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Abstract 

Generative Adversarial Networks (GANs) is a relatively new research avenue in the domain of Deep Learning and Artificial 

Intelligence. Over the past few years, GANs have been extensively researched into due to their ability to generate realistic synthetic 

data. The creation of synthetic tabular data is especially useful when it is desirable to avoid using the original data set due to privacy 

reasons. Therefore, the objective of this paper was to review the effectiveness of GANs in simulating synthetic tabular diabetes data. 

Methodology: Prior to GAN training, we applied min-max normalization on the features. To analyze the similarity between the real 

data set and each synthetic data set, we conducted exploratory data analysis before employing some statistical methods. We 

compared the synthesized data with the original data using data visualizations including histograms and boxplots. We also computed 

confidence intervals for the means of the real data variables and compared them with the confidence intervals for the means of the 

synthetic data. Results: The results showed that 8 of the 9 confidence intervals overlapped. We also checked whether the mean of a 

particular variable in the synthetic data set fell into the confidence interval of the same variable in the real data set. For each variable, 

we had two different probability distributions: the true distribution (from the real data); and an approximation of that distribution 

(from the synthetic data). To quantify the difference between the two distributions, we computed the Kull-Lieber (KL) divergence 

score. The KL scores for all 8 predictors were relatively small and close to 0, which is ideal. A model for classifying patients as 

having diabetes was built using only the real data. Another model for classifying patients as having diabetes was built using the 

combined real and synthetic data. The model using the combined real and synthetic data achieved a much higher accuracy of 87.0% 

as compared to 78.7% attained when only using the real data. Conclusion: We built a realistic synthetic data set using generative 

adversarial networks. The synthetic data set proved to be very similar to the real dataset and could successfully replace the real data 

for analysis for research purposes. Further, we verified that the availability of more training data for diabetes classification helped to 

improve the accuracy of the classifier, while achieving a relatively high recall. 
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1. Introduction 

Training data forms the backbone for any machine learning 

project. If provided with insufficient, erroneous or irrelevant 

data as input, even the most robust of machine learning 

models will not be able to deliver good results. The main 

purposes of creating artificial tabular data are as follows: (1) 

to increase the size of small training data sets, and (2) to 

safeguard the privacy of the original data. 

A high-quality training data set should be sufficiently large and 

should also be representative of the entire population. Training 

on such a data set would allow the model to adequately capture 
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the underlying structure of the data, which will in turn enable the 

model to generalize well to unseen data. In a real-world setting, 

however, one often has minimal access to data required to solve 

a problem or to draw insights [1]. Moreover, data collection can 

be prohibitively costly in terms of both time and money. When 

limited data is available, one option would be to artificially 

inflate the size of the training data set by supplementing the 

original data set with artificial samples. 

The usage of synthetic data in lieu of the original can protect 

the confidentiality of the latter. Some databases contain a vast 

amount of sensitive information. It is not advised to work 

directly on the database due to the risk of data breach, as well 

as the risk of re-identification. For example, medical records at 

a hospital are likely to contain a lot of personal information 

about the patients [2]. Even if the names and identification 

numbers are excluded before the data is disclosed, we cannot 

rule out the possibility that certain individuals may still be 

identified using a combination of other characteristics, such as 

their age, gender, height and weight. Due to the risk of re-

identification, it is understandable that many regulations have 

been put in place to restrict the use of this kind of database [2]. 

One possible approach to resolving this problem would be to 

simply generate a sufficiently realistic synthetic data set based 

on the original. The former can then be used safely in place of 

the latter to train the model, thereby achieving a balance 

between privacy and utility. 

In this paper, we will analyze the use of Generative 

Adversarial Networks (GANs) in simulating synthetic tabular 

data to deal with these two issues. 

2. Methodology 

Generating Adversarial Networks (GANs) were first 

introduced by Ian J. Goodfellow and his colleagues in 2014 

[27]. This idea, which incited the possibility of AI-generated 

content, brought about much excitement in the field of Deep 

Learning and Artificial Intelligence (AI). Since then, much 

effort has been invested by researchers into developing GANs. 

The architecture of GANs is illustrated in Figure 1 below. 

 

Figure 1. GAN Architecture Image modified from Alver [3]. 

2.1. Generative Adversarial Network (GAN) 
Framework 

The basic concept behind GANs involves pitting two 

adversaries against each other in a game. One agent is the 

generator network. As its name suggests, the generator 

creates fake samples which are intended to stem from the 

same distribution as the training data. The other agent is the 

discriminator-network. Using conventional supervised 

learning techniques, the discriminator examines samples and 

learns to classify them into two groups – either real or fake. 

