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Abstract 

For normal subjects and diabetic patients, the purpose of this analysis is to measure the blood vascular network density of the 

retina in the superficial layer using OCTA image technique. Several techniques were applied to the images, such as box 

counting size, information dimension, lacunarity parameters, and multi-fractal analysis. There were small variations in fractal 

dimension of retinal vascular network between the images of normal subjects and diabetic patients. The main point of this 

research is the reliable anatomized segmentation of the vessel and the retinal vascular which analyzed as a multifractal object. 

The obtain images were then equally divided into several divided regions, with each area being evaluated as an image. The 

findings were consistent and help us to differentiate between ordinary and diabetes patients. The applied technique of practical 

analysis is used to describe and characterize images representing complex anatomical structures. However, the fractal 

dimension measurement as a key index is deeply based on the quality of the images obtained. Furthermore, the selected 

segmentation methods and the method for measuring the fractal dimension have been standardized. 
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1. Introduction 

Many image processing and analysis techniques have been 

introduced over the last decades in order to identify the 

retinal pathologies. Diabetic retinopathy is the most common 

disease causing in some cases vision loss due to 

hyperglycemia, which facilitates systemic and functional 

alternation of the retinal capillary [1, 2]. The angiogenic 

factors produced by spindle cells promote the growth of new 

retinal blood vessels (neovascularization) [3]. The diagnostic 

tools can be categorized either by invasive or non-invasive 

imaging techniques. Fluorescein Angiography (FA) and 

Indocynine Green Angiography (ICGA) involves intravenous 

dye administration and visualization for up to 10-30 minutes. 

While FA is currently the gold standard for evaluating 

retinopathy vasculature as it provides 2D images that enable 

dynamic visualization of blood flow through retinal vessels. 

FA has some disadvantages as coloring poses risks ranging 

from nausea to allergic reactions, time consuming and cannot 

be repeated in the same day. The other one is Swept Source 

Optical Coherence Tomography Angiography (SS-OCT). It 

is the latest non-invasive imaging technique [4, 5] that relies 

on tunable laser scans with a sequential range of wavelengths 

in just a few seconds. It can provide higher image speeds, 

resolution and longer image range than Spectral Domain 

OCT (SD-OCT) [6, 7] for all the vascular layers (superficial 
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layer, deep capillary networks and chroriocapillaries) that 

were not identified on FA [6, 7]. SS-OCTA uses motion 

contrast imaging process and works by comparing repeatedly 

acquired B-scans at a given retinal location caused by 

erythrocyte movement in retinal vessels, which can then be 

simply computed and displayed. OCTA can also be 

performed on the same day several times in succession. 

Some of previous studies [7, 8] were conducted using OCTA 

as a qualitative diagnostic study and others were satisfied 

with the quantitative analysis of FAZ pixel count and blood 

vessel density. As a consequence, this study is based on the 

use of a computer segmentation to identify variations in the 

complexity of vessel image distribution. In fact, the retinal 

blood vessel structure branching pattern resembles fractal, 

i.e. retinal structures do not have a single length scale. 

Generally, biology is the most important field for the 

application of fractal concepts because structures of very 

complex and irregular forms cannot be understood using 

Euclidean geometry or traditional methods at multiple 

hierarchical levels. Since fractal geometry identifies the 

morphogenetic (anatomical) laws of complex structure, 

retinal diseases can be diagnosed with mathematical 

modelling of blood vessel information. 

Recent studies utilizing fractal modelling of retinal layer 

structures in virtual picture simulation provide some useful 

insights into early detection and treatment of retinal diseases. 

So, our aim is to examine in some depth the early stages of 

diabetic retinopathy without invasive techniques. The latter, 

will give us the opportunity to produce fractures and to 

decode them. Medical photographs that depict anatomically 

complex structures could in several instances be represented 

and categorized by fractal analysis. 

2. Methods 

The retrospective observational case series was approved in 

(Ophthalmology Center in Mansoura University-Egypt). 

Around 30 eyes of healthy 35 eyes of diabetic retinopathy 

subjects were included in this study. The subjects were 

between 20 to 60 years old. The extent of diabetic 

retinopathy (DR) was determined via clinical examination by 

retinal specialist. The normal eyes which were required by 

staff, visitors and researchers were also evaluated by a retinal 

specialist and had no chorioretinal diseases. 

2.1. Study Design 

All subjects underwent imaging on (Triton Top-Con Swept-

Source OCTA). The device has acquisition speed of 100,000 

A-scans/sec with 1050 nm wavelength, B-scan acquisition 

approx. 0.01 sec, and 3D scan acquisition time approx. 0.65 

sec. Imaging was performed using angiographic 3*3 nm scan 

pattern consist of 5 repeated B-scans of 500 A-scans each at 

500 raster positions, centred at the fovea centre. 

