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Abstract 

The method of synthesis the efficient algorithms for types I, IV of discrete sine transform (DST) the sequences of arbitrary 
number of points via cyclic convolutions is considered. The hashing arrays with the simplified arguments of the basis function 
of sine for synthesis for the efficient algorithm of the arbitrary-number transform lengths is analyzed. The hashing arrays in the 
process of synthesis algorithm define partitioning of the basis into cyclic submatrices. The examples of the synthesis of the 
algorithms for I, IV types of DST using proposed method are considered. The hashing arrays, used in the algorithms for the 
synthesis technique, are more versatile and generally better in terms of indexing mapping in comparison with the existing 
algorithms. 
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1. Introduction 

The discrete sine transform has found a wide range of 
applications in signal processing such as image processing, 
adaptive digital filtering and interpolation. Ever since the 
introduction of the first version of the DST in 1976, eight 
types of DST [1-3] have been developed. The DST 
transforms of types I–IV form a group of so-called even 
discrete sine transform (EDST) and next four odd DST, 
indicating whether they are even or odd transforms. 

The direct and inverse computation of EDST can be 
presented in the following form: 

(DST I N)-1= (DST IN)T= (DST IN);                     (1) 

(DST IIN)-1= (DST IIN)T= (DST IIIN);                 (2) 

(DST IIIN)-1= (DST IIIN)T= (DST IIN);                (3) 

(DST IVN
)-1= (DST IVN)T= (DST IVN),               (4) 

where DST I and DST IV are identical with their inverse 

transform (1,4). The DST includes for I, IV types, defined 
by: 

for DST I 
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for DST IV 
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where α(n)=1/√2, if n=N-1; otherwise α(n)=1; k=0,1,…,N-1. 

These transforms are very well studied and a number of 
efficient implementation techniques have been developed [4, 
5]. There are two categories for efficient computing of the 
fast DST, indirect and direct implementations. In case of the 
indirect computation, DST is decomposed into other fast 
algorithms with smaller scales, such as FFT or through 
discrete Hartley transform (DHT), discrete cosine transform 
(DCT) [5]. The Rader type [6] approach of efficient 
algorithms gives the possibility to compute DST through 
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cyclic convolutions. 

Convolutions play a significant role in digital signal 
processing due to their nature of easy implementation. 
Moreover, the convolution-based algorithms are found to be 
efficient for read-only-memory (ROM) - based and adder-
based very large scale integration (VLSI) implementation. 
Several attempts have been made for efficient 
implementation of prime-length DST and DCT in systolic 
hardware through convolution formulation [7–10] due to its 
remarkable advantages over the others, particularly for 
efficient input/output and data transfer operations. The 
proposed design uses an efficient restructuring of the 
computation of the DST for prime-number transform length 
into two circular correlations, having similar structures and 
only one half of the length of the original transform. 

The article represents the synthesis of efficient algorithms for 
types I, IV of DST, what have the identical direct and inverse 
transform, computation based on the cyclic convolution of 
arbitrary-number transform lengths. This approach to the 
synthesis of algorithms is more general and efficient than the 
algorithms mentioned earlier and is applicable to sequences 
with arbitrary number of points. Section 1 of this paper 
presents analysis and simplification the arguments of 
functions the basis for types I, IV of DST for synthesis of 
efficient algorithm. In Section 2 the performance of the 
proposed general technique on examples of the DST I for 
size N=9, and DST IV for size N=12 are analyzed. In Section 
3 the results are discussed and Section 4 presents 
conclusions. 

2. Definition of Simplified 
Arguments of Basis Function 

of DST for Types I, IV 

Most papers use a transition from discrete transform to 
compute cyclic convolutions mapping for prime size by 
Raiders [6], or split composite size on prime factors by 
Agarwal and Cooley [11], or the combination of these 
approaches. 

Not much work has been dedicated to the development of 
efficient implementation of generalized techniques for 
computation of discrete transforms of Fourier class using 
cyclic convolutions. Paper [12] presents a DCT algorithm 
that converts the DCT computation into cyclic convolutions. 
It shows that by using multiplicative groups of integers, one 
can identify and arrange the computation as convolutions. 
The index sets can be extended to find a suitable group and 
the functions that can be used to compute the DCT as a 
convolution over a larger group. 