The goal of the generator is to fool the discriminator into 

thinking that the fake samples generated are actually real. 

This process is illustrated in Figure 2. 

By definition, the discriminator is a differentiable function � 

that receives �  as input and has ����  as its parameters. In 

contrast, the generator is a differentiable function �  that 

receives � as input and has ��	� as its parameters. To be more 

precise, each agent has a unique cost function defined in 

terms of its own parameters. The discriminator seeks to 

minimize 
��������, ��	�
  and can only do so by 

manipulating ����. Likewise, the generator seeks to minimize 


�	������, ��	�
 and can only do so by manipulating ��	� [4]. 

Even though 
��� depends on ��	� and 
�	� depends on ����, 
neither agent has control over its opponent’s parameters. 

Therefore, it is more accurate to describe this situation as a 

game instead of an optimization problem. The solution to a 

game is a Nash equilibrium, which in this case, refers to local 

differential Nash equilibria [5]. Specifically, the solution to 

this game corresponds to a tuple �����, ��	�
, which is a local 

minimum of 
��� with respect to ���� and a local minimum of 


�	� with respect to ��	�[4]. 

 

Figure 2. The GAN Framework Image modified from Goodfellow [4]. 
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With reference to Figure 2, the discriminator and generator 

networks are represented by the functions �  and � 

respectively. Under the assumption that half of the inputs 

provided are real and the remaining half are fake, the goal of 

the discriminator is to output the probability that an input is 

real. The game unfolds in the following two scenarios. 

In the first scenario, training examples �����  are randomly 

sampled from the training set and used as input for the 

discriminator. In this case, the goal of the discriminator is to 

make ��������  close to 1, signifying that �����  is a real 

sample from the training set. 

In the second scenario, random noise � is randomly sampled 

from some simple prior distribution and used as input for the 

generator. Here, �  can be regarded as just a source of 

randomness that allows the generator to output many samples 

instead of only one realistic sample. Note that for ������  to 

have full support on the � space, the dimension of � must be 

at least as large as the dimension of � [4]. Correspondingly, 

the discriminator receives input ����, a fake sample ����� 

produced by the generator. This time round, both players 

participate. The discriminator tries to make ������� 
approach 0 to signify that the input is fake. Simultaneously, 

the generator tries to make the same quantity approach 1. 

Based on game theory, if both models have sufficient 

capacity, the Nash equilibrium of this game corresponds to 

the generator producing perfect samples ���� that come from 

the same distribution as the training data. At this point, the 

discriminator cannot actually distinguish between the two 

sources of data and simply says that every input has a 

probability one-half of being real and a probability one-half 

of being fake; that is, ���� 	� 	 �� for all �. 

2.2. The Training Process 

GAN’s training process entails simultaneous application of 

stochastic gradient descent (SGD). Two mini-batches are 

sampled per iteration: one mini-batch of � samples from the 

training data and one minibatch of random noise � from a 

prior distribution. After which, two gradient steps are made 

concurrently: one involves updating ���� to decrease 
��� and 

the other involves updating ��	� to decrease 
�	�. For either 

case, it is feasible to use any gradient-based optimization 

algorithm. Adam is often recommended as a good choice [4]. 

In some early GAN papers, it is not uncommon to read that 

the authors implemented a fixed number of updates of the 

discriminator for each update of the generator [6]. 

Heuristically, overfitting can be alleviated by limiting the 

number of discriminator updates per generator update [7]. As 

of late 2016, it is of Goodfellow et al.’s opinion that the 

procedure of simultaneous gradient descent works best in 

practice [4]. This necessitates updating the discriminator 

once every generator update. 

 

Figure 3. Algorithm for Training GANs Image modified from Goodfellow 

[8]. 

2.3. The Discriminator’s Cost, ���� 
The cost function used for the discriminator is simply the 

standard cross-entropy cost that is minimized while training a 

binary classifier: 
��������, ��	�
 � �� ~"#$%$&'(�����
 �
�)~"*&'( +1 � ������
- . The sole difference is that the 

discriminator (or classifier) is trained on two minibatches of 

data instead of one. One minibatch originates from the 

training data, where the label is usually 1 for all samples and 

the other minibatch originates from the generator, where the 

label is 0 for all samples [4]. 

