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Abstract 

In this paper, we focus on the classification of high mortality risk patients for Intensive Care Units (ICUs). Classification 

algorithms for identifying ICU mortality are necessary for measuring and improving ICU performance. Mortality risk severity 

scores are an essential part of hospital management and clinical decision-making. Proper application of classification models 

can help in decision making to lower hospital costs. In fact, classification high mortality risk models have become a necessary 

tool to explain differences in mortality risk. Purpose of Study: The purpose of this study is to develop and evaluate a new 

algorithm which more accurately predicts patient mortality in ICU, using patient information of vital signs and laboratory 

results only in the first 24 hours of ICU admission. We convert continuous variables into categorical variables and identify 

optimal threshold cut points for stabilizing the coefficients of the classification mortality risk model. In this paper, an optimal 

set of 3 threshold values were derived, that partitioned the data into 4 groups, resulting in the patient mortality risk scores being 

more distinguishable across the 4 partitioned groups. The most important variables for the ICU Mortality Risk was PO2 (120 –  

125), followed by Cardiac Arrest (Yes), Bilirubin (0.75 – 1), Vasopressors (Yes), SPO2 (< 66), Bilirubin (>7.75), Foley (<6), 

Severe COPD (Yes), WBC (> 19.5) and BUN (> 49). Our proposed optimal threshold cut point model performed substantially 

better (AUC=0.944) in identifying ICU patients with high mortality risk compared to the current scoring systems commonly 

used in hospitals, such as the SAPS 11 (AUC =0.771), APACHE 11 (AUC=0.736) and SOFA (AUC=0.699). This accuracy is 

at least 30% (1.35 times) better than current mortality risk scoring systems. SAPS 11, APACHE 11 and SOFA are static 

algorithms whereas our new optimal threshold algorithm is a data-driven algorithm which predicts mortality in ICU patients in 

real-time and may be useful for the timely identification of deteriorating patients. Our new binary classification algorithm will 

allow clinicians to accurately identify high-mortality risk patients early within 24 hours so that they can be given prompt 

treatment to reduce their risks of deteriorating or dying. 
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1. Introduction 

Quantifying patient health status and predicting mortality 

outcome is a challenge in critical care research. ICU 

mortality prediction plays an important role in patient health 

care and hospital resource allocation, which contributes to 

improving patient survival [1]. Furthermore, they provide us 

with a method of assessing the performance differences 

between different medical facilities and services and thus 

help to reduce disparities in health care. For these purposes, 
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more and more researchers have been devoted to the study of 

improving the accuracy in identifying ICU patient mortality, 

from former score-based system such as APACHE, SAPS, 

and SOFA to now machine learning technology [1]. 

Three commonly used mortality prediction models are the 

Acute Physiology and Chronic Health Evaluation (APACHE) 

[2, 3], the Simplified Acute Physiology Score (SAPS) [4, 5], 

and the Sequential Organ Failure Assessment (SOFA) score 

[6]. Over the years, efforts were made to improve the 

performance of these pre-existing mortality risks scoring 

systems. The most recent versions of the SAPS and APACHE 

scoring systems are SAPS III, APACHE IV [3, 5]. SOFA, on 

the other hand, was designed to evaluate a patient throughout 

the ICU stay. It assigns a score of 0 (normal) to 4 (very 

abnormal) for six different organ systems on each day in the 

ICU [6]. Unlike APACHE and SAPS, SOFA was originally 

intended to characterize patient morbidity as opposed to 

predict patient mortality; however, since its development, it 

has often been used for the latter purpose [7]. 

Extensive research and validation were only done for SAPS, 

SAPSII, APACHE and APACHEII on different populations 

of ICU patients. Also, only these versions have publicly 

available scoring chart to guide users on how to tabulate the 

mortality risk scores. Therefore, our best choice for baseline 

scoring systems for this paper are SAPSII, APACHEII and 

SOFA. In all three systems, the decision of which variables to 

include relied, at least in part, on clinical expertise and 

domain knowledge [2, 5, 6]. In the case of SOFA, the entire 

system was designed through clinical consensus. Our study is 

an improved system for predicting mortality risk in ICU as it 

uses a data-driven classification model which is more 

dynamic and proved to be more accurate than the SAPSII, 

APACHEII and SOFA methods. 

In a clinical study [8] with 3,700 patients admitted to the ICU 

in a university teaching hospital between 1997 to 2003, the 

top risk factors for death in ICU were concluded to be 

cardiovascular failure and need for re-admission to ICU. 