The operation on integer set (1,2…N-1) of the algebraic 

system <N-1,*> corresponds to equivalent the arguments of 
functions the basis matrix of discrete sine transform. In case 
the size of transform N is prime, algebraic system <N-1,*> is 
of Abelian group. Besides, the algebraic system <N-1,*> with 
prime N presents cyclic group, and table of operation is a 
Hankel circular matrix. Elements of cyclic group are equal to 
natural power of generate element α ∈ G. Generate element α 
of cyclic group is a primitive root, such that 

)(max,1mod NTN
n

i ϕα == ,                 (7) 

where φ(N) - Euler’s function and α is not the only one. 
Primitive element will be αN-1 also. Therefore, all elements of 
cyclic group can be determined by the powers of primitive 
element. 

Let us analyze the structure of the matrix basis (5, 6) for the 
types I, IV of DST for integer arguments, where components 
сk,n are respectively: 

for DST I 

сk,n = (k+1)(n+1)π/N,   (k,n=0,1,…,N-2);            (8) 

for DST IV 

сk,n = (2k+1)(2n+1)π/4N, (k,n=0,1,…,N-1).        (9) 

Basis periodic (2π), symmetric (π) and asymmetric (π/2) for 
the types I, IV of EDST, are presented respectively in Table 1. 

Table 1. Properties basis for I, IV types of DST. 

Type Periodic T Asymmetric Symmetric 

DST I 2N N N/2 
DST IV 8N 4N 2N 

Matrix arguments Ca the types I, IV of DST for property of 
periodic is equal respectively 

C
I
a(k,n) = [(k+1)(n+1) mod T ],                     (10) 

C
ІV

a(k,n) = [(2k+1)(2n+1) mod T ],                (11) 

where (k,n=0,1,…,T-1). 

Based on substitutions of rows of data matrix (10, 11) the 
hashing arrays P(n) are formed, that define block cyclic 
structures of basis matrix. 

Accordance properties (Table 1) of simplified matrix 
elements с’k,n of the arguments is determined by consistent 
performances 

сk,n = T - [(сk,n) mod T ], if [(сk,n) mod T ] > T/2;     (12) 

с’k,n = T/2-{T-[(сk,n) mod 2N]}, if {T-[(сk,n) mod T]}>T/4,(13) 

otherwise с’k,n = сk,n . 

Simplified matrix arguments complement matrices Ss of sine 
signs of EDST, defined by the inequality 
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Availability of the arguments c’k,n on the interval (0, T/4) or 
(0, T/2) with opposite signs reduce the number of 
computations in the block cyclic structures of basis matrix. 

The connection of the discrete sine transforms to a cyclic 
group is used in order to explain the structure of the basis 
into cyclic submatrices. Let us consider the group table of 
operation or parts of them (Table 2), corresponding the table 
of operation of multiplication modulo (10, 11). 

Table 2. Table of operation of a cyclic group. 

* 0 1 2 … N-1 

0 c(0,0) c(0,1) c(0,2) … c (0,(N-1)) 

1 c(1,0) c(1,1) c(1,2) … c (1,(N-1)) 

2 c(2,0) c(2,1) c (2,2) … c( 2,(N-1)) 

3 c(3,0) c(3,1) c( 3,2) … c (3,(N-1)) 

…   …  … 
N-1 c(N-1),0 c(N-1),1 c (N-1),2 … c (N-1), (N-1) 

Let us analyze the matrix of arguments of degree (N)×(N) as 
substitution of ψi for each i row (column) to first row 
(column) of matrix, where N is prime. Summation of 
substitutions {ψ1,ψ2, ψ3, ψ4, ψ5,…,ψx} form the cyclic group. 
The quantity of generating and non-primitive elements is the 
same for substitutions for algebraic operation of arguments of 
multiplication by modulo N (*= (n x k) mod N). Based on the 
substitutions of rows/columns from data matrix (10, 11), 
hashing arrays P(n) are formed, and correspondence of the 
cyclic decomposition of substitution. The hashing array, 
according to the value of size N and type of transform is 
equal respectively 

