

Clinical Medicine Journal

Vol. 7, No. 2, 2021, pp. 49-59

http://www.aiscience.org/journal/cmj

ISSN: 2381-7631 (Print); ISSN: 2381-764X (Online)

* Corresponding author

E-mail address:

Simulation of Synthetic Diabetes Tabular Data
Using Generative Adversarial Networks

Heng Wee Lin Eunice, Carol Anne Hargreaves*

Department of Statistics & Applied Probability, Faculty of Science, National University of Singapore, Singapore

Abstract

Generative Adversarial Networks (GANs) is a relatively new research avenue in the domain of Deep Learning and Artificial

Intelligence. Over the past few years, GANs have been extensively researched into due to their ability to generate realistic synthetic

data. The creation of synthetic tabular data is especially useful when it is desirable to avoid using the original data set due to privacy

reasons. Therefore, the objective of this paper was to review the effectiveness of GANs in simulating synthetic tabular diabetes data.

Methodology: Prior to GAN training, we applied min-max normalization on the features. To analyze the similarity between the real

data set and each synthetic data set, we conducted exploratory data analysis before employing some statistical methods. We

compared the synthesized data with the original data using data visualizations including histograms and boxplots. We also computed

confidence intervals for the means of the real data variables and compared them with the confidence intervals for the means of the

synthetic data. Results: The results showed that 8 of the 9 confidence intervals overlapped. We also checked whether the mean of a

particular variable in the synthetic data set fell into the confidence interval of the same variable in the real data set. For each variable,

we had two different probability distributions: the true distribution (from the real data); and an approximation of that distribution

(from the synthetic data). To quantify the difference between the two distributions, we computed the Kull-Lieber (KL) divergence

score. The KL scores for all 8 predictors were relatively small and close to 0, which is ideal. A model for classifying patients as

having diabetes was built using only the real data. Another model for classifying patients as having diabetes was built using the

combined real and synthetic data. The model using the combined real and synthetic data achieved a much higher accuracy of 87.0%

as compared to 78.7% attained when only using the real data. Conclusion: We built a realistic synthetic data set using generative

adversarial networks. The synthetic data set proved to be very similar to the real dataset and could successfully replace the real data

for analysis for research purposes. Further, we verified that the availability of more training data for diabetes classification helped to

improve the accuracy of the classifier, while achieving a relatively high recall.

Keywords

Generative Adversarial Networks (GANs), Deep Learning, Artificial Intelligence, Tabular Data, Synthetic Data, Generator,

Discriminator, Encoder, Decoders

Received: February 4, 2021 / Accepted: March 2, 2021 / Published online: May 31, 2021

@ 2020 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license.

http://creativecommons.org/licenses/by/4.0/

1. Introduction

Training data forms the backbone for any machine learning

project. If provided with insufficient, erroneous or irrelevant

data as input, even the most robust of machine learning

models will not be able to deliver good results. The main

purposes of creating artificial tabular data are as follows: (1)

to increase the size of small training data sets, and (2) to

safeguard the privacy of the original data.

A high-quality training data set should be sufficiently large and

should also be representative of the entire population. Training

on such a data set would allow the model to adequately capture

 Clinical Medicine Journal Vol. 7, No. 2, 2021, pp. 49-59 50

the underlying structure of the data, which will in turn enable the

model to generalize well to unseen data. In a real-world setting,

however, one often has minimal access to data required to solve

a problem or to draw insights [1]. Moreover, data collection can

be prohibitively costly in terms of both time and money. When

limited data is available, one option would be to artificially

inflate the size of the training data set by supplementing the

original data set with artificial samples.

The usage of synthetic data in lieu of the original can protect

the confidentiality of the latter. Some databases contain a vast

amount of sensitive information. It is not advised to work

directly on the database due to the risk of data breach, as well

as the risk of re-identification. For example, medical records at

a hospital are likely to contain a lot of personal information

about the patients [2]. Even if the names and identification

numbers are excluded before the data is disclosed, we cannot

rule out the possibility that certain individuals may still be

identified using a combination of other characteristics, such as

their age, gender, height and weight. Due to the risk of re-

identification, it is understandable that many regulations have

been put in place to restrict the use of this kind of database [2].

One possible approach to resolving this problem would be to

simply generate a sufficiently realistic synthetic data set based

on the original. The former can then be used safely in place of

the latter to train the model, thereby achieving a balance

between privacy and utility.

In this paper, we will analyze the use of Generative

Adversarial Networks (GANs) in simulating synthetic tabular

data to deal with these two issues.

2. Methodology

Generating Adversarial Networks (GANs) were first

introduced by Ian J. Goodfellow and his colleagues in 2014

[27]. This idea, which incited the possibility of AI-generated

content, brought about much excitement in the field of Deep

Learning and Artificial Intelligence (AI). Since then, much

effort has been invested by researchers into developing GANs.

The architecture of GANs is illustrated in Figure 1 below.

Figure 1. GAN Architecture Image modified from Alver [3].

2.1. Generative Adversarial Network (GAN)
Framework

The basic concept behind GANs involves pitting two

adversaries against each other in a game. One agent is the

generator network. As its name suggests, the generator

creates fake samples which are intended to stem from the

same distribution as the training data. The other agent is the

discriminator-network. Using conventional supervised

learning techniques, the discriminator examines samples and

learns to classify them into two groups – either real or fake.

