192 2.200 20.027 10.034 6.669 4.545 2.678 

α =1, k =1 

[13] 1.304 1.302 1.254 0.934 0.542 11.332 5.629 3.515 1.661 0.726 

MBEM 1.305 1.307 1.259 0.954 0.574 11.303 5.626 3.481 1.651 0.732 

α =2, k =1 

[13] 2.263 2.263 2.255 2.015 1.361 17.760 8.967 5.941 3.724 1.923 

MBEM 2.265 2.270 2.269 2.048 1.394 17.939 8.965 5.941 3.726 1.951 

 

Next, we have carried out the numerical simulation of the 

natural frequencies of liquid sloshing for tanks with baffles. 

Both V – shape and Λ – shape baffled tanks were under 

consideration. Consider tanks of height H= H1+H2=1.0m at 

the different baffle position H1. Here R1 = 1.0m and R2 = 

0.5m for both type of tanks (see Figure 7). 

In Table 9 the results of numerical simulation are presented 

for α =0, 1 and different baffle positions, described by the 

height H1. Consider four eigenvalues for each α. The radius 

of the conical shell at the baffle position is denoted as Rb, and 

the free surface radius is Rint (see Figure 7). First, we have 

obtained the natural frequencies of V – shape and Λ – shape 

conical tanks without baffles. It corresponds to values H1= H2 

=0.5m, Rint/Rb=1. The values of H1 and H2 can be arbitrary 

chosen but H1+H2=1.0m. Then we have put baffles at the 

different positions H1=0.5m and H1=0.8m and considered the 

different sizes of baffles, namely Rint/Rb=0.5 and Rint/Rb=0.2. 

Table 9. Natural frequencies of V – shape and Λ – shape conical tanks with baffles. 

n 1 2 3 4 1 2 3 4 

H1 H2 Rint/Rb 
V – shape Λ – shape 

α =0 

0.5 0.5 1 3.466 6.681 9.845 12.99 7.985 14.37 20.70 27.01 

0.5 0.5 0.5 3.408 6.668 9.843 12.99 7.968 14.37 20.69 27.01 

0.5 0.5 0.2 3.405 6.635 9.843 12.99 7.960 14.37 20.69 27.01 

0.8 0.2 0.5 2.527 6.387 9.724 12.92 7.344 14.25 20.66 26.99 

0.8 0.2 0.2 2.443 6.059 9.565 12.88 7.113 14.20 20.65 26.99 

 α =1 

0.5 0.5 1 1.416 4.997 8.206 11.37 4.424 11.09 17.46 23.79 

0.5 0.5 0.5 1.228 4.974 8.197 11.37 4.192 11.06 17.46 23.79 

0.5 0.5 0.2 1.172 4.943 8.196 11.37 4.037 11.06 17.45 23.79 

0.8 0.2 0.5 0.815 4.742 8.003 11.20 3.128 10.78 17.42 23.77 

0.8 0.2 0.2 0.630 4.191 7.849 11.23 2.529 10.66 17.36 23.75 
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The modes of vibrations for V – shape tank for α =0 are 

shown on Figure 10, where numbers 1, 2, 3 correspond to the 

first, second and third forth modes. Solid lines correspond to 

the un-baffled tank and dotted lines correspond to the V – 

shape tank with baffle. Here H1= 0.8m, H2=0.2m, Rint/Rb=0.2, 

and R1 = 1.0m, R2 = 0.5.m. 

 
Figure 10. Modes of vibrations of the Λ and V -shape conical tanks with and 

without baffles. 

From the results obtained show different behaviour of 

decreasing frequencies for V – shape and Λ – shape conical 

tanks. For Λ – shape tanks the baffle positions and their sizes 

are not affected essentially on the values of frequencies. For 

V – shape tanks the effects of baffle characteristics is more 

considerable. 

It would be noted also that the first harmonic frequencies are 

lower than axisymmetric ones for both V – shape and Λ – 

shape conical tanks. 

7. Conclusions 

The proposed approach allows us to carry out the numerical 

simulation of baffled tanks with baffles of different sizes and 

with different position in the tank. This gives the possibility 

of governing the baffle radius and its position within the 

tank. The considered problem was solved using the multi-

domain boundary element methods. The rigid baffles were 

considered. For baffles with holes the multi-domain approach 

was applied. Different behavior of frequencies for Λ and V-

shape conical tanks with and without baffles was 

investigated. The first frequencies differ essentially for 

coextensive cylindrical and conical tanks. But modes of 

liquid vibrations in considered tanks are very close. The 

cylinder’s first frequency is grater than that one of the V – 

shape conical tank. With increasing the frequency number n 

the difference between results became smaller. 

It would be noted that dependencies of frequencies via the 

filling level at different values of gravity acceleration will 

be obtained numerically for vibrations of the fluid-filled 

tanks with and without baffles. This approach will be easy 

generalized for elastic tanks with elastic baffles. The 

geometry of tank also can be easy changed, so the results 

will be obtained for conical, spherical and compound 

shells. 

References 

[1] Robinson, H. G. R. and C. R. Hume. “Europa I: Flight Trial of 
F1- 5th June, 1964, 1964. 

[2] Space Exploration Technologies Corp. “Demo Flight 2 Flight 
Review Update, June 15, 2007. 

[3] G. Popov, S. Sankar, and T. S. Sankar, “Dynamics of liquid 
sloshing in baffled and compartmented road containers”, J. 
Fluids Struct., no. 7, pp.803-821, 1993. 

[4] Y. Guorong, and S. Rakheja S “Straight-line braking dynamic 
analysis of a partly-filled baffled and unbaffled tank truck”, I. 
Mech. E., J. Auto Eng., vol. 223, pp. 11-26, 2009. 