P(n)=P(n1) P(n2) …P(nk) = (n11, n12, n13, …, n1L1) 

(n21, n22, n23, …, n2L2)…(nkL1, nkL2, …, nkLk),          (15) 

where k – the number of subarrays, nij - element of a 
subarray; Li - the number of elements in the subarray P(ni); n 
- size of the total array for P(n), which is determined by: 

n = (L1+L2+...+Lk).                          (16) 

The k number of subarrays in P(n) is determined by the value 
of N size (simple, power of simple, composite) of transform 
and types of EDST. Forming hashing array briefly defines the 
block cyclic structures of Hankel submatrices in the basis 
matrix [13]. 

In case the composite value N=N1N2…Ni of size, the elements 
ci,j = ((i x j) mod Ni) of the cyclic group match the elements 
cαi,αj = ((α i x α j) mod N) of Hankel circular submatrices, 
where the first row is one of subarrays in P(n), where α= 

N1,N2,…, Ni. 

The properties of symmetry and periodicity of DST basis 
lead to lower values representation of elements of subarrays 
P'(ni) with supplement respective subarrays of sine signs 
Ss(ni). Submatrices Ss(ni) contain elements that can be equal 
to +1, -1, 0 (indicate short +,-,0). The simplified hashing 
arrays are: 

P'(n) = P'(n1)P'(n2)…P'(nk),                    (17) 

Ss(n) = Ss(n1) Ss(n2)…Ss(nk)                (18) 

for a given N size and of DST type determined by a 
simplified matrix C’a, with elements (12, 13) and signs Ss(n) 
are defined by (14). 

Hashing array P(n) of transform defines the specific 
character of the structure of EDST basis matrix reduced to 
cyclic submatrices. The specific parameters P(n) that 
characterize accordingly modified basis matrix are: 

   k - the number of subarrays in hashing array; 

   (L1, L2,..., Lk) - the size of subarrays; 

   ni1 - first element of each subarray, i = 1 (1) k. 

The examples of hashing arrays for types I, IV of DST are 
presented in Table 3. 

Table 3. The examples of the hashing array for I, IV types of DST. 

Type P(n), P’(n), Ss(n) 

DST I (1,3,9,13,11,5)(2,6,4,12,8,10)(7)(0), 
N=7 (1,3,2,1,3,2)(2,1,3,2,1,3)(0), 
k=4 (+,+,-,-,-,+)(+,+,+,-,-,-)(0); 

DST IV 
(1,3,9,27,25,19)(5,15,45,23,13,39)(7,21)(11,33,43,17,51,41)(29,
31,37,55,53,47)(35,49), 

N=7 
(1,3,9,1,3,9)(5,13,11,5,13,11)(7,7)(11,5,13,11,5,13)(1,3,9,1,3,9)(
7,7), 

k=6 (+,+,+,+,+,+)(+,+,-,+,+,-)(+,+)(+,-,-,+,-,-)(-,-,-,-,-,-)(-,-); 
DST I (1,3,9,11)(15,13,7,5)(2,6)(10,14)(4,12)(8)(16), 
N=8 (1,3,1,3)(1,3,1,3)(2,2)(2,2)(4,4)(0)(0), 
k=7 (+,+,-,-)(+,-,-,+)(+,+)(-,-)(+,-)(0)(0); 

DST IV 
(1,3,9,27,17,51,25,11,33,35,41,59,49,19,57,43)(5,15,45,7,21,63,
61,55,37,47,13,39,53,31,29,23), 

N=8 
(1,3,9,5,15,13,7,11,1,3,9,5,15,13,7,11)(5,15,13,7,11,1,3,9,5,15,1
3,7,11,1,3,9), 

k=2 (+,+,+,+,+,-,+,+,-,-,-,-,-,+,-,-)(+,+,-,+,+,-,-,-,-,-,+,-,-,+,+,+); 
DST I (1,3,9,7)(5,15)(11,13,19,17)(2,6,18,14)(4,12,16, 8) (18)(0), 
N=10 (1,3,1,3)(5,5)(1,3,1,3)(2,4,2,4)(4,2,4,2)(0), 
k=6 (+,+,+,+)(+,-)(-,-,-,-)(+,+,-,-)(+,-,-,+)(0); 