To derive the optimal discriminator strategy, we start by 

rewriting 
���  in its integral form: 
��������, ��	�
 	�
�. /���0����	&'(�����
 1 ���������	&'(�1 �2

32
����
4	5� . Note that ���0����  represents the original 

distribution; and ���������  represents the generator 

distribution. Our goal is to minimize 
��� with respect to �, 

assuming, that both ���0����  and ���������  are non-zero 

everywhere. This is equivalent to maximizing the integrand 

with respect to �. Notice that the integrand	can be written in 

the form 6�7� � 8	&'(�7� 1 9	&'(�1 � 7�. 
To find critical point(s), we differentiate 6�7� with respect to 

7  and equate to 0: 6:�7� � �
; � <

�3; � 0	 → 7∗ �
�

�@< 	where	8 1 9 E 0. We differentiate once more to get the 

second derivative: 6::�7∗� � ��8 1 9�� ∙ +�� 1 �
<- G

0	where	8, 9 ∈ �0, 1� , which ascertains that 	6�7�  has a 

maximum point at 7 � �
�@< . Substituting 8 � ���0���� , 
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9 � ��������� and 7 � ���� into 7∗, we obtain the optimal 

discriminator strategy: �∗��� � "#$%$� �	
"#$%$� �@"IJ#KL� �. 

2.4. Minimax Game 

A full specification of the game requires specifying cost 

functions for both agents. Since both agents are rivals, it 

seems reasonable to set the generator’s cost function as the 

negative of the discriminator’s cost function: 
�	� � �
��� . 
This translates to playing a zero-sum game in which the two 

agents’ costs always sum up to zero. Since 
�	�  is directly 

associated with 
���, we can condense the entire game into a 

value function specified solely in terms of 
��� ; that is: 

M�����, ��	�
 � �
��������, ��	�
 . The solution to a zero-

sum game involves minimization in an outer loop and 

maximization in an inner loop, which gives rise to its 

alternative name - a minimax game: 

��	�∗ � 8N(minR�S�maxR�V�	M�����, ��	�
 	[4]. 

To understand the above, consider 
��� from the perspective 

of the generator. Given a fixed generator, the discriminator 

learns to minimize its cross-entropy 
���, which is equivalent 

to maximizing 	M . In contrast, the generator strives to 

maximize the minimum cross-entropy attainable by the 

discriminator, which is equivalent to minimizing M. 

2.5. Non-saturating Generator Loss 

However, putting a minimax game into play is not ideal. In 

the scenario where the discriminator learns well and 

confidently rejects the generated samples, this causes the 

generator’s gradient to vanish, which impedes further 

training of the generator network [4]. 

One method to resolve this problem is to employ cross-

entropy minimization for the generator as well. Instead of 

simply negating the discriminator’s cost, we replace the 

target for constructing the cross-entropy cost for the 

generator. [4] The generator’s new cost is then: 
�	� �
��)~"* log������
 . Instead of minimizing the log-

probability of the discriminator being correct, the generator 

now maximizes the log-probability of the discriminator being 

wrong. 

Unlike the minimax game, which is theoretically motivated, 

this game is heuristically driven. The sole intention of this 

modification is to ensure that each agent (or network) will 

continue to have a sufficiently large gradient even when it 

is suffering defeat. Since the cost functions of both agents 

are no longer directly linked to each other, the game is no 

longer zero-sum and cannot be defined by a single value 

function. 

3. Problems in Training GANs 

3.1. Vanishing Gradients 

Backpropagation is an extensively used algorithm in training 

neural networks. It works by computing the gradient of the 

loss function with respect to each weight using the chain rule 

one layer at a time. As gradient flows backward from the last 

layer to the first layer, it gets progressively smaller. If it 

becomes too small, the initial layers either learn very slowly 

or stop learning completely. This is termed as the vanishing 

gradients problem. This can be attributed to the use of “S”-

shaped activation functions like tanh and sigmoid [9]. For 

example, when the input becomes large (either negative or 

positive), the sigmoid function saturates at 0 or 1, with the 

derivative becoming extremely close to zero. In other words, 

the gradient vanishes. 

3.2. Mode Collapse 

Data distributions can be highly complex and multimodal. 

Multimodal simply means that the data distribution has a lot 

of “peaks” or “modes”. Each mode denotes a concentration 

of similar data samples, which are distinct from those of 

other modes. The Helvetica scenario or mode collapse is a 

problem that arises when the generator learns to map 

different input z values to the same output point [4]. In other 

words, in attempting to fool the discriminator, the generator 

produces samples that belong to a limited set of modes. 

The severity of mode collapse varies from complete to partial 

collapse. In the case of complete collapse, all generated 

samples are identical, whereas in partial collapse, most of the 

generated samples share common properties. In both 

scenarios, the generator will not produce a wide variety of 

samples. As a result, the generated data will not be 

representative of the data distribution in reality, which 

implies that the learnt GAN is not useful at all. 

