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Abstract 

In this study, the relative indicator glycated hemoglobin (HbA1c) was determined by near-infrared (NIR) spectroscopy in human 

hemolysate samples. Because HbA1c is a percentage indicator, it was indirectly determined via Hb and Hb•HbA1c (absolute 

HbA1c content). Equidistant combination multiple linear regression (EC-MLR) and moving window partial least squares 

(MW-PLS) methods were employed for screening key wavelengths. Using the EC-MLR, 6 and 14 wavelengths were selected for 

Hb and Hb•HbA1c, respectively. Using the MW-PLS, wavebands 940–1750 nm and 1492–1858 nm were selected for Hb and 

Hb•HbA1c, respectively. The EC-MLR method adopted fewer wavelengths. The HbA1c predicted values were further 

calculated by predicted values of Hb and Hb•HbA1c. The obtained root mean square error and correlation coefficients of 

prediction (V_SEP, V_RP) for HbA1c in validation set were 0.49% and 0.909 with EC-MLR method and 0.41% and 0.919 with 

MW-PLS method. Both methods achieved good prediction results. The results show that the strategy of measuring relative 

indicator HbA1c by NIR is feasible, which provides a wider application space for NIR spectroscopy. In addition, the technique is 

fast and simple compared to traditional methods, so it is a promising tool for screening diabetes in large populations. 
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1. Introduction 

Diabetes is a chronic metabolic disease characterized by 

hyperglycemia due to defects in insulin secretion or impaired 

insulin action, which seriously endangers human health. 

Therefore, it is of great significance to actively explore new 

treatment methods and strengthen preventive measures for 

diabetes. Studies have shown that good blood glucose control 

can delay the occurrence of diabetes and its complications. 

Glycosylated hemoglobin (HbA1c) is the “gold standard” for 

evaluating long-term blood glucose levels. It is not easily 

affected by other factors (eating, medication, etc.) and can 

objectively reflect the state of hyperglycemia. Therefore, the 

rapid and accurate detection of HbA1c is important for 

diabetes screening, diagnosis and treatment. 

HbA1c is formed via the non-enzymatic glycation of glucose 

and hemoglobin in the blood. This process is irreversible and 

involves a series of Maillard reactions [1]. The HbA1c value is 

a relative percentage, equaling to the ratio of the HbA1c 

absolute content to total Hb. The clinical cut-off value of 

HbA1c is 6.0%, that is, HbA1c >6.0% is a diabetic phenotype 

positive patient [2]. 

Near-infrared (NIR) spectroscopy is mainly produced by 

frequency doubling and combination absorption of molecular 

vibration, and only the stretching vibration of 

hydrogen-containing functional groups such as C-H, N-H, 

S-H, and O-H can be detected. This technique can fast and 

directly detect samples without reagents. The molecules of 

glucose and Hb contain hydrogen-containing functional 

groups that have marked absorption in the NIR region, so NIR 

spectroscopy was used to analyze glucose and Hb in many 

previous studies [3–9]. The process of Hb saccharification 
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(Maillard reactions) includes some hydrogen-containing 

functional groups; therefore, NIR spectroscopy has the 

theoretical basis for obtaining the information about HbA1c. 

The HbA1c value and its spectral absorption value do not 

conform to Beer’s law because it is a percentage. Therefore, 

HbA1c cannot be directly analyzed by NIR spectroscopy. As a 

result, there are few related studies on HbA1c detection by 

NIR spectroscopy. Indirect determination of HbA1c is 

considered in this study. Since Hb can be determined by NIR 

[6–9], we judge Hb•HbA1c can be determined with the same 

method. The predicted values of HbA1c can be obtained by 

simple calculation of the predicted values of Hb and 

Hb•HbA1c. 

Since human blood is a multi-component system, when one 

component is analyzed by NIR spectroscopy, it will be 

interfered by the noise of other components. Thus, wavelength 

selection is essential for the rapid and accurate measurement 

of the human blood with NIR spectroscopy. The moving 

window PLS (MW-PLS) and the equidistant combination 

multiple linear regressions (EC-MLR) are widely-used and 

well-performed wavelength selection methods [9–15], so both 

of them were used for selecting information wavebands and 

wavelength combinations. Furthermore, Savitzky–Golay (SG) 

smoothing, as an efficient spectral preprocessing method, was 

employed for the spectral data pretreatment. 

2. Materials and Methods 

2.1. Experiment 

The experimental study was done on 240 cases of participants 

who provide informed consent. Experiments were conducted 

in accordance with relevant laws and institutional guidelines 

and approved by local medical institutions. The reference 

values in modeling and validation process of Hb and HbA1c 

for these samples were obtained by traditional methods. Table 

1 is the analysis of the reference values of these samples. 