DST IV 
(1,3,9,27)(5,15,45,55)(7,21,63,29)(11,33,19,57)(13,39,37,31)(17,5
1,73,59)(23,69,47,61)(25,75,65,35)(41,43,49,67)(53,79,77,71), 

N=10 
(1,3,9,13)(5,15,5,15)(7,19,17,11)(11,7,19,17)(13,1,3,9)(17,11,7,
19)(17,11,7,19)(15,5,15,5)(1,3,9,13)(13,1,3,9), 

k=10 
(+,+,+,+)(+,+,-,-)(+,+,-,+)(+,+,+,-)(+,+,+,+) (+,-,-,-) (+,-,-,-)(+,-,-
,+)(-,-,-,-)(-,-,-,-); 

Then the process of synthesis analyzes the structure of 
basis matrix that defines the specific character of 
computational algorithm. The finding of identical and 
quasi-identical submatrices (with the same index, but 
opposite sign) is based on the values of parameters of 
hashing array P(n) and hashing array P′(n), supplemented 
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array Ss(n) of sine signs. Searching for identity cyclic 
submatrices among value elements of basis matrix may be 
done in advance, but a large search of all elements 
requires significant amount of memory to store and 
associated time costs. Only the first elements of 
submatrices in the analysis the basis structure of EDST 
can be identified more effectively [14]. The analyses are 
conducted on repeatability of cyclic structures and 
compared for coordinates of the first element (c’1,k) of 
cyclic submatrices, which belong to the elements of 
simplified hashing arrays P'(n). The analyses of reiteration 
the cyclic submatrices in the matrix structure reduces the 
number of cyclic convolutions in the computational 
algorithm of EDST. In case of the identical submatrices 
placed along the vertical of basis matrix, one cyclic 
convolution is computed. In case of the identical 
submatrices placed along the horizontal of basis matrix, 
one cyclic convolution with combined x(n) of input data is 
computed. 

Consider the examples using generalized scheme for 
synthesis of algorithm EDST that have specifics for types 
and concrete sizes of transform. 

3. Algorithms of DST for I, IV 
Types Using Cyclic 

Convolutions in Examples 

Distribution of cyclic submatrices in basis matrix structures 
for characteristics of hashing array P(n) determine the 
complexity of the algorithm for efficient computation of 
EDST types. 

Many implementations in our examples for P'(n), Ss(n) 
(Table 3) have sequences with reiterative identical groups of 
elements of cyclic convolution. In the following case,        
h(n)=(h1,h2,…,hm, h1,h2,…,hm) or if identical group of 
elements has inverse sign h(n) = (h1,h2,…,hm, -h1,-h2,…,-hm), 
n=2m, the cyclic convolution has reduces computational 
complexity by n/m=2m/m=2 times. 

3.1. Specific Algorithm for DST I  

of Size N=9 

Consider the generalized scheme for synthesis of algorithm 
and computation of DST I with an example for N=9. The 
hashing arrays P(ni) and P'(ni), Ss(ni) are: 

a)         (1,5,7,17,13,11)(3,15)(9)(2,10,14,16,8,4)(6,12), 

(1,4,2,1,4,2)(3,3)(0)(2,1,4,2,1,4)(3,3), 

(+,+,+,-,-,-)(+,-)(0)(+,-,-,-,+,+)(+,-); 

b)        (1,7,13)(3)(5,17,11) (9)(15)(2,14,8)(4,10,16)(6)(12), 

(1,2,4)(3)(4,1,2)(0)(3)(2,4,1)(4,1,2)(3)(3), 

(+,+,-)(+)(+,-,-)(0)(-)(+,-,+)(+,-,-)(+)(-); 

Versions a), and b) of the hashing array P(n) determines the 
same complexity of the algorithm for efficient computation. 
Consider example a) for synthesis of algorithm and 
computation of DST I of size N=9. The initial matrix CI

a(k,n) 

defines for the form (10): CI
a (k,n)= [(k+1)(n+1) mod 15]. 