4. Generative Adversarial 
Network (GAN) Architecture 

The GANs were constructed using the pytorch library in 

Python. 

Our GAN architecture has the following parameters: 

LeakyReLU as the activation function with a negative slope 

of 0.3 

Batch size = 5, 10 or 15 

Learning rate = 0.0002, 0.0003, 0.0005 

Batch normalization layers 

Use of dropout in the discriminator with a probability of 0.2 
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Minibatch discrimination in the discriminator 

Binary cross-entropy as the loss function 

Adam as the optimizer algorithm 

Two hidden layers with size 256 and 512 

In the generator, the layers are ordered in ascending size 

In the discriminator, the layers are ordered in descending size 

 

Figure 4. GAN Architecture. 

Binary cross-entropy loss is used because it is most suitable 

to measure the performance of a model whose output is a 

probability between 0 and 1 [10]. There are no convolutional 

layers because the input is not an image. Dropout was 

included to prevent overfitting [11]. One-sided labelling was 

implemented where positive labels were smoothed to 0.9. 

LeakyReLU was selected as the activation function since its 

gradient does not saturate during backpropagation. 

LeakyReLU is also preferred over ReLU since it solves the 

“dying ReLU” problem and facilitates gradient flow 

throughout the architecture. 

We tested nine different configurations varying the batch size 

and the learning rate. In this experiment, we intentionally use 

a simple network to focus on the basic proposal of generating 

synthetic numerical data sets. 

4.1. Batch Normalization 

Batch normalization was included to stabilize the training 

process [12]. It standardizes outputs from the preceding layer 

to have a zero mean and unit variance. This prevents the 

normalized input |�| from approaching the outer limits of the 

sigmoid function. This ensures that the derivative is not too 

small and thereby mitigates against vanishing gradients. It is 

recommended for batch normalization layers to be included 

in both the discriminator and generator networks, except the 

output of the generator and input to the discriminator [13]. 

Batch normalization should occur after “S”-shaped 

activations (tanh, sigmoid) and before non-Gaussian 

activations (ReLU, LeakyReLU) [14]. 

4.2. Minibatch Discrimination 

The concept behind ‘minibatch discrimination’ is to ensure 

that the discriminator examines multiple samples in 

combination instead of in isolation [15]. By doing so, mode 

collapse becomes easily detectable, since the discriminator 

will recognize that the minibatch of generated samples are 

fake whenever all the samples are very close to each other. 

The generator is then penalized and forced to output a variety 

of samples per minibatch generated. 

Salimans et al. proposed modelling the closeness between 

samples in a minibatch by calculating the [�-norm between 

the rows of matrices associated with different inputs [15]. 

The smaller the [� -norm, the closer the inputs are. After 

which, this additional information is concatenated with the 

original input and fed into the subsequent layer of the 

discriminator. Effectually, the classification task of the 

discriminator remains the same but it is now able to use this 

extra material as side information to change its behavior 

accordingly [15]. 

4.3. One-sided Label Smoothing 

One-sided label smoothing is a form of regularization which 

increases the complexity of discriminator training by 

providing smoothed labels to the discriminator network [4]. 

This means that we can assign decimal values, such as 0.9 or 

0.8 to real samples, and 0.1 or 0.2 to fake samples, instead of 

simply labelling every example as either 1 or 0. This serves 

to discourage the discriminator from being overconfident 

about its classification. 

In practice, however, it is important to only smooth the 

positive labels [15]. Suppose we use a target of \ (in place of 

1) for the real samples and a target of ] (in place of 0) for the 

fake samples. Then the optimal discriminator function is 

�∗��� 	� 	 ^	∙	"#$%$� �	@	_	∙	"IJ#KL� �
"#$%$� �	@	"IJ#KL� � . When ] � 0 , smoothing 

by \ simply scales down the optimal value of �∗���	 without 

modifying the shape of the function. In contrast, when ] E 0, 

the shape of the function �∗��� changes. Consider a region 

where ���0���� is small and ��������� is significantly larger. 

�∗��� will peak near the spurious mode of ���������. The 
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presence of ���������  in the numerator is problematic 

because, in areas where ���0���� is approximately zero and 

��������� is large, erroneous samples from ��������� have 

no incentive to move nearer to the data. We therefore smooth 

only the positive labels to α, leaving negative labels set to 0 

[15]. 