There was also a significantly positive relationship between 

the number of failing organs and the ICU mortality rate. In a 

separate cohort study [9], the author stresses that the majority 

of patients present had at least one organ failure at the time of 

death. This provided evidence for multiple organ dysfunction 

syndrome as another crucial risk factor of mortality in ICU. 

In another study [10], it identified cancer, blood PH, and 

level of consciousness at the ICU admission as significant 

risk factors for mortality. 

With the increasing popularity and successes of machine 

learning in the data science field, many researchers started to 

adopt these models to do clinical predictions. Earlier [11] and 

recent works [12] showed that machine learning models 

obtained good predictive performance, and significantly 

outperformed SAPS, APACHE and SOFA. This was further 

validated by a recent study [13] which uses the same MIMIC 

III database for their clinical analysis. 

In one published medical paper [14], it argued that most of 

the traditional scoring systems like SAPS II and SOFA 

“assume that risk factors are independent from one another, 

and hence are not sensitive to underlying complex 

homeostatic physiologies of patients”. In response to this 

limitation, it introduced a new method called the Auto-Triage 

scoring system. The basic idea was to assign weights to 

combinations of variables based on the corresponding 

correlations between individual, pairs and triplets of variables 

with in-hospital death. A logistics regression model was then 

used to scale and combine the weights to form the Auto-

Triage scores. The Auto-Triage method provided a baseline 

prediction score 12 hours in advance for ICU patients, and it 

showed significant improvement in the accuracy and 

specificity as compared to the SAPSII and SOFA severity 

scores. 

In another research paper [15], the author presented a new 

novel approach called the Univariate Flagging Algorithm to 

predict mortality outcome for patients in ICU. Our main 

methodology, which is to be discussed in a later section, is 

inspired by this research paper. The basic idea behind this 

approach was to identify optimal thresholds for each input 

variable from a list of candidate threshold values. The Z-

statistic was used to test for statistical significance. This 

algorithm first finds the optimal threshold below the median, 

and the procedure was repeated to find the optimal threshold 

above the median, to eventually give 2 most significant 

thresholds as the optimal threshold values for each input 

variable. After which, the usual model fitting and cross 

validations were done, and all the machine learning methods 

once again outperformed the pre-existing scoring systems by 

significant margins. In this paper, machine learning models 

were also shown to consistently outperform the SAPSII, 

APACHEII and SOFA scoring systems. 

This paper is structured into 5 sections. While Section 1 is 

the introduction, Section 2 gives a brief overview of the 

methods used, Section 3 the results, and Section 4 the 

discussion, after which Section 5 presents the conclusion. 

2. Methods 

2.1. Data Source 

Our data came from the Multiparameter Intelligent 

Monitoring in Intensive Care (MIMIC) III database [16]. The 

MIMIC-III Clinical Database is a large, publicly available 

database which contains de-identified health related data of 
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about 60,000 admissions, including readmissions, of patients 

who stayed in the ICU (critical care units) of the Beth Israel 

Deaconess Medical Care Center between 2001 and 2012. 

The database includes information such as demographics, 

vital sign measurements made at the bedside, laboratory test 

results, procedures, medications, nurse and physician notes, 

imaging reports and out-of-hospital mortality. Only patients 

with at least 25 hours of length of stay or were alive for at 

least 25 hours were included in our cohort sample. As a 

result, our sample only has 11,105 patients, filtered from a 

total of 13,651 patients from the MIMIC III Metavision 

database record system. A 5-fold cross validation dataset was 

used where, the data was first split into 5 mutually exclusive 

datasets of approximately equal size. Each algorithm was run 

iteratively on the 5 training sets and used to predict mortality 

risk for patients using the remaining 4 validation datasets. 

2.2. Feature Selection 

To build a classification model for mortality risk, we first 

need to know the variables that should be included in the 

model. Table 1. shows the list of all candidate variables. 

Table 1. Candidate Variables for Classification. 

Organ System SAPS II, APACHE II, SOFA Variables 

Respiratory PO2, FiO2, Heart rate, Respiratory rate, A-aPO2 

Nervous Glasgow Coma Scale – eye opening, verbal response, motor response 

Cardio-vascular Blood Pressures – Systolic, Diastolic, Mean, Vasopressors 

Liver Bilirubin 

Blood Platelets, White blood Cells, Bicarbonate, Sodium, Potassium, Blood Urea Nitrogen 

Kidney Creatinine, Hematocrit 

Others Temperature, Admission Age, Admission Type, Hematologic Malignancy* 

ORGAN SYSTEM NEW VARIABLES FROM LITERATURE REVIEWS 

Respiratory SPO2, O2 flow, Mechanical Ventilation 

Cardio-vascular Past History of Cardiac Arrest 

Liver Past History of Cirrhosis 

Endocrine Glucose 

Kidney Foley 

Others Past History of COPD*, Immunocompromised*, Metastatic Nonblood Cancer*, Admission Location 

*These variables are specific diagnosed conditions upon admission. 