The goal of the generator is to fool the discriminator into

thinking that the fake samples generated are actually real.

This process is illustrated in Figure 2.

By definition, the discriminator is a differentiable function �

that receives � as input and has ���� as its parameters. In

contrast, the generator is a differentiable function � that

receives � as input and has ��	� as its parameters. To be more

precise, each agent has a unique cost function defined in

terms of its own parameters. The discriminator seeks to

minimize
��������, ��	�
 and can only do so by

manipulating ����. Likewise, the generator seeks to minimize

�	������, ��	�
 and can only do so by manipulating ��	� [4].

Even though
��� depends on ��	� and
�	� depends on ����,
neither agent has control over its opponent’s parameters.

Therefore, it is more accurate to describe this situation as a

game instead of an optimization problem. The solution to a

game is a Nash equilibrium, which in this case, refers to local

differential Nash equilibria [5]. Specifically, the solution to

this game corresponds to a tuple �����, ��	�
, which is a local

minimum of
��� with respect to ���� and a local minimum of

�	� with respect to ��	�[4].

Figure 2. The GAN Framework Image modified from Goodfellow [4].

51 Heng Wee Lin Eunice and Carol Anne Hargreaves: Simulation of Synthetic Diabetes Tabular Data

Using Generative Adversarial Networks

With reference to Figure 2, the discriminator and generator

networks are represented by the functions � and �

respectively. Under the assumption that half of the inputs

provided are real and the remaining half are fake, the goal of

the discriminator is to output the probability that an input is

real. The game unfolds in the following two scenarios.

In the first scenario, training examples ����� are randomly

sampled from the training set and used as input for the

discriminator. In this case, the goal of the discriminator is to

make �������� close to 1, signifying that ����� is a real

sample from the training set.

In the second scenario, random noise � is randomly sampled

from some simple prior distribution and used as input for the

generator. Here, � can be regarded as just a source of

randomness that allows the generator to output many samples

instead of only one realistic sample. Note that for ������ to

have full support on the � space, the dimension of � must be

at least as large as the dimension of � [4]. Correspondingly,

the discriminator receives input ����, a fake sample �����

produced by the generator. This time round, both players

participate. The discriminator tries to make �������
approach 0 to signify that the input is fake. Simultaneously,

the generator tries to make the same quantity approach 1.

Based on game theory, if both models have sufficient

capacity, the Nash equilibrium of this game corresponds to

the generator producing perfect samples ���� that come from

the same distribution as the training data. At this point, the

discriminator cannot actually distinguish between the two

sources of data and simply says that every input has a

probability one-half of being real and a probability one-half

of being fake; that is, ���� 	� 	 �� for all �.

2.2. The Training Process

GAN’s training process entails simultaneous application of

stochastic gradient descent (SGD). Two mini-batches are

sampled per iteration: one mini-batch of � samples from the

training data and one minibatch of random noise � from a

prior distribution. After which, two gradient steps are made

concurrently: one involves updating ���� to decrease
��� and

the other involves updating ��	� to decrease
�	�. For either

case, it is feasible to use any gradient-based optimization

algorithm. Adam is often recommended as a good choice [4].

In some early GAN papers, it is not uncommon to read that

the authors implemented a fixed number of updates of the

discriminator for each update of the generator [6].

Heuristically, overfitting can be alleviated by limiting the

number of discriminator updates per generator update [7]. As

of late 2016, it is of Goodfellow et al.’s opinion that the

procedure of simultaneous gradient descent works best in

practice [4]. This necessitates updating the discriminator

once every generator update.

Figure 3. Algorithm for Training GANs Image modified from Goodfellow

[8].

2.3. The Discriminator’s Cost, ����
The cost function used for the discriminator is simply the

standard cross-entropy cost that is minimized while training a

binary classifier:
��������, ��	�
 � �� ~"#$%$&'(�����
 �
�)~"*&'(+1 � ������
- . The sole difference is that the

discriminator (or classifier) is trained on two minibatches of

data instead of one. One minibatch originates from the

training data, where the label is usually 1 for all samples and

the other minibatch originates from the generator, where the

label is 0 for all samples [4].

To derive the optimal discriminator strategy, we start by

rewriting
��� in its integral form:
��������, ��	�
 	�
�. /���0����	&'(�����
 1 ���������	&'(�1 �2

32
����
4	5� . Note that ���0���� represents the original

distribution; and ��������� represents the generator

distribution. Our goal is to minimize
��� with respect to �,

assuming, that both ���0���� and ��������� are non-zero

everywhere. This is equivalent to maximizing the integrand

with respect to �. Notice that the integrand	can be written in

the form 6�7� � 8	&'(�7� 1 9	&'(�1 � 7�.
To find critical point(s), we differentiate 6�7� with respect to

7 and equate to 0: 6:�7� � �
; � <

�3; � 0	 → 7∗ �
�

�@< 	where	8 1 9 E 0. We differentiate once more to get the

second derivative: 6::�7∗� � ��8 1 9�� ∙ +�� 1 �
<- G

0	where	8, 9 ∈ �0, 1� , which ascertains that 	6�7� has a

maximum point at 7 � �
�@< . Substituting 8 � ���0���� ,

 Clinical Medicine Journal Vol. 7, No. 2, 2021, pp. 49-59 52

9 � ��������� and 7 � ���� into 7∗, we obtain the optimal

discriminator strategy: �∗��� � "#$%$� �	
"#$%$� �@"IJ#KL� �.