5. Hyper Parameter Tuning 

Given that the GAN is trained using SGD, one challenge 

involves carefully selecting the learning rate and the batch 

size. Using training examples, SGD estimates the error 

gradient for the current state of the model and updates the 

weights of the model via back propagation. 

Learning rate refers to the amount by which the weights are 

updated during training. If limited time is available, it is of 

Bengio & Yoshua’s opinion, that this is the hyper parameter 

worth tuning [16]. A too large value could cause premature 

convergence to a suboptimal solution. In contrast, a too small 

value could result in painfully slow convergence or cause the 

process to get trapped in an undesirable local minimum. For 

a neural network with inputs mapped to the [0,1]-interval, 

typical learning rate values are between 103` and 1 [16]. 

A large batch size provides a more accurate error gradient 

estimate. It is more probable that adjustment of the model 

weights will lead to improved performance. However, this 

comes at the cost of a slow rate of convergence [17]. 

Alternately, using a small batch size provides a less accurate 

estimate that is highly dependent on the specific training 

examples used. This noisy estimate of the error gradient 

would result in noisy updates to the model weights. 

Nonetheless, this noisy update could help prevent premature 

convergence and the increased model update frequency could 

also result in faster learning [18]. 

Varying the learning rate together with the batch size affects 

the learning process in different ways. Hence, we will 

experiment using nine combinations of hyper parameter 

values to train the GANs. 

6. Data Preparation 

The Pima Indians Diabetes data set was retrieved from the 

UCI Machine Learning Repository and can also be found on 

the Kaggle website [19]. All patients are females of Pima 

Indian heritage and are at least 21 years old. The data set 

consists of 9 variables and has a total of 768 

observations/rows. 

The definition of the variables are as follows: 

Pregnancies: Number of times pregnant. 

Glucose: The blood plasma glucose concentration after a 2-

hour oral glucose tolerance test. 

Blood Pressure: Diastolic blood pressure (mm/Hg). 

Skin Thickness: Triceps skin fold thickness (mm). 

Insulin: 2-Hour serum insulin (mu U/ml). 

BMI: Body mass index (kg/m squared). 

Diabetes Pedigree Function: A function that determines the 

risk of type 2 diabetes based on family history; the larger the 

function, the higher the risk of type 2 diabetes. 

Age: Age (years). 

Outcome: Whether the person is diagnosed with type 2 

diabetes (0	 � 	a', 1	 � 	7bc). 

6.1. Dealing with Missing Values 

The original data set contains missing values denoted by 0. 

Variables with zeros include Pregnancies, Glucose, 

BloodPressure, SkinThickness, Insulin and BMI. Except for 

Pregnancies, it is not normal for the other variables to take on 

the value 0. SkinThickness (29.6%) and Insulin (48.7%), in 

particular, contain large numbers of missing values. 

Since patients with the same diagnosis are likely to be more 

similar to each other, our original idea was to split the data 

set based on Outcome before dealing separately with the 

missing values. We realised that the median Insulin level for 

diabetic patients is 0 because there are more missing values 

(51.5%) than non-missing values (48.5%). To resolve this, 

we considered imputing missing values with the median of 

non-missing values. However, simply replacing more than 

half of the variable with the same value may drastically alter 

its distribution. To ensure that the training data is reliable, we 

decided to drop observations with missing values. Among the 

374 observations with missing Insulin values, most contain 

missing values for other variable(s) as well. The cleaned data 

set has 392 observations. 

6.2. Accuracy Checks 

We divided the cleaned data set based on Outcome and 

obtained the range of values for each variable. We then 

verified the medically acceptable minimum and maximum 

values with a licensed medical doctor. Two variables - 

BloodPressure and Insulin, stand out. 

5 patients with unusually low diastolic blood pressure of 40 

mm/Hg and below were removed. High insulin levels are 

indicative of insulin resistance, which is associated with Type 

2 diabetes. While there is no medical literature on the cut-off 

for the maximum possible insulin value, the normal medically 

acceptable range for a non-diabetic is between 16 – 166 mu 

U/ml. We noticed 27 non-diabetic patients with insulin levels 
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more than 250 mu U/ml. In our opinion, the data seems 

contradictory so we decided to remove these 27 observations. 

The resulting data set has 360 observations. There are 232 

patients with no diabetes and 128 with diabetes. 

6.3. Feature Scaling 

Prior to GAN training, we applied min-max normalization on 

the features. This linear transformation technique preserves 

the relationship among the original data values while 

mapping each feature to fall within the [0,1]-interval [20]. 