With these candidate variables, we will first discuss how to 

select the significant numeric/temporal variables, followed 

by the steps taken for the categorical variables. 

2.2.1. Steps for Numerical Variable 

Selection 

Since we are constructing a baseline mortality risk prediction 

model, we set the window frame for measurements for each 

input variable to be within 24h from admission time. 

1. Check the patient coverage for each of the 27 numeric 

variables and filter out variables that do not have 

adequate patient coverage. 

2. Replace missing measurements with the median value 

of the respective mortality status group that the patient 

belongs to, for numeric variables with adequate patient 

coverage. For example, the survivors group has a 

median eye opening (minimum) score of 3. Hence a 

patient who survived with missing eye-opening 

measurement will be assigned an eye-opening 

(minimum) score of 3. 

3. For each numeric variable, perform a 2-Sample T-test, 

to test whether the mean of the survivor group is 

significantly different from the mean of the non-

survivor group. In other words, we test the following 

hypothesis: 

H_0: µ_survivor = µ_nonsurvivor 

H_1: µ_survivor ≠ µ_nonsurvivor 

For each variable, we test for significant differences for at 

least one of the following descriptive statistics: minimum, 

maximum and median. For example, for the minimum, we 

extract the minimum measurement value within the specified 

window frame for each patient and use these values to 

construct our t-statistic to test for significant differences in 

the means between the survivors and non-survivor groups. 

We will then compare the t-test results for all the three 

descriptive statistics to select the most significant one. In 

short, for each numeric variable, with at least 1 descriptive 

(minimum/maximum/median) t-test statistic result with a 

significant p-value (<0.05), choosing the descriptive statistic 

with the most significant p-value for a candidate selection 

variable for our classification algorithm. Otherwise, we drop 

the variable entirely (i.e. p-value > 0.05 for all descriptive 

statistics) 

Table 2 below gives us the finalized list of shortlisted 

numeric variables as well as their corresponding descriptive 

statistics used. 
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Table 2. Significant Numeric Variables. 

GCS eye opening (min) 

GCS verbal response (min) 

GCS motor response (min) 

Systolic Blood pressure (min) 

Diastolic Blood pressure (min) 

Mean Blood pressure (min) 

Temperature (min) 

Heart rate (max) 

Respiratory rate (median) 

PO2 (median) 

SpO2 (min) 

Bicarbonate (min) 

Bilirubin (max) 

White blood cell (min) 

Creatinine (max) 

Hematocrit (max) 

Platelets (min) 

Sodium (min) 

Potassium (median) 

Blood urea nitrogen (min) 

Foley (min) 

Glucose (max) 

Admission Age 

It was interesting to discover that the Mean Blood Pressure 

(min) was more significant for classifying ICU patient 

mortality risk than Mean Blood Pressure (max). 

2.2.2. Steps for Categorical Variable 

Selection 

To select the categorical variables, the chi-square test is used 

to test for significant differences in the mortality rates 

between the factor levels of each categorical variable. Table 3 

shows the finalized list of selected categorical variables and 

their corresponding factor levels 

Table 3. Significant Categorical Variables. 

ORGAN SYSTEM VARIABLE FACTOR LEVELS 

Respiratory 
Mechanical 

Ventilation 

Yes 

No 

Cardio- 

vascular 

Vasopressors 
Yes 

No 

H/O Cardiac Arrest 
Yes 

No 

Liver H/O Cirrhosis 
Yes 

No 

Others 

Admission Location 

Emergency Room/ICU 

Ward 

Outside ICU 

Admission Type 
Planned 

Unplanned 

Hematologic 

Malignancy 

Yes 

No 

H/O Immuno-

Compromised 

Yes 

No 

H/O COPD 
Yes 

No 

H/O Metastatic Cancer 
Yes 

No 

Co-Morbidities 

None 

1 

2 

3-4 

2.3. Logit Regression Using Threshold Cut 

points for Continuous Variables 

Instead of keeping the numeric variables as continuous 

variables, we convert them into categorical variables by 

setting partition values. The basic idea is to find a set of 

threshold cut points that can maximize the differences in 

mortality risk for survivor and non-survivor patients. 