2.4. Minimax Game

A full specification of the game requires specifying cost

functions for both agents. Since both agents are rivals, it

seems reasonable to set the generator’s cost function as the

negative of the discriminator’s cost function:
�	� � �
��� .
This translates to playing a zero-sum game in which the two

agents’ costs always sum up to zero. Since
�	� is directly

associated with
���, we can condense the entire game into a

value function specified solely in terms of
��� ; that is:

M�����, ��	�
 � �
��������, ��	�
 . The solution to a zero-

sum game involves minimization in an outer loop and

maximization in an inner loop, which gives rise to its

alternative name - a minimax game:

��	�∗ � 8N(minR�S�maxR�V�	M�����, ��	�
 	[4].

To understand the above, consider
��� from the perspective

of the generator. Given a fixed generator, the discriminator

learns to minimize its cross-entropy
���, which is equivalent

to maximizing 	M . In contrast, the generator strives to

maximize the minimum cross-entropy attainable by the

discriminator, which is equivalent to minimizing M.

2.5. Non-saturating Generator Loss

However, putting a minimax game into play is not ideal. In

the scenario where the discriminator learns well and

confidently rejects the generated samples, this causes the

generator’s gradient to vanish, which impedes further

training of the generator network [4].

One method to resolve this problem is to employ cross-

entropy minimization for the generator as well. Instead of

simply negating the discriminator’s cost, we replace the

target for constructing the cross-entropy cost for the

generator. [4] The generator’s new cost is then:
�	� �
��)~"* log������
 . Instead of minimizing the log-

probability of the discriminator being correct, the generator

now maximizes the log-probability of the discriminator being

wrong.

Unlike the minimax game, which is theoretically motivated,

this game is heuristically driven. The sole intention of this

modification is to ensure that each agent (or network) will

continue to have a sufficiently large gradient even when it

is suffering defeat. Since the cost functions of both agents

are no longer directly linked to each other, the game is no

longer zero-sum and cannot be defined by a single value

function.

3. Problems in Training GANs

3.1. Vanishing Gradients

Backpropagation is an extensively used algorithm in training

neural networks. It works by computing the gradient of the

loss function with respect to each weight using the chain rule

one layer at a time. As gradient flows backward from the last

layer to the first layer, it gets progressively smaller. If it

becomes too small, the initial layers either learn very slowly

or stop learning completely. This is termed as the vanishing

gradients problem. This can be attributed to the use of “S”-

shaped activation functions like tanh and sigmoid [9]. For

example, when the input becomes large (either negative or

positive), the sigmoid function saturates at 0 or 1, with the

derivative becoming extremely close to zero. In other words,

the gradient vanishes.

3.2. Mode Collapse

Data distributions can be highly complex and multimodal.

Multimodal simply means that the data distribution has a lot

of “peaks” or “modes”. Each mode denotes a concentration

of similar data samples, which are distinct from those of

other modes. The Helvetica scenario or mode collapse is a

problem that arises when the generator learns to map

different input z values to the same output point [4]. In other

words, in attempting to fool the discriminator, the generator

produces samples that belong to a limited set of modes.

The severity of mode collapse varies from complete to partial

collapse. In the case of complete collapse, all generated

samples are identical, whereas in partial collapse, most of the

generated samples share common properties. In both

scenarios, the generator will not produce a wide variety of

samples. As a result, the generated data will not be

representative of the data distribution in reality, which

implies that the learnt GAN is not useful at all.

4. Generative Adversarial
Network (GAN) Architecture

The GANs were constructed using the pytorch library in

Python.

Our GAN architecture has the following parameters:

LeakyReLU as the activation function with a negative slope

of 0.3

Batch size = 5, 10 or 15

Learning rate = 0.0002, 0.0003, 0.0005

Batch normalization layers

Use of dropout in the discriminator with a probability of 0.2

53 Heng Wee Lin Eunice and Carol Anne Hargreaves: Simulation of Synthetic Diabetes Tabular Data

Using Generative Adversarial Networks

Minibatch discrimination in the discriminator

Binary cross-entropy as the loss function

Adam as the optimizer algorithm

Two hidden layers with size 256 and 512

In the generator, the layers are ordered in ascending size

In the discriminator, the layers are ordered in descending size

Figure 4. GAN Architecture.

Binary cross-entropy loss is used because it is most suitable

to measure the performance of a model whose output is a

probability between 0 and 1 [10]. There are no convolutional

layers because the input is not an image. Dropout was

included to prevent overfitting [11]. One-sided labelling was

implemented where positive labels were smoothed to 0.9.

LeakyReLU was selected as the activation function since its

gradient does not saturate during backpropagation.

LeakyReLU is also preferred over ReLU since it solves the

“dying ReLU” problem and facilitates gradient flow

throughout the architecture.

We tested nine different configurations varying the batch size

and the learning rate. In this experiment, we intentionally use

a simple network to focus on the basic proposal of generating

synthetic numerical data sets.