2.2. The OCTA Image Processing 

Firstly, the resulted gray-scale images from OCTA are 

subjected to MATLAB Simulink version 2013 to be cropped, 

binarized, setting threshold and image processing to enhance 

the resulted images. Then, use image-J software and Frac-lac 

plugin to get the satisfactorily results. 

2.3. Fractal Analysis 

Benoit Mandelbrot's term "fractal" [9] is used to characterize 

continuous but not differentiable spatial and temporal 

phenomena [9, 10]. In other words, a fractal geometrically is a 

rough or fragmented geometric shape that can be subdivided 

into parts, each of which is at least a copy of the entire or 

geometric shapes that appear chaotic or irregular compared to 

those of standard geometry (line, square, sphere, etc.). As is 

well known, one of the fractals like objects [10, 11] as shown 

in Figure 1, is the human retinal vascular network. Fractal 

dimension enables us to measure the degree of complexity by 

assessing how rapidly our measurements increase or decrease 

as our scale increases or decreases [14, 15, 16]. 

  

                                                                                        (a)                                                                       (b) 
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                                                                                       (c)                                                                         (d) 

  
                                                                                       (e)                                                                         (f) 

Figure 1. The human retinal vascular network for (a) normal (b) pathological images (c) and (d) the binary processed images (e) and (f) the regression lines of 

log plot of N(r) versus the log of 1/r for normal and pathological cases respectively. 

There are several fractal dimensions calculating methods; the 

most widely used is box counting due to its simplicity. In 

order to calculate the box-counting fractal dimension, grids 

composed of quadrangular boxes with variable side length (r) 

were superimposed onto the images counting the number of 

boxes, N(r) occupied by at least one pixel of the image, and 

recording for box size. The fractal dimension DF is obtained 

by the slope of the regression line of log plot of N as a 

function of r versus the log of 1/r 

�� � �����	
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The relation between Hurst exponent H and DF given by 

�� � �
 � 1 � �                                (2) 

Where DT is known as topological dimension and H is very 

important to characterize Fractional Brownian method. 

3. Results and Discussion 

The average fractal dimension for normal eyes DF =1.7347 

with SD=0.2223 and the average fractal dimension for 

pathological eyes DF =1.735 with SD=0.2293. From these 

results, it is found that the values of fractal dimension for 

normal and pathological eyes are very close to each other, so 

there is a limitation for using this method to diagnostic. It is 

surly to confirm that mono fractal approach used as a specific 

method to study vascular retina geometry suffers from a 

fundamental problem. The retinal structures do not have the 

single length scale. Also, the measurement of the fractal 

dimension as a key index is very sensitive to the quality of 

the obtained images. In order to solve this difficulty, we turn 

our attention to what is called multifractal analysis. 

3.1. Multifractal and Lacunarity Analysis 

There are two problems when dealing with fractal dimension 

analysis for retinal blood capillaries. First: it describes how 

much blood capillaries network is filled but doesn’t indicate 

how the it can be distributed. Second, the retinal vessels may 

have different morphology properties in different regions that 

lead to an error in computed DF to overall the image, because 

of the human retinal vessels’ structures are geometrical 

multifractal. In order to overcome these limitations, 

Mandelbrot [12] introduced lacunarity. 

3.2. Lacunarity 

Lacunarity is a measure that describes the distribution of 

sizes of gaps surrounding the object within the image, as it 
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measures how patterns especially fractals fill space where 

patterns having more or larger gaps [12, 13]. In case of 

retina, high lacunarity reflects many blood vessels network 

sized gaps, and low lacunarity reflects similar sized blood 

vessels network gaps or little gab variance [14]. The most 

widely method used to calculate the lacunarity is glinting-box 

algorithm by Allain and Cloitre [1991]. The lacunarity λ was 

evaluated using FracLac, there are many λs, one for each size 

of the sampling unit. The mean lacunarity (or Λ) is usually an 

average over all sizes used to sample an image was expressed 

as (Image J software; FracLac V 2.0f for Image J software): 

� �
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Where σ is the standard deviation, µ is the mean for pixels 

per box at this size, r, in a box count at this orientation and n 

is the number of box sizes. 

3.3. Multifractal Analysis 

The main remark from the previous section is, the single 

fractal dimension is not enough and not precise to describe 

the system. Therefore, it is useful to consider multifractal 

when its different regions have different fractal properties. In 

many cases, multifractal scaling is considered the 

generalization of simple scaling which represents an 

important characteristic of many growth phenomena. 