Based on the HbA1c cut-off value (6.0%), 104 negative and 

136 positive samples were obtained. Considering that the 

peripheral blood is thick with high noise interference, 2 × 

dilute hemolytic solutions were adopted. 

Table 1. Analysis of reference values of Hb and HbA1c for 240 samples. 

Sample types Number of samples 
Hb (g L-1) HbA1c (%) 

Min Max Mean SD Min Max Mean SD 

All samples 240 77 165 130.8 14.2 4.6 10.8 6.32 0.98 

Negative 104 78 165 128.0 14.2 4.6 6.0 5.57 0.35 

Positive 136 77 156 133.0 13.9 6.1 10.8 6.90 0.92 

Note: SD is the abbreviations of standard deviation 

Spectrum was collected with XDS Rapid ContentTM Liquid 

Grating Spectrometer (FOSS, Denmark). The spectral 

scanning range was 780–2498 nm, and the wavelength 

interval was 2 nm. The temperature and relative humidity of 

the laboratory were 25±1°C and 46±1%RH, respectively. 

Each sample was measured three times, and the mean value of 

the three measurements was used for modeling. 

2.2. Sample Set Division 

All samples were divided into two parts, one was called 

modeling set, the other was called validation set, and then the 

modeling set were further divided into calibration and 

prediction sets multiple times so as to avoid the contingency of 

the results of a single division. Calibration and prediction 

processes were conducted for each division and the optimal 

model were determined based on the mean value of predicted 

root mean square error for all divisions. Finally, the optimal 

models were revalidated against the validation samples. It 

should be noted that the validation samples were randomly 

selected and did not participate in the modeling process. 

Figure 1 is frame diagram of sample set division, which shows 

the number of samples and type of calibration, prediction, and 

validation sets. 

 

Figure 1. Frame diagram of sample set division. 

Calibration and prediction models were established for each 

division i, 1, 2, ,  50i = ⋯ . The root mean square errors for 

calibration and prediction for modeling set are respectively 

denoted as M_SECi and M_SEPi, and the corresponding 

correlation coefficients are respectively denoted as M_RC,i and 

M_RP,i. The mean value and standard deviation of the M_SEPi 

and M_RP,i of all divisions were further calculated and 

respectively denoted as M_SEPAve, M_RP,Ave, M_SEPSD, and 

M_RP,SD. These values were used to evaluate prediction effect 

of the model. The root mean square error and correlation 

coefficients of prediction for validation samples were then 

calculated and respectively denoted as V_SEP and V_RP. 
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Hb and Hb•HbA1c were independently quantified through the 

same process. The predicted value of HbA1c can be obtained 

indirectly via simultaneous determination of the above two 

indicators. 

2.3. EC-MLR Method 

EC-MLR is a low key and practical method of selecting 

equidistant discrete wavelengths. For the method, the spectral 

data of N equidistant discrete wavelengths are designated as a 

window. By moving and changing the size of the window, all 

combinations of equidistant discrete wavelengths can be 

obtained. The MLR models are established for all 

combinations, and the optimal wavelengths combination is 

selected accroding to the prediction effect. The parameters of 

the method are as follows: (1) beginning wavelength (B), (2) 

number of wavelengths (N), and (3) number of wavelength 

gaps (G) [15]. The search range of the method can be full 

spectrum or partial spectrum. 

The search range for this study was the full spectrum (780–

2498 nm) with 860 wavelengths. After repeated computer 

experiments, parameters B, N, and G were set to be 

{780, 782, ,2498}B ∈ ⋯ ,  {1, 2, , 50}N ∈ ⋯ , and 

 {1, 2, ,100}G ∈ ⋯ , respectively. For each combination (B, N, 

G) of all divisions of calibration and prediction sets, MLR 

model was established, and then the corresponding M_SEPAve, 

M_RP,Ave, M_SEPSD, and M_RP,SD values were calculated. 

Finally, the optimal wavelength combination was screened out 

based on minimum M_SEPAve. Figure 2 is a schematic 

diagram of the moving window screening for equidistant 

wavelength combination when (B, N, G) = (1554, 14, 9). 

 

Figure 2. Sketch map for equidistant wavelength combinations and screening 

modes of the moving window. 

2.4. MW-PLS Method 

The MW-PLS is an effective variables selection method with 

high prediction ability for NIR analysis. For the method, N 

consecutive spectral data are designated as a window. The 

PLS models are established for all windows in the 

predetermined search area of the spectrum, and information 

wavebands are screened via moving and changing the size of 

the window. Considering the location and length of the 

waveband and the PLS factor are variable, the search 

parameters are set as follows: (1) beginning wavelength (B), 

(2) number of wavelengths (N), and (3) number of PLS factors 

(F) [12–15]. The search range of parameters B, N, and F can 

be determined according to the actual chemical and physical 

properties. For all divisions, PLS model was established for 

each combination of (B, N, F). The corresponding M_SEPAve, 

M_RP,Ave, M_SEPSD, and M_RP,SD values were then calculated. 