[5] N. Lloyd, E. Vaiciurgis, and T. A. G. Langrish, “The effect of 
baffle design on longitudinal liquid movement in road tankers: 
an experimental investig ation”, Process Safety and Environ 
Prot Trans Inst. Chem. Engrs., vol. 80, no. 4, pp. 181-185, 
2002. 

[6] Guorong Yan, S. Rakheja, and K. Siddiqui, “Experimental 
study of liquid slosh dynamics in a partially filled tank,” 
Trans. ASME, J. Fluids Eng., vol. 13, issue 1, 2009. 

[7] L. Strandberg, Lateral stability of Road Tankers, National 
Road & Traffic Res. Inst. Report 138A, Sweden, 1978. 

[8] M. F. Younes, Y. K. Younes, M. El-Madah, I. M. Ibrahim, and 
E. H. El-Dannanh, An experimental investigation of 
hydrodynamic damping due vertical baffle arrangements in 
rectangular tank, Proc. I Mech E, J. Eng. Maritime Environ., 
vol. 221, pp. 115-123, 2007. 

[9] Bermudez, A., Rodrigues, R., Finite element analysis of 
sloshing and hydroelastic vibrations under gravity./ 
Mathematical Modelling and Numerical Analysis, Vol. 33, № 
2, pp. 305-327, 1999. 

[10] Gavrilyuk, I. Lukovsky I., Trotsenko, Yu. and Timokha, A. 
Sloshing in a vertical circular cylindrical tank with an annular 
baffle. Part 1. Linear fundamental solutions. Journal of 
Engineering Mathematics, vol. 54, pp. 71-88, 2006. 

[11] Lloyd, N., Vaiciurgis, E. and. Langrish, T. A. G. The effect of 
baffle design on longitudinal liquid movement in road tankers: 
an experimental investigation. /Process Safety and Environ 
Prot Trans Inst. Chem. Engrs., vol. 80, no. 4, pp.181-185, 
2002. 

[12] Güzel, B. U., Gadinscak, M., Eren Semensigel, S., Turan, Ö. 
F., Control of Liquid Sloshing in Flexible Containers: Part 1. 
Added Masses; Part 2. Top Straps. /15th Australasia Fluid 
Mechanics Conference, Sydney, Australia, 8p., 2004. 

[13] Gnitko V., Marchenko U., Naumenko V., Strelnikova E. 
Forced vibrations of tanks partially filled with the liquid under 
seismic load. Proc. of XXXIII Conference “Boundary 
elements and other mesh reduction methods” WITPress, 
Transaction on Modeling and Simulation, pp. 285-296, 2011. 
DOI: 10.2495/BE110251. 

r

   φ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3



 International Journal of Electronic Engineering and Computer Science Vol. 1, No. 1, 2016, pp. 14-27 27 
 

[14] Ventsel E.,. Naumenko V, Strelnikova E., Yeseleva E. Free 
vibrations of shells of revolution filled with a fluid. 
Engineering analysis with boundary elements, 34, pp. 856-
862, 2010. DOI: 10.1016/j.enganabound.2010.05.004. 

[15] K. Degtyarev, P. Glushich, V. Gnitko, E. Strelnikova. 
Numerical Simulation of Free Liquid-Induced Vibrations in 
Elastic Shells. // International Journal of Modern Physics and 
Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 
10.13140/RG.2.1.1857.5209. 

[16] Strelnikova E., Yeseleva E., Gnitko V., Naumenko V. Free and 
forced vibrations of the shells of revolution interacting with 
the liquid Proc. of XXXII Conference “Boundary elements 
and other mesh reduction methods” WITPress, Transaction on 
Modeling and Simulation, pp. 203-211, 2010. 

[17] Brebbia, C. A., Telles, J. C. F. & Wrobel, L. C. Boundary 
Element Techniques, Springer-Verlag: Berlin and New York, 
1984. 

[18] K. G. Degtyarev, V. I. Gnitko, V.V. Naumenko, E. A. 
Strelnikova. BEM in free vibration analysis of elastic shells 
coupled with liquid sloshing. WIT Transaction on Modelling 
and Simulation, 2015, Vol. 61, pp. 35-46. 

[19] David A. Cox. The Arithmetic-Geometric Mean of Gauss. 
L'Enseignement Mathématique, t. 30, pp. 275 -330, 1984. 

[20] Stroud A. H., Secrest D. Gaussian Quadrature Formulas. 
Prentice-Hall, Englewood, N. J., Cliffs, 206 p., 1966. 

[21] Naumenko V. V., Strelnikova H. A. Singular integral accuracy 
of calculations in two-dimensional problems using boundary 
element methods. Engineering analysis with boundary 
elements. №26, pp. 95-98, 2002 DOI: 10.1016/S0955-
7997(01)00041-8. 

[22] Ibrahim R. A. Liquid sloshing dynamics: theory and 
applications. Cambridge University Press, 957 p., 2005. 

[23] Gavrilyuk, I. Lukovsky I., Trotsenko, Yu. and Timokha, A. 
Sloshing in a vertical circular cylindrical tank with an annular 
baffle. Part 1. Linear fundamental solutions. Journal of 
Engineering Mathematics vol.54, pp. 71-88, 2006. 

[24] Gradshteyn, I. S.; Ryzhik, I. M.: Table of Integrals, Series and 
Products. Sixth Edition. Academic Press, 2000. 

[25] Gavrilyuk, I., M. Hermann, Lukovsky I., Solodun O., 
Timokha, A. Natural Sloshing frequencies in Truncated 
Conical Tanks. Engineering Computations, Vol. 25 Iss: 6, pp. 
518–540, 2008. 

 