In Table 4. below, we have the binary outcome variable, Y = 

{0,1} (0: survivor patient; 1: non-survivor patient), the 

predictor variable, X, and c, the candidate threshold value. 

Table 5. is the scenario with 2 threshold values, c1 and c2. 

Table 4. Partitioning of a Continuous Variable with 1 threshold value, c1. 

 X ≤	c1 X > c1 

Y = 0 n11 n12 

Y = 1 n21 n22 

*Note: n11, n12, n21, n22 are the cell counts. 

Table 5. Partitioning of a Continuous Variable with 2 threshold values, c1 & 

c2. 

 X < c1 c1 ≤	X ≤ c2 X > c2 

Y = 0 n11 n12 n13 

Y = 1 n21 n22 n23 

*Note: n11, n12, n13, n21, n22, n23 are the cell counts. 

For selected variables with very high variances, to avoid 

having small numbers in one of the groups following the 

dichotomization, thereby prevent substantial losses in 

statistical power, we will exclude the outer 10% of the 

continuous covariate distribution, and only use the inner 90% 

of the distribution as our selection interval to choose the 

threshold cut points. 

For each variable, let the number of candidate threshold 

values be k. For each candidate threshold value, obtain the 

chi-square test statistic and p-value and arrange the k 

candidate threshold values in descending order of the 

magnitude of chi-square statistic value. To ensure the 

reliability of the chi-square test statistic, we only keep 

threshold values such that n11+ n21> 50 and n12+ n22> 50 

(Refer to Table 4). In other words, the partitioned cell counts 

must be sufficiently large. Candidate threshold values with 

insignificant chi-square test statistics < critical value x_1^2 

(0.05) = 3.84 are also discarded. 

Next, we select the best candidate threshold value c1 with the 

highest chi-square test statistic v1 and rerun the chi-square 

test on the (k-1) pairs of candidate threshold values – (c1, 

c2), (c1, c3), …, (c1, ck). Similarly, to ensure the reliability 

of the chi-square test statistic, we only keep pairs of 

threshold values such that n11+ n21 > 50, n12+ n22 > 50 and 

n13+ n23 > 50 (Refer to Table A1 in the appendix). 

Threshold pairs with insignificant chi-square test statistics < 
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critical value x_2^2 (0.05) = 5.99 are also discarded. 

Arrange the pairs of threshold values in descending order of the 

magnitude of their corresponding chi-square test statistic values. 

Let the best performing pair of threshold values be c (1,2) and its 

corresponding p-value be v (1,2). If v (1,2) < v1, we will choose 

c (1,2) as our optimal threshold cut points. Otherwise, we keep 

c1 as our optimal threshold cut point for the variable. 

Repeat this partitioning procedure to obtain the best 

performing set of 3 threshold values (Let the best performing 

set of 3 threshold values be c (1,2,3)), and do the p-value test 

again to determine whether to update the optimal threshold set 

from c (1,2) to c (1,2,3). The number of threshold values 

should be capped at 3 (i.e. maximum number of corresponding 

partitioned groups is 4), as it is not ideal to have too many 

partitions as it can introduce problems such as overfitting. 

Table A1 and Table A2 in the appendix show the optimal set 

threshold values for 2 and 3 threshold values (i.e. c (1,2) and 

c (1,2,3)) for all continuous variables respectively. It is clear 

that the optimal set of 3 threshold values separate the data 

better and the mortality rates are more distinguishable across 

the 4 partitioned groups. We will use the 3-partition version 

for all variables. An exception is the temperature variable 

where its optimal set of 2 threshold values will be used 

instead of the optimal set of 3 threshold values, even though 

the p-value for the set of 3 threshold values is significantly 

smaller (Refer to Table 4 and Table 5) This is because it is 

not sensible to include an additional threshold value (c2) of 

36.1 that is so close to the pre-existing threshold value of 

36.0 (c1) (Refer to Table 5). 

Note that for the 3 Glasgow Coma Scale variables (i.e. eye 

opening, verbal response and motor response), the original 

values are retained and are not subject to partitioning. Even 

though these variables are numeric, they are discrete (not 

continuous) variables, with integer values ranging from 1 to 

4, 1 to 5 and 1 to 6 respectively. 

With the exception of the Glasgow Coma Scale variables, all 

the other partitioned continuous variables and categorical 

variables are converted into dummy variables (0 and 1). 

The stepwise variable selection algorithm was implemented 

in R using the My.stepwise.glm function from the 

My.stepwise R package. 