4.1. Batch Normalization

Batch normalization was included to stabilize the training

process [12]. It standardizes outputs from the preceding layer

to have a zero mean and unit variance. This prevents the

normalized input |�| from approaching the outer limits of the

sigmoid function. This ensures that the derivative is not too

small and thereby mitigates against vanishing gradients. It is

recommended for batch normalization layers to be included

in both the discriminator and generator networks, except the

output of the generator and input to the discriminator [13].

Batch normalization should occur after “S”-shaped

activations (tanh, sigmoid) and before non-Gaussian

activations (ReLU, LeakyReLU) [14].

4.2. Minibatch Discrimination

The concept behind ‘minibatch discrimination’ is to ensure

that the discriminator examines multiple samples in

combination instead of in isolation [15]. By doing so, mode

collapse becomes easily detectable, since the discriminator

will recognize that the minibatch of generated samples are

fake whenever all the samples are very close to each other.

The generator is then penalized and forced to output a variety

of samples per minibatch generated.

Salimans et al. proposed modelling the closeness between

samples in a minibatch by calculating the [�-norm between

the rows of matrices associated with different inputs [15].

The smaller the [� -norm, the closer the inputs are. After

which, this additional information is concatenated with the

original input and fed into the subsequent layer of the

discriminator. Effectually, the classification task of the

discriminator remains the same but it is now able to use this

extra material as side information to change its behavior

accordingly [15].

4.3. One-sided Label Smoothing

One-sided label smoothing is a form of regularization which

increases the complexity of discriminator training by

providing smoothed labels to the discriminator network [4].

This means that we can assign decimal values, such as 0.9 or

0.8 to real samples, and 0.1 or 0.2 to fake samples, instead of

simply labelling every example as either 1 or 0. This serves

to discourage the discriminator from being overconfident

about its classification.

In practice, however, it is important to only smooth the

positive labels [15]. Suppose we use a target of \ (in place of

1) for the real samples and a target of] (in place of 0) for the

fake samples. Then the optimal discriminator function is

�∗��� 	� 	 ^	∙	"#$%$� �	@	_	∙	"IJ#KL� �
"#$%$� �	@	"IJ#KL� � . When] � 0 , smoothing

by \ simply scales down the optimal value of �∗���	 without

modifying the shape of the function. In contrast, when] E 0,

the shape of the function �∗��� changes. Consider a region

where ���0���� is small and ��������� is significantly larger.

�∗��� will peak near the spurious mode of ���������. The

 Clinical Medicine Journal Vol. 7, No. 2, 2021, pp. 49-59 54

presence of ��������� in the numerator is problematic

because, in areas where ���0���� is approximately zero and

��������� is large, erroneous samples from ��������� have

no incentive to move nearer to the data. We therefore smooth

only the positive labels to α, leaving negative labels set to 0

[15].

5. Hyper Parameter Tuning

Given that the GAN is trained using SGD, one challenge

involves carefully selecting the learning rate and the batch

size. Using training examples, SGD estimates the error

gradient for the current state of the model and updates the

weights of the model via back propagation.

Learning rate refers to the amount by which the weights are

updated during training. If limited time is available, it is of

Bengio & Yoshua’s opinion, that this is the hyper parameter

worth tuning [16]. A too large value could cause premature

convergence to a suboptimal solution. In contrast, a too small

value could result in painfully slow convergence or cause the

process to get trapped in an undesirable local minimum. For

a neural network with inputs mapped to the [0,1]-interval,

typical learning rate values are between 103` and 1 [16].

A large batch size provides a more accurate error gradient

estimate. It is more probable that adjustment of the model

weights will lead to improved performance. However, this

comes at the cost of a slow rate of convergence [17].

Alternately, using a small batch size provides a less accurate

estimate that is highly dependent on the specific training

examples used. This noisy estimate of the error gradient

would result in noisy updates to the model weights.

Nonetheless, this noisy update could help prevent premature

convergence and the increased model update frequency could

also result in faster learning [18].

Varying the learning rate together with the batch size affects

the learning process in different ways. Hence, we will

experiment using nine combinations of hyper parameter

values to train the GANs.

6. Data Preparation

The Pima Indians Diabetes data set was retrieved from the

UCI Machine Learning Repository and can also be found on

the Kaggle website [19]. All patients are females of Pima

Indian heritage and are at least 21 years old. The data set

consists of 9 variables and has a total of 768

observations/rows.

The definition of the variables are as follows:

Pregnancies: Number of times pregnant.

Glucose: The blood plasma glucose concentration after a 2-

hour oral glucose tolerance test.

Blood Pressure: Diastolic blood pressure (mm/Hg).

Skin Thickness: Triceps skin fold thickness (mm).

Insulin: 2-Hour serum insulin (mu U/ml).

BMI: Body mass index (kg/m squared).

Diabetes Pedigree Function: A function that determines the

risk of type 2 diabetes based on family history; the larger the

function, the higher the risk of type 2 diabetes.

Age: Age (years).

Outcome: Whether the person is diagnosed with type 2

diabetes (0	 � 	a', 1	 � 	7bc).

6.1. Dealing with Missing Values

The original data set contains missing values denoted by 0.

Variables with zeros include Pregnancies, Glucose,

BloodPressure, SkinThickness, Insulin and BMI. Except for

Pregnancies, it is not normal for the other variables to take on

the value 0. SkinThickness (29.6%) and Insulin (48.7%), in

particular, contain large numbers of missing values.