The optimal waveband with minimum M_SEPAve was selected 

to achieve stable results. 

The search range of MW-PLS was also full spectrum. Further, 

taking into account both the workload reduction and the 

representativeness, B and F  were set to be 

{780, 782, , 2498}B ∈ ⋯  and {1, 2, , 30}F ∈ ⋯  for Hb and 

Hb•HbA1c. N  were respectively set to be 

Hb {1, 2, , 450} {460, 470, ,860}N ∈ ⋯ ∪ ⋯  and 

Hb HbA1c {1,2, , 200} {215,230, ,860}N • ∈ ⋯ ∪ ⋯ . 

The algorithm codes of the two methods mentioned above 

were written using MATLAB 7.6. 

3. Results and Discussion 

3.1. Results with MW-PLS Method 

In order to show the importance of wavelength selection in 

NIR spectroscopy, the PLS models of Hb and Hb•HbA1c were 

first established in full spectrum. The SG smoothing model 

with first-order derivative, third-degree polynomial and 13 

smoothing points was used in the PLS models for reducing the 

interference of water or other factors on the modelling. The 

prediction results are shown in Table 2. As can be seen from 

the results, the Hb predicted values are highly correlated with 

reference values, but the correlation between the predicted 

values and reference values of Hb•HbA1c is poor. In addition, 

the number of wavelengths used was 860, and the model was 

complex. 

Table 2. Prediction results of PLS models in the whole scanning area (780–2498 nm) for Hb and Hb•HbA1c. 

Indicator Waveband (nm) N F M-SEPAve M-SEPSD M-RP,Ave M-RP,SD 

Hb 780-2498 860 6 4.2 0.3 0.962 0.005 

Hb•HbA1c 780-2498 860 8 1.27 0.08 0.699 0.038 
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To achieve higher model prediction accuracy with fewer 

wavelengths, the MW-PLS method was used for further 

waveband optimization. According to the minimum 

M_SEPAve value, the optimal MW-PLS models were 

determined for Hb and Hb•HbA1c. Table 3 summarizes the 

corresponding prediction effects (M_SEPAve, M_RP,Ave, 

M_SEPSD, and M_RP,SD). The results show that the optimal 

values of B and N are 940 nm and 406 for Hb and 1492 nm and 

184 for Hb•HbA1c, respectively. The corresponding 

waveband were 940–1750 nm for Hb and 1492–1858 nm for 

Hb•HbA1c, which within the NIR overtone region. The 

number of wavelengths for the former waveband was less than 

half of that for the full spectrum and for the latter one; it was 

less than quarter of that for the full spectrum. Therefore, the 

complexity of model was considerably reduced. Tables 2 and 

3 show that M_SEPAve values of the optimal MW-PLS models 

were significantly lower than those of the full spectrum for the 

two indicators. Therefore, the prediction accuracy and 

stability of the optimal MW-PLS models for both the 

indicators were significantly improved, specifically for 

Hb•HbA1c. 

Table 3. Prediction results of the optimal MW-PLS models for Hb and Hb•HbA1c. 

Indicator Waveband (nm) B N F M_SEPAve M_SEPSD M_RP,Ave M_RP,SD 

Hb 940-1750 940 406 5 3.9 0.2 0.968 0.004 

Hb•HbA1c 1492-1858 1492 184 7 0.63 0.06 0.933 0.013 

 

3.2. Results with EC-MLR Method 

The EC-MLR method, which was able to select equidistant 

discrete wavelength combination, requires a relatively wide 

data gap to overcome the spectral colinearity of MLR. The 

optimal models were screened out for Hb and Hb•HbA1c 

according to the minimum M_SEPAve value. Table 4 

summarizes the corresponding parameters B, N, and G and the 

prediction results (M_SEPAve, M_RP,Ave, M_SEPSD, and 

M_RP,SD). 

Table 4. Prediction results of the optimal EC-MLR models for Hb and Hb•HbA1c. 