There are two methods for computing multifractal spectrum, 

first: box counting method which based on the same principle 

as fractal dimension. The image is splitted into different box 

sizes. While the second method based on wavelet transform, 

hence the image is used as an oscillating box to be 

represented. Our concern is to use the box counting methods 

to study the multifractal analysis of blood vessels using 

Image J software and Fraclac plugin with the default box 

sizes. The range of box sizes used for fractal and Multifractal 

dimensions is 10 pixels as the minimum box size and 100% 

for maximum box size. Two techniques are used by using 

image J with Fraclac plugins; they can be summarized as 

follow: 

3.3.1. Generalized Fractal Dimension 

The Renyi fractal dimensions or generalized fractal 

dimension (GFD) [4, 5] are important in studying the non-

linear analysis and statistics of medical images as indicators 

for randomness of blood vessels network in retina. It can be 

characterized by obtaining generalized dimension Dq, where 

q is the exponent variable that can express the fractal 

properties in different image scales [16]. The q ranges 

between -∞ to ∞ to represent the limits of generalized 

dimension spectrum, it can be expressed as 
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Where Pi is the distribution probability and r are the box size. 

It was considered in the previous studies that [16], the values 

D0, D1, D2 are remarkable, in capacity dimension, 

information dimension and correlation dimension 

respectively. The plot of Dq versus q is almost a sigmoidal 

function shape and decreasing in multifractal structure. 

Therefore, several studies characterize the multifractality 

status if D0 ≥ D1 ≥ D2 is satisfied. Figure 2 shows the plot of 

Dq versus q for normal and pathological cases. 

  

                                                                (a)                                                                                                                        (b) 

Figure 2. Plot of Dq versus q for (a) normal and (b) pathological cases. 

Figure 2 shows the GFD as an example for all cases for 

normal and pathological eyes for the retinal superficial blood 

vessel network. Although the two images for normal and 

pathological patients, GFD cannot provide us with precise 

diagnostic information, and the pathological cases' lacunarity 

is slightly greater than normal eyes. Table 1 summarizes the 

generalized fractal dimensions for 8 normal and 8 

pathological cases with the lacunarity and standard 

deviations for each image. 
 



79  Gomaa El Damrawi et al.:  Multifractal Segmentation Analysis of Optical Coherence Tomography   

Angiography Images for Normal and Diabetic Retinopathy Eyes 

Table 1. Generalized fractal dimensions for 16 patient retina images. 

Image ID Status D0 σ0 D1 σ1 D2 σ2 Lacunarity σΛ 

1734R N 1.902 ±0.0665 1.898 ±0.0897 1.895 ±0.0535 0.2105 ±0.0206 

2743R N 1.868 ±0.0734 1.86 ±0.1035 1.854 ±0.0823 0.175 ±0.0059 

2879R N 1.892 ±0.0691 1.888 ±0.091 1.887 ±0.0821 0.2841 ±0.0245 

6961R N 1.8854 ±0.0639 1.874 ±0.0918 1.87 ±0.0723 0.2098 ±0.0069 

7031R N 1.89 ±0.0578 1.887 ±0.0827 1.885 ±0.0646 0.2145 ±0.0142 

7037R N 1.883 ±0.0675 1.878 ±0.0933 1.877 ±0.0825 0.1994 ±0.0152 

12203R N 1.893 ±0.072 1.891 ±0.097 1.89 ±0.092 0.2353 ±0.0216 

12203L N 1.897 ±0.0745 1.896 ±0.088 1.894 ±0.077 0.2238 ±0.0278 

5730R P 1.871 ±0.0683 1.859 ±0.1014 1.853 ±0.811 0.2405 ±0.0074 

5735R P 1.866 ±0.0742 1.848 ±0.1018 1.844 ±0.0625 0.2429 ±0.0048 

6004R P 1.875 ±0.08 1.863 ±0.106 1.858 ±0.088 0.2642 ±0.0168 

7933R P 1.886 ±0.0593 1.885 ±0.082 1.884 ±0.0623 0.2754 ±0.026 

9386R P 1.887 ±0.0662 1.884 ±0.0928 1.882 ±0.0524 0.3125 ±0.0193 

10972L P 1.891 ±0.0616 1.884 ±0.0912 1.878 ±0.0761 0.2411 ±0.0181 

2190L P 1.89 ±0.0656 1.885 ±0.0932 1.88 ±0.0765 0.2422 ±0.0155 

2944L P 1.911 ±0.0691 1.895 ±0.1045 1.884 ±0.0854 0.3178 ±0.0174 

N: Normal, P: Pathological 

3.3.2. Multifractal Spectrum F(α) 

One way to characterize the image function statistics is through multifractal F(α) spectrum (Hausdrouf dimension F(α)) as a 

function of singularity strength, the function is shown in Figure 3 which describes singularities occurring in considered 

probability measure. 