Homogenising the range for all the features prevents those 

with large variances from dominating others [20]. It also 

helps to cut down the range of values that the generator 

network generates as well [10]. 

7. Selection of the Best 
Artificial Data Set 

The real data set referred to in this section is the data set used 

for training the GANs. The artificial data sets refer to those 

generated by the learnt GANs. For fair comparison, all 

artificial data sets generated contain the same number of 360 

observations as the real data set. To analyze the similarity 

between the real data set and each artificial data set, we 

conducted exploratory data analysis before employing some 

statistical methods. The procedure is as follows: 

Histograms and boxplots were first plotted to visualize the 

distribution of the variables. 

The 95% Confidence Interval (CI) for the mean of each variable 

in both the real and artificial data sets was computed. 

Hypothesis Testing was conducted using a two-sample Z-test. 

Our Null Hypothesis de is the mean of a particular variable 

in the real data set is equal to the mean of the same variable 

in the artificial data set. A total of 9 hypothesis tests were 

conducted. 

The best artificial data set was chosen based on: (1) the 

number of variables in which the mean of the variable in the 

artificial data set falls into the CI of the same variable in the 

real data set; and (2) the number of variables in which we do 

not reject de. 

8. Performance of Best 

Artificial Data Set 

This data set was generated by a GAN trained with learning 

rate - 0.0003 and batch size - 10. 

8.1. Exploratory Data Analysis 

Histograms belonging to the original data set are shaded 

green, while those belonging to the synthetic data set are 

shaded blue. For each variable, the greater the degree of 

overlap between the two histograms, the closer the real and 

synthetic variables are in their distributions. 

 

 

Figure 5. Visual Comparison of Real and Synthetic Variables. 

8.2. Statistical Methods 

8.2.1. Hypothesis Testing 

de: g� � g� vs d�: g� E g� 

Our Null Hypothesis de  is that the mean of a particular 

variable in the real data set, g�, is equal to the mean of the 
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same variable in the artificial data set, g�. If p-value < 0.05, 

we reject de and conclude that the two means are different.  

Ideally, we want the two means to be the same; hence, we do 

not want to reject de for as many variables as possible. 

Table 1. Statistical Significance Test Results. 

Variable p-value Do not reject Null Hypothesis 

Pregnancies 0.152257 TRUE 

Glucose 0.000062 FALSE 

BloodPressure 0.26678 TRUE 

SkinThickness 0.280832 TRUE 

Insulin 0.560453 TRUE 

BMI 0.259814 TRUE 

DiabetesPedigreeFunction 0.788961 TRUE 

Age 0.78002 TRUE 

Outcome 0.269629 TRUE 

Our significance tests support that our synthetic data 

generated are similar to the real data, as 9 out of the 10 

synthetic variables (90%) are similar to the real variables.  

8.2.2. Confidence Intervals 

According to the Central Limit Theorem (CLT), given a 

sufficiently large sample size n, the distribution of the sample 

mean for a variable, �̅ , will approximate a normal 

distribution regardless of that variable's distribution in the 

population. Formal statement of the CLT: If �̅ is the mean of 

a random sample ij�, j�, … , jlm of size n from a distribution 

with a finite mean g and a finite positive variance n�, then 

the distribution of o �  ̅3p
q
√s

~t�0,1� as a → ∞. This means 

that the variable �̅ follows a t +g, v√l- distribution [21]. 

For a population with unknown mean g and known standard 

deviation n , a 95% CI for g , based on a simple random 

sample of size n, is: �̅ ± +1.96 × v
√l-. Since n is unknown, 

we estimate it using the sample standard deviation c �
| �
l3�∑ ��~ � �̅��l~�� . [22] The 95% CI estimate for the 

population mean is then: �̅ ± +1.96 × �
√l-. 

We computed the 95% CI for the mean of variables in the 

real data set and the 95% CI for the mean of variables in the 

synthetic data set. For each variable, we check whether the 

two CIs overlap. All variables CI for the Real data and 

synthetic data overlap and perform well except for the 

Glucose variable. 

Table 2. Confidence Intervals for Real and Synthetic Variables. 