Since patients with the same diagnosis are likely to be more

similar to each other, our original idea was to split the data

set based on Outcome before dealing separately with the

missing values. We realised that the median Insulin level for

diabetic patients is 0 because there are more missing values

(51.5%) than non-missing values (48.5%). To resolve this,

we considered imputing missing values with the median of

non-missing values. However, simply replacing more than

half of the variable with the same value may drastically alter

its distribution. To ensure that the training data is reliable, we

decided to drop observations with missing values. Among the

374 observations with missing Insulin values, most contain

missing values for other variable(s) as well. The cleaned data

set has 392 observations.

6.2. Accuracy Checks

We divided the cleaned data set based on Outcome and

obtained the range of values for each variable. We then

verified the medically acceptable minimum and maximum

values with a licensed medical doctor. Two variables -

BloodPressure and Insulin, stand out.

5 patients with unusually low diastolic blood pressure of 40

mm/Hg and below were removed. High insulin levels are

indicative of insulin resistance, which is associated with Type

2 diabetes. While there is no medical literature on the cut-off

for the maximum possible insulin value, the normal medically

acceptable range for a non-diabetic is between 16 – 166 mu

U/ml. We noticed 27 non-diabetic patients with insulin levels

55 Heng Wee Lin Eunice and Carol Anne Hargreaves: Simulation of Synthetic Diabetes Tabular Data

Using Generative Adversarial Networks

more than 250 mu U/ml. In our opinion, the data seems

contradictory so we decided to remove these 27 observations.

The resulting data set has 360 observations. There are 232

patients with no diabetes and 128 with diabetes.

6.3. Feature Scaling

Prior to GAN training, we applied min-max normalization on

the features. This linear transformation technique preserves

the relationship among the original data values while

mapping each feature to fall within the [0,1]-interval [20].

Homogenising the range for all the features prevents those

with large variances from dominating others [20]. It also

helps to cut down the range of values that the generator

network generates as well [10].

7. Selection of the Best
Artificial Data Set

The real data set referred to in this section is the data set used

for training the GANs. The artificial data sets refer to those

generated by the learnt GANs. For fair comparison, all

artificial data sets generated contain the same number of 360

observations as the real data set. To analyze the similarity

between the real data set and each artificial data set, we

conducted exploratory data analysis before employing some

statistical methods. The procedure is as follows:

Histograms and boxplots were first plotted to visualize the

distribution of the variables.

The 95% Confidence Interval (CI) for the mean of each variable

in both the real and artificial data sets was computed.

Hypothesis Testing was conducted using a two-sample Z-test.

Our Null Hypothesis de is the mean of a particular variable

in the real data set is equal to the mean of the same variable

in the artificial data set. A total of 9 hypothesis tests were

conducted.

The best artificial data set was chosen based on: (1) the

number of variables in which the mean of the variable in the

artificial data set falls into the CI of the same variable in the

real data set; and (2) the number of variables in which we do

not reject de.

8. Performance of Best

Artificial Data Set

This data set was generated by a GAN trained with learning

rate - 0.0003 and batch size - 10.

8.1. Exploratory Data Analysis

Histograms belonging to the original data set are shaded

green, while those belonging to the synthetic data set are

shaded blue. For each variable, the greater the degree of

overlap between the two histograms, the closer the real and

synthetic variables are in their distributions.

Figure 5. Visual Comparison of Real and Synthetic Variables.

8.2. Statistical Methods

8.2.1. Hypothesis Testing

de: g� � g� vs d�: g� E g�

Our Null Hypothesis de is that the mean of a particular

variable in the real data set, g�, is equal to the mean of the

 Clinical Medicine Journal Vol. 7, No. 2, 2021, pp. 49-59 56

same variable in the artificial data set, g�. If p-value < 0.05,

we reject de and conclude that the two means are different.

Ideally, we want the two means to be the same; hence, we do

not want to reject de for as many variables as possible.

Table 1. Statistical Significance Test Results.

Variable p-value Do not reject Null Hypothesis

Pregnancies 0.152257 TRUE

Glucose 0.000062 FALSE

BloodPressure 0.26678 TRUE

SkinThickness 0.280832 TRUE

Insulin 0.560453 TRUE

BMI 0.259814 TRUE

DiabetesPedigreeFunction 0.788961 TRUE

Age 0.78002 TRUE

Outcome 0.269629 TRUE

Our significance tests support that our synthetic data

generated are similar to the real data, as 9 out of the 10

synthetic variables (90%) are similar to the real variables.

8.2.2. Confidence Intervals

According to the Central Limit Theorem (CLT), given a

sufficiently large sample size n, the distribution of the sample

mean for a variable, �̅ , will approximate a normal

distribution regardless of that variable's distribution in the

population. Formal statement of the CLT: If �̅ is the mean of

a random sample ij�, j�, … , jlm of size n from a distribution

with a finite mean g and a finite positive variance n�, then

the distribution of o � ̅3p
q
√s

~t�0,1� as a → ∞. This means

that the variable �̅ follows a t +g, v√l- distribution [21].