3. Results 

The stepwise variable selection procedure (with iterations 

between ‘forward’ and ‘backward’ steps) was used to obtain 

the best candidate reduced logistics regression model. The 

significance levels for entry (SLE) and for stay (SLS) were 

set at 0.15, and the best reduced regression model was 

identified manually by adding or dropping variables one at a 

time until all regression coefficients were significantly 

different from 0 at the chosen alpha level of 0.05. 

For the stepwise variable selection procedure, we set the 

reference partition to the factor level with lowest mortality 

rate among all the factor levels for the variable. This was to 

allow easier analysis of the fitted coefficients of the logistics 

regression model to derive the scoring algorithm. 

Using the scoring chart in Table A3 in the appendix, we 

obtain a Total Score for each patient, by summing up the 

relevant scores (fitted coefficients). The formulae below 

convert the Total Score into the Predicted Mortality Risk (%). 

Logit = -6.29014+Total score 
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The performance of our Logistic Optimal Threshold 

Classification Model was evaluated using the Area under the 

Curve (AUC), Sensitivity and Specificity. All three metrics 

produced excellent performance results. See Table 6 below. 

Table 6. Performance of Logistic Optimal Threshold Model. 

Area under the Curve (AUC) 0.925 

Sensitivity 0.871 

Specificity 0.834 

The binary optimal threshold cut point model results were 

considered good. 

From Figure 1, the top 10 factors contribute to 40% of the 

variability for mortality risk scoring. Further, PO2 (120-125), 

Age (>=73) and Eye Opening are the most important factors 

for classifying high mortality risk ICU patients. 

 

Figure 1. Variable Importance for Classifying ICU Mortality Risk. 
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We tested the performance of our model on unseen data. The 

binary optimal threshold cut point model approach performed 

extremely well with an AUC of 0.944, sensitivity of 0.867 

and specificity of 0.876. 

4. Discussion 

Logistics regression models are sensitive to outliers. Extreme 

outliers have a significant impact on the fitted model, and 

this will in turn result in unreliable fitted coefficients. To 

address this problem, we partitioned the continuous variables 

into optimal threshold sub groups, to maximize the mortality 

differences across the sub groups. Hence, instead of using the 

raw continuous variables to fit the model, we use the 

partitioned threshold groups as the input variables. 

The most crucial step to obtain a good model is the choice of 

threshold values, as the stepwise variable selection relies 

heavily on it to obtain the best reduced logistics regression 

model. As seen in the previous section, the selected variables 

can change drastically when the threshold values for just 1 

variable (bilirubin) are modified. However, a consistent 

pattern in the order of the top few most important variables 

was observed. For instance, vasopressors, eye-opening and 

PO2 levels were consistently the top 3 most important 

variables in almost all the fitted models. 

The below pointers summarize the important results of our 

methodology. 

1. Out of the 3 Glasgow coma scale scoring variables, eye 

opening is the most important indicator for mortality risk. 

2. There is an exponential increase in mortality risk as age 

increases. 

3. For patients with hypertension (i.e. high blood 

4. pressure), the maximum blood pressure recorded in the 

first 24h (baseline) is not correlated with mortality risk. 

Instead, the minimum blood pressure measurements 

provide more useful information in the prediction of ICU 

mortality risks. 

5. While the partitioned numeric temporal variables were 

able to produce more accurate mortality prediction results 

in comparison to using the raw numeric variables, the 

partitions were heavily dependent on the data. It is most 

applicable when the clinical data outliers are a result of 

measurement recording error. 

6. Most of the non-temporal variables that were used in this 

report are critical factors of ICU mortality, as they provide 

more concrete information about the severity of the 

patients’ conditions upon admission or during the first 24h 

of admission. 

7. The one factor that stood out from the rest is whether the 

patient has cardiac arrest upon admission. Among the 277 

patients who had cardiac arrest upon admission, 49.5% of 

them did not survive. 

8. As a risk factor indicator on its own, the number of co-

morbidities that a patient has is clearly positively 

correlated with mortality risk. However, when we fit the 

model to include all the variables, the number of co-

morbidities does not provide new information and hence 

was dropped from the model. 

5. Implementation of R Shiny 
Tool 

Our end goal is to be able to come up with an efficient tool 

for clinicians to predict the mortality risk of ICU patients 

within 24 hours from admission. Also, we will want the tool 

to be able to help pinpoint the crucial factors that are driving 

the high or low mortality risk so that the clinicians can know 

what to pay attention to in order to reduce the patient’s risk 

of dying as early as possible. The Mortality Risk Calculator 

R Shiny App acts as an interactive platform to serve this 

purpose. The link for this App is at [17]. 