 
Real Lower Bound Real Upper Bound 

Synthetic  

Lower Bound 

Synthetic  

Upper Bound 
Overlap of CIs 

Pregnancies 0.179988 0.219685 0.202973 0.2331 TRUE 

Glucose 0.437466 0.48237 0.365505 0.416082 FALSE 

Blood Pressure 0.392797 0.429594 0.38099 0.413559 TRUE 

Skin Thickness 0.377259 0.415995 0.362789 0.400658 TRUE 

Insulin 0.139785 0.16527 0.144053 0.172303 TRUE 

BMI 0.285334 0.314109 0.27652 0.301148 TRUE 

Diabetes Pedigree Function 0.169487 0.197846 0.171524 0.201438 TRUE 

Age 0.150553 0.185836 0.154974 0.188334 TRUE 

Outcome 0.306038 0.405073 0.268547 0.364787 TRUE 

Next, we checked whether the mean of a particular variable in the synthetic data set falls into the CI of the same variable in the 

real data set. Unsurprisingly, the means of all synthetic variables fall into the CI for the mean of the real variable, except for 

the Glucose variable. 

Table 3. Real Lower Bound and Upper Bound Comparison for the Synthetic Mean. 

 
Real Lower Bound Real Upper Bound Synthetic Mean Synthetic Mean in Real CI 

Pregnancies 0.179988 0.219685 0.218036 TRUE 

Glucose 0.437466 0.48237 0.390794 FALSE 

BloodPressure 0.392797 0.429594 0.397274 TRUE 

SkinThickness 0.377259 0.415995 0.381724 TRUE 

Insulin 0.139785 0.16527 0.158178 TRUE 

BMI 0.285334 0.314109 0.288834 TRUE 

DiabetesPedigreeFunction 0.169487 0.197846 0.186481 TRUE 

Age 0.150553 0.185836 0.171654 TRUE 

Outcome 0.306038 0.405073 0.316667 TRUE 

 

8.2.3. Kullback-Leibler (KL) Divergence 

For each variable, we have two different probability 

distributions: the true distribution (from the real data); and an 

approximation of that distribution (from the synthetic data). 

To quantify the difference between the two, we compute the 

KL divergence score. Mathematically, the KL divergence is 

the expectation of the logarithmic difference between the 

probability of data in the real data distribution P with the 

approximating synthetic data distribution Q: �[��‖�� �
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��log ���� � log ����� [23]. 

Table 4. KL Divergence Score. 

Variable KL Divergence Score 

Pregnancies 0.73907 

Glucose 0.37357 

BloodPressure 0.201723 

SkinThickness 0.24717 

Insulin 0.62436 

BMI 0.20132 

DiabetesPedigreeFunction 0.58388 

Age 1.08929 

The intuition behind this score is simple. Consider P’s 

divergence from Q. When the probability of an event from P 

is large and the probability of the same event in Q is small, 

the divergence is large. When the probability from P is small 

and the probability from Q is large, the divergence is also 

large, but is smaller as compared to the first case. The score 

takes on values between 0 and 1∞. A score of 0 indicates 

that P and Q match perfectly. For each predictor variable, we 

compute the KL divergence score between its true and 

approximated distribution. The KL divergence scores for all 

8 predictors are relatively small and are close to 0, which is 

ideal. 

8.3. Synthetic Minority Oversampling 

Technique (SMOTE) 

Traditional machine learning classification algorithms often 

exhibit unsatisfactory performance on imbalanced data sets. 

This is because the minority class has minimal effect on the 

overall accuracy. For example, if a data set has an extremely 

imbalanced class distribution of 95:5, the useless classifier 

will be 95% accurate simply by predicting all samples as the 

majority class. The predictive performance of such a 

classifier is especially deceiving since samples from the 

minority class are completely missed. This poses a 

significant problem since the minority class is usually the 

class of interest and therefore, the more important class. 

SMOTE balances the classes by synthesizing artificial samples 

[24]. It randomly selects an existing point from the minority 

class and locates its k nearest neighbours of the same class. For 

each of these pairs, a new point is generated in the vector 

between them. In this study, we use the implementation from 

the imbalanced-learn python library [25]. 

8.4. Random Forest (RF) Classifier 

The real data set was combined with the artificial data set and 

shuffled to yield a third data set. 

For each of the 3 data sets, the following process was 

conducted: 

The data was first split into 70% for training and 30% for 

testing. 

SMOTE was used to balance the classes in the training set. 

A RF classifier was fitted to the balanced training set and 

used to predict on the test set. 

8.4.1. Metrics 

Our primary goal is to achieve at least 75% prediction 

accuracy. Apart from achieving a high accuracy rate, we also 

hope to reduce false negatives in our diagnosis so as to pick 

up potential patients as soon as possible. This is extremely 

important as we are dealing with patients’ lives, and we 

should aim to reach out to them in the shortest amount of 

time possible. Hence, we hope to obtain high sensitivity, 

without compromising on specificity. 