For a population with unknown mean g and known standard

deviation n , a 95% CI for g , based on a simple random

sample of size n, is: �̅ ± +1.96 × v
√l-. Since n is unknown,

we estimate it using the sample standard deviation c �
| �
l3�∑ ��~ � �̅��l~�� . [22] The 95% CI estimate for the

population mean is then: �̅ ± +1.96 × �
√l-.

We computed the 95% CI for the mean of variables in the

real data set and the 95% CI for the mean of variables in the

synthetic data set. For each variable, we check whether the

two CIs overlap. All variables CI for the Real data and

synthetic data overlap and perform well except for the

Glucose variable.

Table 2. Confidence Intervals for Real and Synthetic Variables.

Real Lower Bound Real Upper Bound

Synthetic

Lower Bound

Synthetic

Upper Bound
Overlap of CIs

Pregnancies 0.179988 0.219685 0.202973 0.2331 TRUE

Glucose 0.437466 0.48237 0.365505 0.416082 FALSE

Blood Pressure 0.392797 0.429594 0.38099 0.413559 TRUE

Skin Thickness 0.377259 0.415995 0.362789 0.400658 TRUE

Insulin 0.139785 0.16527 0.144053 0.172303 TRUE

BMI 0.285334 0.314109 0.27652 0.301148 TRUE

Diabetes Pedigree Function 0.169487 0.197846 0.171524 0.201438 TRUE

Age 0.150553 0.185836 0.154974 0.188334 TRUE

Outcome 0.306038 0.405073 0.268547 0.364787 TRUE

Next, we checked whether the mean of a particular variable in the synthetic data set falls into the CI of the same variable in the

real data set. Unsurprisingly, the means of all synthetic variables fall into the CI for the mean of the real variable, except for

the Glucose variable.

Table 3. Real Lower Bound and Upper Bound Comparison for the Synthetic Mean.

Real Lower Bound Real Upper Bound Synthetic Mean Synthetic Mean in Real CI

Pregnancies 0.179988 0.219685 0.218036 TRUE

Glucose 0.437466 0.48237 0.390794 FALSE

BloodPressure 0.392797 0.429594 0.397274 TRUE

SkinThickness 0.377259 0.415995 0.381724 TRUE

Insulin 0.139785 0.16527 0.158178 TRUE

BMI 0.285334 0.314109 0.288834 TRUE

DiabetesPedigreeFunction 0.169487 0.197846 0.186481 TRUE

Age 0.150553 0.185836 0.171654 TRUE

Outcome 0.306038 0.405073 0.316667 TRUE

8.2.3. Kullback-Leibler (KL) Divergence

For each variable, we have two different probability

distributions: the true distribution (from the real data); and an

approximation of that distribution (from the synthetic data).

To quantify the difference between the two, we compute the

KL divergence score. Mathematically, the KL divergence is

the expectation of the logarithmic difference between the

probability of data in the real data distribution P with the

approximating synthetic data distribution Q: �[��‖�� �

57 Heng Wee Lin Eunice and Carol Anne Hargreaves: Simulation of Synthetic Diabetes Tabular Data

Using Generative Adversarial Networks

��log ���� � log ����� [23].

Table 4. KL Divergence Score.

Variable KL Divergence Score

Pregnancies 0.73907

Glucose 0.37357

BloodPressure 0.201723

SkinThickness 0.24717

Insulin 0.62436

BMI 0.20132

DiabetesPedigreeFunction 0.58388

Age 1.08929

The intuition behind this score is simple. Consider P’s

divergence from Q. When the probability of an event from P

is large and the probability of the same event in Q is small,

the divergence is large. When the probability from P is small

and the probability from Q is large, the divergence is also

large, but is smaller as compared to the first case. The score

takes on values between 0 and 1∞. A score of 0 indicates

that P and Q match perfectly. For each predictor variable, we

compute the KL divergence score between its true and

approximated distribution. The KL divergence scores for all

8 predictors are relatively small and are close to 0, which is

ideal.

8.3. Synthetic Minority Oversampling

Technique (SMOTE)

Traditional machine learning classification algorithms often

exhibit unsatisfactory performance on imbalanced data sets.

This is because the minority class has minimal effect on the

overall accuracy. For example, if a data set has an extremely

imbalanced class distribution of 95:5, the useless classifier

will be 95% accurate simply by predicting all samples as the

majority class. The predictive performance of such a

classifier is especially deceiving since samples from the

minority class are completely missed. This poses a

significant problem since the minority class is usually the

class of interest and therefore, the more important class.

SMOTE balances the classes by synthesizing artificial samples

[24]. It randomly selects an existing point from the minority

class and locates its k nearest neighbours of the same class. For

each of these pairs, a new point is generated in the vector

between them. In this study, we use the implementation from

the imbalanced-learn python library [25].

8.4. Random Forest (RF) Classifier

The real data set was combined with the artificial data set and

shuffled to yield a third data set.

For each of the 3 data sets, the following process was

conducted:

The data was first split into 70% for training and 30% for

testing.

SMOTE was used to balance the classes in the training set.

A RF classifier was fitted to the balanced training set and

used to predict on the test set.

8.4.1. Metrics

Our primary goal is to achieve at least 75% prediction

accuracy. Apart from achieving a high accuracy rate, we also

hope to reduce false negatives in our diagnosis so as to pick

up potential patients as soon as possible. This is extremely

important as we are dealing with patients’ lives, and we

should aim to reach out to them in the shortest amount of

time possible. Hence, we hope to obtain high sensitivity,

without compromising on specificity.