Using first row and fifth row the arguments of the basis 
matrix for the substitution, which describe for the hashing 
array of the form: 

P(17)= (1,5,7,17,13,11)(10,14,16,8,4,2)(3,15)(6,12)(9).   

Using (12-14) accordance the hashing array P(17), we are 
obtained the simplified hashing array P’(17) with the 
appropriation the sign arrays Ss(17) of the form: 

P’(17) = (1,4,2,1,4,2)(1,4,2,1,4,2)(3,3)(3,3)(0), 

Ss(17) = (+,+,+,-,-,-)(-,-,-,+,+,+)(+,-)(+,-)(0). 

The definition of identity cyclic submatrices is performed by 
selecting the coordinates of the first elements of identical 
submatrices without signs in the basis matrix. In 
correspondence with coordinates (i,j), hashing array elements 
P(ni) and P'(ni), Ss(ni)  are: 

(i, j) 1  2  3 4  5  6   7  8  9 10 11 12 13 14 1516 

(1,5,7,17,13,11)(10,14,16,8,4,2)(3,15)(6,12) 

(1,4,2, 1,  4, 2) (1,  4,  2, 1,4,2) (3,3) (3,3), 

(+,+,+, -, -, -)    (-,  -,  -, +,+,+)  (+,-) (+,-). 

Coordinates of the first elements of submatrices are 
determined by (i + Li), (j + Li), starting with i = 1, j = 1. The 
values of the first elements of submatrices are calculated by 
matching the coordinates (i, j) and the elements of P(n) 
hashing array using formula (ni x nj) mod 2N, in the case of a 
value greater than N using simplified expression (12,13). 
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Table 4. Table of coordinates and first elements with signs of submatrices DST I, N=9. 

( i+Li, j+Li) – si,jсi,j; (sign and value) 

(1,1)- +1; (1,7)- -1; 
(1,13)- +3; (1,15)- +3; 
(3,13)- +3; (3,15)- +3; 
(5,13)- +3; (5,15)- +3; 

(7,1)- -1; (7,7)- -1; 
(7,13)- -3; (7,15)- +3; 
(9,13)- -3; (9,15)- +3; 
(11,13)- -3; (11,15)- +3; 

(13,1)-+3; (13,3)-+3; (13,5)-+3; (13,7)- -3; (13,9)- -3; (13,11)- -3; 
(13,13)- 0; 

(15,1)-+3; (15,3)-+3; (15,5)-+3; (15,7)-+3; (15,9)-+3; (15,11)- +3; 

 

Table 4 summarizes the basis matrix of arguments of 
dimension (17x17), where the number of horizontal and 
vertical elements is indicated. 

Full matrices (17x17) of simplified arguments and signs of 

DST I, N=9 are presented in Tables5, and 6. These matrices 
are not computed, except for the first simplified element with 
the sign of submatrices for the definition of identity cyclic 
submatrices (Table 4). 

Table 5. Matrix of simplified arguments of DST I, N=9. 

i\j 1 5 7 17 13 11 10 14 16 8 4 2 3 15 6 12 9  

1 1 4 2 1 4 2 1 4 2 1 4 2 3 3 3 3 9  
5 4 2 1 4 2 1 4 2 1 4 2 1 3 3 3 3 9  
7 2 1 4 2 4 4 2 1 4 2 4 4 3 3 3 3 9  
17 1 4 2 4 2 2 1 4 2 4 2 2 3 3 3 3 9  
13 4 2 4 2 1 1 4 2 4 2 1 1 3 3 3 3 9  
11 2 4 2 1 4 4 2 4 2 1 4 4 3 3 3 3 9  
10 1 4 2 1 4 2 1 4 2 1 4 2 3 3 3 3 0  
14 4 2 1 4 2 1 4 2 1 4 2 1 3 3 3 3 0  
16 2 1 4 2 4 4 2 1 4 2 4 4 3 3 3 3 0  
8 1 4 2 4 2 2 1 4 2 4 2 2 3 3 3 3 0  
4 4 2 4 2 1 1 4 2 4 2 1 1 3 3 3 3 0  
2 2 4 2 1 4 4 2 4 2 1 4 4 3 3 3 3 0  
3 3 3 3 3 3 3 3 3 3 3 3 3 9 9 0 0 9  
15 3 3 3 3 3 3 3 3 3 3 3 3 9 9 0 0 9  
6 3 3 3 3 3 3 3 3 3 3 3 3 9 9 0 0 0  
12 3 3 3 3 3 3 3 3 3 3 3 3 9 9 0 0 0  
9 9 9 9 9 9 9 0 0 0 0 0 0 9 9 0 0 9  

Table 6. Matrix of signs of DST I, N=9. 