This R Shiny App (see Figure A1 and Figure A2 in the 

Appendix) is interactive as it allows clinicians to choose the 

patient information they want to view, by selecting the 

patient ID from the sidebar panel. The main panel has 3 main 

tabs. The first one is named as “Admission/ICU data” and it 

displays all the values/ raw measurements of the input 

variables. The second tab is “Mortality Outcomes” (see 

figure A1 in the Appendix) and it shows the predicted 

mortality status, mortality risk group as well as the mortality 

risk probability. 

For comparison purposes, we also included the actual 

mortality status as one of the columns. The last tab is the 

“Notes for Clinicians”, and it shows the summary of the main 

drivers of the patient’s low or high mortality risk. These 

summaries help the doctors to quickly understand a patient’s 

health status at first glance. 

6. Conclusion 

Improved mortality prediction for patients in intensive care 

units (ICU) remains an important challenge. The purpose of 

this study was to develop and evaluate a new algorithm 

which more accurately predicts patient mortality in ICU, 

using patient information of vital signs and laboratory results 

only in the first 24 hours of ICU admission. 

The Area under the Curve (AUC) is a good metric for 

determining model performance. Our new binary optimal 
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threshold cut point algorithm performed extremely well with 

an AUC of 0.944, sensitivity of 0.867 and specificity of 

0.876. In fact, our proposed optimal threshold cut point 

model performed substantially better in identifying ICU 

patients with high mortality risk compared to the current 

scoring systems commonly used in hospitals, such as the 

SAPS 11 (AUC =0.771), APACHE 11 (AUC=0.736) and 

SOFA (AUC=0.699). 

The current mortality risk scoring systems do not take into 

the account history of co-morbidities. Our new binary 

optimal threshold algorithm included co-morbidities such as 

1) History of COPD 

2) History of Cardiac Arrest 

3) History of Cirrhosis 

Our study predicts patient mortality based on vitals, 

demographics, and lab results during the first 24 hours, with 

new identified key predictors for ICU mortality risk. See 

Table 7 below. 

Table 7. New Key Predictors for ICU Mortality Risk. 

Organ System New Variables Contribution (%) 

Cardiovascualr History of Cardiac Arrest 4.02% 

Others History of COPD 2.8% 

Kidney Foley 2.78% 

 
While PO2(120-125), Age (>=73) and Eye opening are the 

top three variables of importance for identifying ICU 

mortality risk, H/O Cardiac Arrest contribute, H/O COPD 

and Foley are in the top ten most important variables (see 

figure 1). 

Our new algorithm has made substantial improvements for 

predicting ICU mortality risk of patients, an increased 

accuracy of at least 17% when compared to current scoring 

systems. Further, SAPS 11, APACHE 11 and SOFA are 

static algorithms whereas our new optimal threshold 

algorithm is a data-driven algorithm which predicts mortality 

in ICU patients in real-time and may be useful for the timely 

identification of deteriorating patients. 

Our algorithm developed machine learning methods to 

identify patients at high mortality risk in real time. The 

results suggest better accuracy compared to established 

scoring systems. The optimal threshold cut-point technique 

provides clinicians with thresholds that can be interpreted 

better in ICU environments. It makes it easier for doctors to 

apply the results from the classification algorithm to alleviate 

mortality risk. 

Appendix 

Table A1. Optimal set of 2 Threshold Values for Continuous Variables. 

Variable c1 c2 % death (X < c1) % death (c1 ≤	X <	c2) % death (X (c2) p-value X2 statistic 