If we were to use a test with low specificity for screening,

many patients without diabetes will be classified as having

diabetes. These patients would potentially receive

unnecessary diagnostic procedures or further treatment. By

raising specificity there will be fewer of such false positive

results.

Table 5. Accuracy Measures for Imbalanced and Balanced Synthetic, Real

and Combined Data.

Imbalanced

Synthetic Data

Balanced Synthetic Data

(using SMOTE)

Accuracy 0.85185 0.85185

Sensitivity 0.62857 0.80000

Specificity 0.95890 0.87671

Precision 0.88000 0.75676

Recall 0.62857 0.80000

F1-score 0.73333 0.77778

AUC 0.79374 0.83836

Imbalanced Real

Data

Balanced Real Data (using

SMOTE)

Accuracy 0.80556 0.78704

Sensitivity 0.74359 0.84615

Specificity 0.84058 0.75362

Precision 0.72500 0.66000

Recall 0.74359 0.84615

F1-score 0.73418 0.74157

AUC 0.79208 0.79989

Imbalanced

Combined Data

Balanced Combined Data

(using SMOTE)

Accuracy 0.84722 0.87037

Sensitivity 0.71831 0.81690

Specificity 0.91034 0.89655

Precision 0.79688 0.79452

Recall 0.71831 0.81690

F1-score 0.75556 0.80556

AUC 0.81433 0.85673

For the RF classifiers fitted to all three data sets, we notice an

increase in sensitivity and Area Under Curve (AUC) score

after balancing the training data using SMOTE. To verify

whether the availability of more training data helps improve

the performance of classification algorithms, we will focus

specifically on the results of the RF classifiers fitted to the

 Clinical Medicine Journal Vol. 7, No. 2, 2021, pp. 49-59 58

balanced real training data and the balanced combined

training data. The latter achieves a much higher accuracy of

87.0% as compared to 78.7% attained by the former. The

latter also achieves a higher AUC score of 0.857, which

implies that the model is now better at distinguishing

between the positive class and negative class. Even though

the latter has slightly lower sensitivity of 81.7%, this value is

relatively high and is still comparable to the 84.6% attained

by the former.

8.4.2. Feature Importance

We compare the feature importance for the RF classifiers

fitted to all 3 data sets using the implementation from the

scikit-learn python library. In this case, feature importance is

calculated as the reduction in node impurity (Gini index or

entropy) weighted by the probability of reaching that node

[26]. The node probability can be calculated by the number

of samples that reach the node, divided by the total number

of samples. The higher the value, the more important the

feature.

With reference to the table below, the features in each data

set are ordered in descending order of feature importance.

Ideally, the top few features picked out for the combined data

set should be the same few identified in the real data set. We

can see from Table 6, that the 5 most important features for

the Real and Combined data is the same, while the order of

importance is slightly different.

Table 6. Features of Importance for Synthetic, Real and Combined Data.

Synthetic Data Real Data Combined Data

Insulin Glucose Glucose

BMI Insulin Insulin

Glucose Age BMI

Age BMI DiabetesPedigreeFunction

SkinThickness DiabetesPedigreeFunction Age

DiabetesPedigreeFunction SkinThickness Pregnancies

BloodPressure Pregnancies SkinThickness

Pregnancies BloodPressure BloodPressure

9. Conclusion

In this paper, we studied common problems experienced in

training GANs. To address these issues, we incorporated

various techniques; namely, one-sided label smoothing,

minibatch discrimination and batch normalization into the

network architecture of the Vanilla GAN model. Different

combinations of learning rates and batch sizes were used for

GAN training. To determine which combination works best,

we evaluated the similarity between the real and the synthetic

data generated. This meets our first objective - to generate a

sufficiently realistic synthetic data set that can be used in

place of the original real data.

Our next step involved using SMOTE to balance the classes

in the real data set and the combined data set. We analyzed

the performance of a RF classifier trained separately on the

balanced real data set and on the balanced combined data set.

We verified that the availability of more training data helps

improve the accuracy of the classifier, while achieving

relatively high sensitivity. This meets our second objective -

to inflate the size of the training data so as to enhance the

performance of machine learning classifiers.

As an initial inquiry, this research limits itself to one GAN

architecture and one data set. For future work, we will

explore different network architectures, as well as data sets

with diverse characteristics. We are particularly interested in

investigating the effect of the number of classes and features

in the data set on the final results.

References

[1] 7 Effective Ways to Deal with a Small Dataset | Hacker Noon.
https://hackernoon.com/7-effective-ways-to-deal-with-a-
small-dataset-2gyl407s. Accessed 10 Jan. 2021.

[2] Maynard-Atem, L (2019). The Data Series – Solving the Data
Privacy Problem Using Synthetic Data, Impact, 2019:2, 11-13,
DOI: 10.1080/2058802X.2019.1668192

[3] Alver, S. (2018, September 04). Connections Between GANs
and AC Methods in Reinforcement Learning. Retrieved
February 02, 2021, from
https://alversafa.github.io/blog/2018/09/04/gan-ac.html

[4] Goodfellow, Ian. “NIPS 2016 Tutorial: Generative Adversarial
Networks.” ArXiv: 1701.00160 [Cs], Apr. 2017. arXiv.org,
http://arxiv.org/abs/1701.00160.