1 5 7 17 13 11 10 14 16 8 4 2 3 15 6 12 9 

+ + + - - - - - - + + + + - + - 0 
+ + - - - + - - + + + - - + - + 0 
+ - - - + + - + + + - - + - + - 0 
- - - + + + + + + - - - - + - + 0 
- - + + + - + + - - - + + - + - 0 
- + + + - - + - - - + + - + - + 0 
- - - + + + - - - + + + - + + - 0 
- - + + + - - - + + + - + - - + 0 
- + + + - - - + + + - - - + + - 0 
+ + + - - - + + + - - - + - - + 0 
+ + - - - + + + - - - + - + + - 0 
+ - - - + + + - - - + + + - - + 0 
+ - + - + - - + - + - + 0 0 0 0 0 
- + - + - + + - + - + - 0 0 0 0 0 
+ - + - + - - + - + - + 0 0 0 0 0 
- + - + - + - + - + - + 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Hashing array 

P(n)→ (1,5,7,17,13,11)(10,14,16,8,4,2)(3,15)(6,12) specifies 
the order of elements of input data of the discrete sine 

transform using cyclic convolutions. In accordance with 
P(n), matrix-column has such an order of input data: 

x(1),x(5),x(7),-x(1),-x(5),-x(7),-x(8),-x(4),-x(2),x(8),x(4), x(2), 
x(3), -x(3), x(6),- x(6). 
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In the result of the analyses (horizontal/vertical) of reiteration 
the cyclic submatrices in the matrix structure, the process of 
synthesis of efficient algorithms of DST I determines the 
order of combination of input data x(n). Performance of 
element-wise additions of input data will be used for identity 
cyclic submatrices placed horizontally: 

{x(1), x(5), x(7), -x(1), -x(5), -x(7)} ± {-x(8), -x(4), -x(2), 
x(8),x(4), x(2)} - identity for coordinates (1,1), (1,7) “-“ and 
(7,1), (7,7) “+”; 

{x(3), -x(3)} ± {x(6),-x(6)} - identity for coordinates (1,13), 
(1,15) “+” and (7,13), (7,15) “-“; 

2[(x(1) + x(8)) - (x(5) + x(4)) + (x(7) + x(2))] - identity for 
coordinates (13,1), (13,3),… (13,11); 

2[(x(1) - x(8)) - (x(5) - x(4)) + (x(7) - x(2))] - identity for 
coordinates (15,1), (15,3),… (15,11). 

Computation of cyclic convolution is performed once for 
combined input data for identity submatrices selected for 
analysis vertically. The number of cyclic convolutions DST 
I of size N=9 is two3-point convolution and four of one-
point. 

Combining the results of convolutions is performed 
horizontally at the base coordinates according to the first 
elements of submatrices. Output data of transform in a result 
of computation are scaled by two in the following order: 
X(1), X(5), X(7), X(8), X(4), X(2), X(3), X(6). 

The resulting structure for DST I of size N=9 consists of such 
components (Fig.1): ±/U – element-wise addition/subtraction 

units, n-point CCU – cyclic convolution units. 

 

Figure 1. The structure for DST I of size N=9. 

The computation of DST I of size N=9 for another b) hashing 
array needs two 3-point convolution and four of one-point 
cyclic convolutions also. 