Temperature 36.0 37.1 12.8% 7.9% 12.7% 1.2*10-12 55 

Systolic BP 80.0 90.0 18.8% 14.6% 6.9% 1.8*10-42 192 

Diastolic BP 45.0 50.0 15.5% 5.4% 8.6% 6.9*10-37 167 

Mean BP 50.0 55.0 16.3% 11.4% 8.4% 7.8*10-18 79 

Heart rate 105 135 7.8% 12.7% 18.8% 1.3*10-20 92 

Respir rate 20 24 7.0% 14.0% 23.8% 3.1*10-51 233 

PO2 120 155 17.5% 29.1% 4.3% 2.2*10-153 703 

SPO2 66 86 41.4% 21.3% 8.9% 1.8*10-35 160 

Bicarbonate 16 18 29.7% 17.5% 7.8% 1.3*10-68 313 

Bilirubin 1.5 7.0 8.9% 16.3% 27.2% 1.4*10-23 105 

WBC 12.5 19.5 8.1% 15.0% 24.3% 1.8*10-32 146 

Creatinine 1.3 2.0 7.2% 12.5% 20.0% 6.6*10-40 180 

Hematocrit 31 49 12.7% 9.3% 18.6% 9.7*10-7 28 

Platelets 20 34 15.7% 8.9% 14.8% 8.9*10-12 51 

Sodium 129 143 19.0% 9.3% 18.4% 6.4*10-14 61 

Potassium 3.4 5.1 12.8% 9.2% 21.7% 1.6*10--16 73 

BUN 23 49 7.2% 14.0% 22.7% 5.0*10-45 204 

Foley 6 20 27.7% 15.3% 6.2% 6.8*10-88 401 

Glucose 82 241 20.9% 8.6% 19.2% 6.9*10-29 130 

Age 61 73 6.2% 8.4% 14.8% 2.0*10-29 132 
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Table A2. Optimal set of 3 Threshold Values for Continuous Variables. 

Variable c1 c2 c3 
%death 

(X < c1) 

%death 

(c1 ≤	X < c2) 

%death 

(c2 ≤	X <	c3) 

%death 

(X ( c3) 
p-value X2 statistic 

Temperature 36.0 36.1 37.1 12.8% 12.2% 7.4% 12.7% 2.3*10-14 67 

Systolic BP 80.0 90.0 95.0 18.8% 11.8% 15.1% 6.3% 5.8*10-44 204 

Diastolic BP 45.0 50.0 55.0 15.5% 4.8% 9.4% 8.5% 4.7*10-38 176 

Mean BP 40.0 50.0 55.0 20.3% 14.8% 11.4% 8.4% 6.6*10-19 88 

Heart rate 105 120 135 7.8% 11.7% 14.8% 18.8% 3.8*10-21 98 

Respir rate 18 20 24 6.1% 9.1% 14.0% 23.8% 1.1*10-52 244 

PO2 120 125 155 17.5% 61.7% 15.1% 4.3% 2*10-256 1184 

SPO2 66 86 96 41.4% 21.7% 8.3% 13.1% 1.1*10-37 175 

Bicarbonate 16 18 20 29.7% 18.1% 12.6% 7.2% 2.2*10-69 322 

Bilirubin 0.5 1.5 7.0 11.7% 8.3% 16.3% 27.2% 1.3*10-25 119 

WBC 3.0 12.5 19.5 17.6% 7.8% 15.0% 24.3% 8.0*10-37 171 

Creatinine 1.3 2.0 8.5 7.2% 12.5% 20.3% 1.1% 3.4*10-45 210 

Hematocrit 31 37 49 12.7% 10.2% 8.7% 18.6% 4.5*10-7 33 

Platelets 20 28 34 15.7% 8.4% 10.0% 14.8% 5.5*10-12 55 

Sodium 129 134 143 19.0% 12.6% 8.7% 18.4% 4.1*10-17 79 

Potassium 3.4 4.6 5.1 12.8% 8.8% 11.1% 21.7% 6.7*10-17 78 

BUN 19 23 49 6.5% 10.4% 14.0% 22.7% 5.1*10-47 218 

Foley 6 20 25 27.7% 14.1% 14.5% 5.6% 5.6*10-90 417 

Glucose 82 204 241 20.9% 8.2% 11.5% 19.2% 9.4*10-30 138 

Age 47 61 73 4.9% 6.8% 8.4% 14.8% 6.1*10-29 134 

Table A3. The Logistic Regression Model Results. 

Variable Metric1 Categorical Partition Score (fitted coefficient) 

SAPS11, APACHE 11, SOFA VARIABLES 

ORGAN SYSTEM: NERVOUS 

Eye opening Worst score (Minimum) Variable treated as numeric (integers range from 1-4) -0.41461* (eye opening score) 

Motor response  integer values range from 1 to 6 -0.1855 * (motor response score) 

Verbal response  integer values range from 1 to 5 -0.1081 * (verbal response score) 