[5] Ratliff, L. J., Burden, S. A., and Sastry, S. S. (2013).
Characterization and computation of local nash equilibria in
continuous games. In Communication, Control, and
Computing (Allerton), 2013 51st Annual Allerton Conference
on, pages 917–924. IEEE.

[6] Arjovsky, M., Chintala, S. & Bottou, L. (2017). Wasserstein
generative adversarial networks. In Proceedings of the 34th
International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 214–223.
PMLR, 2017.

59 Heng Wee Lin Eunice and Carol Anne Hargreaves: Simulation of Synthetic Diabetes Tabular Data

Using Generative Adversarial Networks

[7] Thanh-Tung, Hoang, et al. “Improving Generalization and
Stability of Generative Adversarial Networks.” ArXiv:
1902.03984 [Cs, Stat], Feb. 2019. arXiv.org,
http://arxiv.org/abs/1902.03984.

[8] Goodfellow, Ian & Pouget-Abadie, Jean & Mirza, Mehdi &
Xu, Bing & Warde-Farley, David & Ozair, Sherjil &
Courville, Aaron & Bengio, Y.. (2014). Generative
Adversarial Networks. Advances in Neural Information
Processing Systems. 3. 10.1145/3422622.

[9] Szandała, T. (2020). Review and Comparison of Commonly
Used Activation Functions for Deep Neural Networks. Bio-
inspired Neurocomputing Studies in Computational
Intelligence, 203-224. doi:10.1007/978-981-15-5495-7_11

[10] Tanaka, F. H., & Aranha, C. (2019). Data Augmentation Using
GANs. arXiv: 1904.09135.

[11] Srivastava, Nitish & Hinton, Geoffrey & Krizhevsky, Alex &
Sutskever, Ilya & Salakhutdinov, Ruslan. (2014). Dropout: A
Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research. 15. 1929-1958.

[12] Ioffe, S. & Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. Proceedings of the 32nd International
Conference on Machine Learning, in PMLR 37:448-456

[13] Radford, Alec, et al. “Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks.”
ArXiv:1511.06434 [Cs], Jan. 2016. arXiv.org,
http://arxiv.org/abs/1511.06434.

[14] J. Brownlee, A Gentle Introduction to Batch Normalization
for Deep Neural Networks (2019), Maching Learning Mastery

[15] Salimans, Tim, et al. “Improved Techniques for Training
GANs.” ArXiv: 1606.03498 [Cs], June 2016. arXiv.org,
http://arxiv.org/abs/1606.03498.

[16] Bengio, Yoshua. “Practical Recommendations for Gradient-
Based Training of Deep Architectures.” ArXiv: 1206.5533
[Cs], Sept. 2012. arXiv.org, http://arxiv.org/abs/1206.5533.

[17] Brownlee, Jason. “How to Control the Stability of Training
Neural Networks with the Batch Size.” Machine Learning
Mastery, 20 Jan. 2019,
https://machinelearningmastery.com/how-to-control-the-
speed-and-stability-of-training-neural-networks-with-gradient-
descent-batch-size/.

[18] Brownlee, Jason. “A Gentle Introduction to Mini-Batch
Gradient Descent and How to Configure Batch Size.”
Machine Learning Mastery, 20 July 2017,
https://machinelearningmastery.com/gentle-introduction-mini-
batch-gradient-descent-configure-batch-size/.

[19] Pima Indians Diabetes Database.
https://kaggle.com/uciml/pima-indians-diabetes-database.
Accessed 11 Jan. 2021.

[20] Han, Jiawei, et al. “Data Preprocessing.” Data Mining,
Elsevier, 2012, pp. 83–124. DOI.org (Crossref),
doi:10.1016/B978-0-12-381479-1.00003-4.

[21] Sample Means. (n.d.). Retrieved January 18, 2021, from
http://www.stat.yale.edu/Courses/1997-
98/101/sampmn.htm#clt

[22] Estimation of a population mean. (n.d.). Retrieved February
17, 2021, from
https://www.britannica.com/science/statistics/Estimation-of-a-
population-mean

[23] Kurt, W. (2017, May 10). Kullback-Leibler Divergence
Explained. Retrieved January 16, 2021, from
https://www.countbayesie.com/blog/2017/5/9/kullback-
leibler-divergence-explained

[24] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research, Volume
16, pages 321-357, 2002, 2011. doi: 10.1613/jair.953.

[25] Guillaume Lemaˆıtre, Fernando Nogueira, and Christos K.
Aridas. Imbalanced-learn: A python toolbox to tackle the
curse of imbalanced datasets in machine learning. Journal of
Machine Learning Research, 18(17):1–5, 2017. URL
http://jmlr.org/papers/v18/ 16-365.html.

[26] Ronaghan, S. (2019, November 01). The Mathematics of
Decision Trees, Random Forest and Feature Importance in
Scikit-learn and Spark. Retrieved January 24, 2021, from
https://towardsdatascience.com/the-mathematics-of-decision-
trees-random-forest-and-feature-importance-in-scikit-learn-
and-spark-f2861df67e3

[27] Ian Goodfellow et al. “Generative adversarial nets”. In:
Advances in neural information processing systems. 2014, pp.
2672–2680.