3.2. Specific Algorithm for DST IV  

of Size N=12 

Consider the peculiarities features of the generalized scheme 
for synthesis of algorithm and computation of DST IV for 
size N=12. The hashing array P(n) and P'(n), Ss(n) are: 

a) 

(1,5,25,29,49,53,73,77)(3,15,75,87,51,63,27,39)(7,35,79,11,5
5,83,31,59)(9,45,33,69,57,93,81,21)(13,65,37,89,61,17,85,41
)(19,95,91,71,67,47,43,23), 

(1,5,23,19,1,5,23,19)(3,15,21,9,3,15,21,9)(7,13,17,11,7,13,17
,11)(9,3,15,21,9,3,15,21)(13,17,11,7,13,17,11,7)(19,1,5,23,19
,1,5,23), 

(+,+,+,+,-,-,-,-)(+,+,-,-,-,-,+,+)(+,+,-,+,-,-,+,-)(+,+,+,-,-,-,-
,+)(+,-,+,-,-,+,-,+)(+,-,-,-,-,+,+,+); 

b)  

(1,7,49,55)(3,21,51,69)(5,35,53,83)(9,63,57,15)(11,77,59,29)
(13,91,61,43)(17,23,65,71)(19,37,67,85)(25,79,73,31)(27,93,
75,45)(33,39,81,87)(41,95,89,47), 

(1,7,1,7)(3,21,3,21)(5,13,5,13)(9,15,9,15)(11,19,11,19)(13,5,
13,5)(17,23,17,23)(19,11,19,11)(23,17,23,17)(21,3,21,3)(15,
9,15,9)(7,1,7,1), 

(+,+,-,-)(+,+,-,-)(+,+,-,-)(+,-,-,+)(+,-,-,+)(+,-,-,+)(+,+,-,-
)(+,+,-,-)(+,-,-,+)(+,-,-,+)(+,+,-,-)(+,-,-,+); 

Consider the a) example for synthesis of algorithm and 
computation of DST I of size N=9. 

Due to redundancy in the selected period 8N of hashing 
array, it is enough to present: 

P(24)=(1,5,25,29,49,53,73,77)(15,75,87,51,63,27,39,3)(79,11
,55,83,31,59,7,35). 

Owing to odd values of hashing array maps to the 
corresponding P(24) hashing array indices, elements  
ci,j=(ni,j-1)/2, and k takes all the values of natural set: 

P(24)=(0,2,12,14,24,26,36,38)(7,37,43,25,31,13,19,1)(39,5,2
7,41,15,29,3,17). 

Simplified hashing array and sign array have the form: 

P'(24)=(1,5,23,19,1,5,23,19)(15,21,9,3,15,21,9,3)(17,11,7,13,
17,11,7,13), 

Ss(24)=(+,+,+,+,-,-,-,-)(+,-,-,-,-,+,+,+)(-,+,-,-,+,-,+,+). 

According 12 rows of hashing array P(24) for DST IV 
horizontal are selected, which allows computing the 12 
output data through cyclic convolutions. The matrix of 
simplified arguments with signs the first elements of 
submatrices of DST IV basis transform N=12 is presented in 
Table 7. 
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Table 7. Table of coordinates and first elements with signs of submatrices 
DST IV, N=12. 

( i+Li, j+Li) –si,jсi,j; (sign and value) 
(1,1)- +1; (1,9)- +15; (1,17)- -17; 
(9,1)- +15; (9,9)- +15; (9,17)- +15; 
(17,1)- -17; (17,9)- +15; (17,17)- -1; 

Hashing array of P(24) specifies the order of input data x(n), 
when we conduct the discrete sine transform using cyclic 
convolutions. Performance of element-wise subtractions of 
input data will be used for convolution with cyclic 
submatrices placed horizontally. The number of cyclic 
convolutions DST IV of size N=12 is only six 8-point cyclic 
convolutions, which have sequences with reiterative identical 
groups of elements, or six 4-point cyclic convolutions. 

The horizontal 12 rows of hashing array P(n) are selected, 
allowing to compute output data values via cyclic 
convolutions. Output data of transform as a combination of 
the results of cyclic convolutions are scaled by two and 
determined for: X(0), X(2), X(11), X(9), -X(7), X(10), X(4), 
X(1), X(8), -X(5), X(3), X(6). Two output values must be 
taken with the opposite sign according to computation 
algorithm. 