ORGAN SYSTEM: RESPIRATORY 

Respiratory rate Median < 18 inspir/min 0 

  18 – 20 inspir/min + 0.53167 

  20 – 24 inspir/min + 0.45007 

  ( 24 inspir/min + 0.89472 

Heart rate Maximum < 105 or ( 135 beats/min 0 

  105 – 120 beats/min + 0.11356 

  120 – 135 beats/min + 0.172 

SPO2 levels Minimum < 66 % + 1.28253 

  66 – 86 % + 0.55164 

  86 – 96 % 0 

  ( 96 % + 0.53805 

PO2 levels Median <120 mmHg + 0.93580 

  120–125 mmHg + 4.23804 

  125–155 mmHg + 0.58886 

  (155 mmHg 0 

ORGAN SYSTEM: LIVER 

Bilirubin Maximum < 0.75 mg/dl 0 

  0.75 – 1 mg/dl + 2.89520 

  1 – 7.75 mg/dl + 0.69242 

  ( 7.75 mg/dl + 2.03523 

ORGAN SYSTEM: KIDNEY 

Hematocrit Maximum < 49% 0 

  ( 49% -0.42810 

Foley Minimum < 6 mL + 0.86566 

  6 – 20 mL + 0.28029 

  20 – 25 mL + 0.58092 

  ( 25 mL 0 

ORGAN SYSTEM: CARDIOVASCULAR 

                                                             

1 Baseline window frame is set to be within 24h from admission for temporal variables. Diagnosed diseases variables are historical or diagnosed conditions upon 

admission. Discharged diagnoses are not included since this is a baseline mortality scoring system.  
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Patients for Intensive Care Unit Admissions 

Variable Metric1 Categorical Partition Score (fitted coefficient) 

Vasopressors  No 0 

  Yes + 0.74001 

Systolic BP Minimum < 80 mmHg + 0.38861 

  80 – 90 mmHg + 0.32199 

  90 – 95 mmHg + 0.63199 

  ( 95 mmHg 0 

Diastolic BP Minimum < 45 mmHg + 1.29462 

  45 – 50 mmHg 0 

  50 – 55 mmHg + 0.82218 

  ( 55 mmHg + 0.66162 

Mean BP Minimum < 40 -0.55085 

  40 – 50 mmHg -0.60798 

  50 – 55 mmHg -0.72236 

  ( 55 mmHg 0 

ORGAN SYSTEM: BLOOD 

White blood cells Minimum < 3.0 (2.5x103/mm3) + 0.60184 

  3.0 – 12.5 (2.5x103/mm3) 0 

  12.5 – 19.5 (2.5x103/mm3) + 0.41386 

  ( 19.5 (2.5x103/mm3) + 0.81632 

Sodium Minimum < 129 mEq/L -0.72771 

  129 – 134 mEq/L + 0.14478 

  ( 134 mEq/L 0 

Blood Urea Minimum < 49 mg/dL 0 

Nitrogen  ( 49 mg/dL + 0.49198 

Potassium Median < 3.4 mEq/L + 0.48884 

  3.4 – 4.6 mEq/L -0.15013 

  4.6 – 5.1 mEq/L 0 

  ( 5.1 mEq/L + 0.40614 

Platelets Minimum < 20 (103/)	) + 0.49081 

  20 – 28 (103/)	) 0 

  28 – 34 (103/)	) -0.33701 

  ( 34 (103/)	) -0.27353 

ORGAN SYSTEM: ENDOCRINE 

Glucose Maximum < 204 mg/dL 0 

  204 – 241 mg/dL + 0.21752 

  ( 241 mg/dL + 0.17071 

ORGAN SYSTEM: OTHERS 

Temperature Minimum < 36.0 oC + 0.37293 

  36.0 – 37.1 oC 0 

  ( 37.1 oC + 0.45264 

Age Age upon < 47 years old 0 

 admission 47 – 61 years old + 0.65465 

  61 – 73 years old + 0.98743 

  ( 73 years old + 1.82696 

Metastatic  No 0 

Cancer  Yes + 0.48827 

Admission  Outside ICU 0 

Location  Emergency Room/ ICU ward + 0.61225 

Hematologic  No 0 

Malignancy  Yes + 0.79106 

Admission Type  Planned 0 

  Unplanned + 1.37918 

NEW VARIABLES FROM LITERATURE REVIEW 

ORGAN SYSTEM: OTHERS 

H/O COPD  No 0 

  Yes + 0.85747 

ORGAN SYSTEM: CARDIOVASCULAR 

H/O Cardiac Arrest  No 0 

  Yes + 2.13783 

ORGAN SYSTEM: RESPIRATORY 

Mechanical  No 0 

Ventilation  Yes + 0.54973 

ORGAN SYSTEM: LIVER 

H/O Cirrhosis  No 0 

  Yes + 0.76393 
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Figure A1. R Shiny ICU Mortality Risk Calculator. 

 

Figure A2. R Shiny Mortality Outcomes. 
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