Indicator Wavelength (nm) B N G M_SEPAve M_SEPSD M_RP,Ave M_RP,SD 

Hb 1520, 1552, 1584, 1616, 1648, 1680 1520 6 16 3.7 0.3 0.971 0.004 

Hb•HbA1c 
1554, 1572, 1590, 1608, 1626, 1644, 1662, 1680, 

1698, 1716, 1734, 1752, 1770, 1788 
1554 14 9 0.76 0.05 0.902 0.011 

 

As can be seen from tables 3 and 4, the prediction effects of 

the two methods are very close. Furthermore, compared with 

MW-PLS, the EC-MLR optimal model contained only 6 

wavelengths for Hb and 14 wavelengths for Hb•HbA1c; thus, 

the complexity of the model is significantly reduced. It should 

be noted that for the two indicators, the optimal wavelengths 

combination screened out by the EC-MLR method was within 

the optimal band selected out by the MW-PLS method. 

Therefore, the spectral absorption regions screened by the two 

methods are consistent, indicating that the wavelength 

selection is reasonable. 

3.3. Model Validation 

In order to further test the accuracy and stability of the selected 

optimal models, 80 validation samples which were not involved 

in the modeling process were used for the corresponding 

experimental verification. The regression coefficients were 

calculated using the spectral data and reference values for entire 

modeling set based on the parameters of the corresponding 

optimal models. Then, based on the obtained regression 

coefficients and the spectra of validation samples, the predicted 

values of the validation samples could be calculated. 

Table 5. Validation results of the optimal MW-PLS and EC-MLR models. 

Indicator Wavelength (nm) N V_SEP V_RP 

MW-PLS method 

Hb 940-1750 406 3.2 0.967 

Hb•HbA1c 1492-1858 184 0.62 0.948 

EC-MLR method 

Hb 1520, 1552, 1584, 1616, 1648, 1680 6 3.4 0.962 

Hb•HbA1c 1554, 1572, 1590, 1608, 1626, 1644, 1662, 1680, 1698, 1716, 1734, 1752, 1770, 1788 14 0.70 0.941 

 
The verification results (V_SEP and V_RP) for validation set 

are presented in Table 5. The results show that the two 

prediction models reach high prediction accuracy. The 

predicted values of Hb and Hb•HbA1c of the validation 

samples are close to the reference values. Satisfactory 

validation results were obtained for the random validation 

samples because stability was taken into account in the 

modeling optimization process. 
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Figure 3. Correlation between the predicted value and the reference value of validation samples for HbA1c based on the optimal (a) MW-PLS and (b) EC-MLR 

models. 

The predicted values of relative indicator HbA1c were 

calculated according to the predicted values of Hb and Hb• 

HbA1c. The corresponding V_SEP and V_RP values of 

HbA1c were 0.41% and 0.919 with the MW-PLS method and 

0.49% and 0.909 with the EC-MLR method, respectively. The 

correlation between the predicted values and the reference 

values for HbA1c of the 80 validation samples is shown in 

Figure 3. The results indicate that the predicted value and the 

reference value of HbA1c were also highly correlated. The 

experimental results confirm the feasibility of using NIR 

spectroscopy to quantitatively analyze HbA1c by 

simultaneous quantitative analysis of Hb and Hb•HbA1c. 

MW-PLS and EC-PLS are two variable selection methods 

commonly used in NIR spectral analysis. Among them, 

MW-PLS selects continuous wavelengths and EC-MLR 

selects equidistant discrete wavelengths. The detection of 

relative indicator is complicated and difficult for NIR 

spectroscopy, so indirect analysis strategy was employed in 

this paper. Based on this strategy and multiple modeling, good 

predicated results can be obtained for relative indicator 

HbA1c by the commonly used variable selection method 

without using complicated and tedious methods. In addition, 

the strategy can also be applied to the analysis of relative 

indicators in other fields. Therefore, the analysis strategy for 

relative indicator is simple and practical, which provides a 

wider application space for NIR spectroscopy. 

4. Conclusion 

The relative percentage HbA1c was successfully determined 

by NIR spectroscopy based on simultaneous determination of 

absolute indicators Hb and Hb•HbA1c. In addition, the 

strategy of multiple modeling was adopted to generate 

objective and stable models. Using MW-PLS and EC-MLR 

methods, appropriate wavebands and wavelength 

combinations were screened out for Hb and Hb•HbA1c based 

on the multiple divisions of calibration and prediction sets. All 

the wavelengths selected by the two methods were within the 

NIR overtone region, and corresponding optimal models 

achieved satisfactory validation effects. In addition, the 

optimal wavelengths combination screened out by the 

EC-MLR method was within the optimal band selected out by 

the MW-PLS method. Thus, the spectral absorption regions 

selected by the two methods were consistent, which indicated 

that the wavelength selections were reasonable. 

The results show that the indirect determination of HbA1c 

based on simultaneous quantitative analysis of Hb and Hb 

HbA1c by NIR spectroscopy is feasible. The strategy of 

determining the relative indicator by NIR spectroscopy can be 

applied to the other fields. 
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