4. Conclusions and Results 

The proposed method, which uses hashing array, is more 
general in comparison to referred [7-9]. That is the paper 
[7]uses an efficient restructuring of the computation of the 
prime N-length of DST II into two circular correlations, and 
then with additional multiplications the results of the 
correlations. Paper [8] describes computing an N-point 
prime-length DST II through two pairs of [(N-1)/4]- point 
cyclic convolutions, where [(N-1)/4] is an odd number. In 
paper [9] the implementation of prime N- length DST II has 
been transformed into two [(N-1)/2] - point cyclic 
convolutions with the same kernel. That is the referred [7-9] 
base on the Raiders approach that uses primitive roots and 
Chinese remainder theorem. 

The effectiveness of the obtained independent computing 
cyclic convolutions uses the fast convolution algorithms [15]. 
Moreover, the basis matrix structures contain the submatrices 
that can be identical and quasi-identical, placed horizontally 
and vertically. That reduces the number of computations of 
cyclic convolution, because for identity and quasi-identity 
cyclic submatrices placed horizontally, we perform the 
computation of single cyclic convolution (first row submatrix 
and corresponding element-wise additions of input data) and 
use results only of single cyclic convolutions for all identity 
submatrices placed vertically. 

The Table 8 presents the number i of p-point cyclic 
convolution for considered examples. 

Table 8. The number i of p-point cyclic convolution for examples. 

\Convolution 
EDST      \ p - point 

8- 4- 3- 2- 1- 

DST I, N=8 
DST I, N=9 

  2 2 
4 
4 

DST IV, N=8 
DST IV, N=12 

1 
 
6 

   

There are no existing general approaches to each types of 
DST for sequences of arbitrary number of points using cyclic 
convolutions. Hence, the computational comparison will 
include the results from our approach and the results obtained 
from the traditional approach [16, 17], when the transform 
dimension is exponential of two. Number of arithmetic 
operations for our algorithms of EDST using cyclic 
convolutions and the traditional approach [16, 17] are 
presented in Table 9, where a - the number of additions and 
m is the number of multiplications. 

Table 9. Number of arithmetic operations, N=8. 

Type DST,N=8 Proposed method Traditional approach 

DST I m=6, a=22 m=6, a=19 [16] 
DST IV m=14a=46 m=20,a=38 [17] 

The proposed method uses cyclic convolutions with minimal 
numbers of multiplication [11] of sizes 2n -point. 

The synthesis of algorithms is applicable for efficient 
computation for types I, IV of DST with some specifics for 
each type. The synthesis of the algorithms for the symmetry 
transforms of DST I, DST IV use hashing array P(n), the 
transforms of DST II/DST III use hashing arrays for column 
Pc(n) and row Pr(n). Each type of transform for the hashing 
array specifies the order of elements, the number of repeats 
of input data, the signs of the output values in the process of 
synthesis of efficient algorithms. 

The synthesis of algorithms and efficient computation of 
arbitrary number of transform length for types I, IV of DST 
can be performed on the basis of response of hashing arrays 
and then using fast cyclic convolution algorithms. The main 
characteristics of algorithm that specifies the types I, IV of 
DST are: function of basis arguments; initial dimension of 
basis matrix; sequences of input data; sequence of output 
data; convolution with identical sequences; version of 
hashing arrays; axes of symmetry for size of transform. The 
main contributions of our paper are as follows: 

- method of using hashing array P(n), which corresponds to 
the cyclic decomposition of substitution of rows/columns 
from basis matrix of arguments, to arrive at an efficient 
conversion of the basis of an arbitrary EDST length into 
parallel circular structures has been proposed; 

- analysis of the level of simplified hashing array P'(n) with 
supplement of respective subarray of Ss(n) signs reduces the 
amount of computation of cyclic convolutions; 
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- an efficient scheme for the definition of identity and quasi 
identity cyclic submatrices from the basis matrix structure 
has been proposed; 

- the synthesis of algorithms, including determination of 
P(n), P'(n), Ss(n) and analysis of the structure of basis matrix 
uses integer arithmetic and is not elaborate. 

The method for the conversion of the EDST into convolution 
structures makes use of the mature model in programming 
and hardware implementation. Separate computations of 
cyclic convolutions, which are structured according to this 
approach to basis matrix, and the combinations of results 
make proposed technique topical for concurrent 
programming and for implementation in parallel systems. 
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