If we were to use a test with low specificity for screening, 

many patients without diabetes will be classified as having 

diabetes. These patients would potentially receive 

unnecessary diagnostic procedures or further treatment. By 

raising specificity there will be fewer of such false positive 

results. 

Table 5. Accuracy Measures for Imbalanced and Balanced Synthetic, Real 

and Combined Data. 

 

Imbalanced 

Synthetic Data 

Balanced Synthetic Data 

(using SMOTE) 

Accuracy 0.85185 0.85185 

Sensitivity 0.62857 0.80000 

Specificity 0.95890 0.87671 

Precision 0.88000 0.75676 

Recall 0.62857 0.80000 

F1-score 0.73333 0.77778 

AUC 0.79374 0.83836 

 

 

Imbalanced Real 

Data 

Balanced Real Data (using 

SMOTE) 

Accuracy 0.80556 0.78704 

Sensitivity 0.74359 0.84615 

Specificity 0.84058 0.75362 

Precision 0.72500 0.66000 

Recall 0.74359 0.84615 

F1-score 0.73418 0.74157 

AUC 0.79208 0.79989 

 

 

Imbalanced 

Combined Data 

Balanced Combined Data 

(using SMOTE) 

Accuracy 0.84722 0.87037 

Sensitivity 0.71831 0.81690 

Specificity 0.91034 0.89655 

Precision 0.79688 0.79452 

Recall 0.71831 0.81690 

F1-score 0.75556 0.80556 

AUC 0.81433 0.85673 

For the RF classifiers fitted to all three data sets, we notice an 

increase in sensitivity and Area Under Curve (AUC) score 

after balancing the training data using SMOTE. To verify 

whether the availability of more training data helps improve 

the performance of classification algorithms, we will focus 

specifically on the results of the RF classifiers fitted to the 
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balanced real training data and the balanced combined 

training data. The latter achieves a much higher accuracy of 

87.0% as compared to 78.7% attained by the former. The 

latter also achieves a higher AUC score of 0.857, which 

implies that the model is now better at distinguishing 

between the positive class and negative class. Even though 

the latter has slightly lower sensitivity of 81.7%, this value is 

relatively high and is still comparable to the 84.6% attained 

by the former. 

8.4.2. Feature Importance 

We compare the feature importance for the RF classifiers 

fitted to all 3 data sets using the implementation from the 

scikit-learn python library. In this case, feature importance is 

calculated as the reduction in node impurity (Gini index or 

entropy) weighted by the probability of reaching that node 

[26]. The node probability can be calculated by the number 

of samples that reach the node, divided by the total number 

of samples. The higher the value, the more important the 

feature. 

With reference to the table below, the features in each data 

set are ordered in descending order of feature importance. 

Ideally, the top few features picked out for the combined data 

set should be the same few identified in the real data set. We 

can see from Table 6, that the 5 most important features for 

the Real and Combined data is the same, while the order of 

importance is slightly different. 

Table 6. Features of Importance for Synthetic, Real and Combined Data. 

Synthetic Data Real Data Combined Data 

Insulin Glucose Glucose 

BMI Insulin Insulin 

Glucose Age BMI 

Age BMI DiabetesPedigreeFunction 

SkinThickness DiabetesPedigreeFunction Age 

DiabetesPedigreeFunction SkinThickness Pregnancies 

BloodPressure Pregnancies SkinThickness 

Pregnancies BloodPressure BloodPressure 

 

9. Conclusion 

In this paper, we studied common problems experienced in 

training GANs. To address these issues, we incorporated 

various techniques; namely, one-sided label smoothing, 

minibatch discrimination and batch normalization into the 

network architecture of the Vanilla GAN model. Different 

combinations of learning rates and batch sizes were used for 

GAN training. To determine which combination works best, 

we evaluated the similarity between the real and the synthetic 

data generated. This meets our first objective - to generate a 

sufficiently realistic synthetic data set that can be used in 

place of the original real data. 

Our next step involved using SMOTE to balance the classes 

in the real data set and the combined data set. We analyzed 

the performance of a RF classifier trained separately on the 

balanced real data set and on the balanced combined data set. 

We verified that the availability of more training data helps 

improve the accuracy of the classifier, while achieving 

relatively high sensitivity. This meets our second objective - 

to inflate the size of the training data so as to enhance the 

performance of machine learning classifiers. 

As an initial inquiry, this research limits itself to one GAN 

architecture and one data set. For future work, we will 

explore different network architectures, as well as data sets 

with diverse characteristics. We are particularly interested in 

investigating the effect of the number of classes and features 

in the data set on the final results. 
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