 

Figure 3. (a) The generalized dimensions Dq as a function of any real q, where -∞ < q < ∞, and (b) the singularity multifractal spectrum f(α) versus the 

singularity strength α. 

Figure 3 shows general changes as the maximum value of f 

(α) is D0, f(D1) = D1; and the line joining the origin to the 

point on the f(α) curve where α = D1 is tangent to the curve. 

Let 

,�-
 � .�/�0
                                (6) 

Where N(α) represents the number of boxes such that the 

probability Pi of finding pixels with region i size, L is the box 

size. 

12 � .0&                                         (7) 

F(α) is the fractal dimension to all regions with singularity 

strength between α and α+dα with values between -∞ and ∞ 

with Legendre transformation as [16]. 

�3-��
4 � �-��
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                            (8) 

Figure 4 shows the f(α) spectrums for different normal and 

pathological images, that represents the multifractility of 

retinal blood vessels concavity for both groups. In this case 

the spectrum is parabola with concavity facing down [17, 

18], the singularity spectrum of retinal blood vascular 

network has the behavior of a multifractal geometry for 

normal and pathological cases [16]. They have also shown 

that the retinopathy cases presented lower singularity 

compared to normal retinas. 
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Figure 4. The red circled lines are F(α) spectrum for pathological cases while the blue rectangle lines are the spectrum for normal cases. 

From Figure 4 the F(α) spectrum shifted in pathological cases 

to the left (the lower α range) instead of normal cases, these 

results can be observed in comparison between normal and 

pathological cases curves. Our results are in a good 

agreement with previous research presented in references [6, 

7, 17] for STARE database fundus photos that are 

skeletonized and neglected in the retinal blood vascular 

network in more detail. Finally, all fractal and multifractal 

methods used cannot provide us with precise information on 

normal and pathological cases because some images have 

different distribution of the blood vessels. Add to this the 

blood vessels in one part of the image can have a huge 

distribution while the other parts of the same image have 

normal distribution. So, finding the image as a whole with a 

fractal or multifractal dimension cannot provide accurate 

information. This directly leads us to what is called 

segmentation of the image. 

 

3.3.3. Multifractal Segmentation 

Image segmentation is a good choice for retinal blood vascular 

network analysis because of the different vessels distributed in the 

image parts to characterize multifractal spectrum irregularities. 

The multifractal dimensions and lacuna for the whole images may 

not provide a precise diagnosis as they converge for normal and 

pathological images. In addition, in some cases the image has an 

abnormal distribution of retinal vessels, especially parts not for the 

image. The solution is to divide the patient's image into 9 

segments and studies each differing depending on the location of 

anomalies in the blood vessels. These nine segments can be 

identified as superior, superior, supertemporal, nasal, macular, 

temporal, inferior nasal, inferior, and inferotemporal nasal 

segments. The following figures 5-8 show various segmented 

images with results summarized. 

Normal Eyes: Left Eye: 

1. Id: 12203L 
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                                                                               (a)                                                                                         (b) 

 
(c) 

Figure 5. Left Normal eye Image with Id: 12203 (a) SWEPT-Source Image (b) binary image (c) multifractal spectrum for each segment. 

Table 2. Multifractal Dimensions for image Id: 12203. 

Retinal Region D-10 D0 D1 D2 D10 

Whole 2.21 1.911 1.91 1.895 1.855 

Nasal superior 2.3676 1.9206 1.9115 1.9029 1.7993 

Superior 2.3994 1.9435 1.9276 1.9151 1.811 

Superotemporal 2.307 1.903 1.898 1.8904 1.7883 

Nasal 2.393 1.924 1.931 1.9354 1.8526 

Macular 2.434 1.699 1.622 1.577 1.3583 

Temporal 2.302 1.932 1.929 1.926 1.8274 

Nasal inferior 2.34 1.907 1.9013 1.899 1.819 

Inferior 2.18 1.94 1.939 1.9386 1.861 

Inferotemporal 2.342 1.946 1.937 1.928 1.829 

Right Eye: 

2. ID: 2743 R 
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                                                                               (a)                                                                                         (b) 

 
(c) 

Figure 6. Right Normal eye Image with Id: 2743 (a) SWEPT-Source Image (b) binary image (c) multifractal spectrum for each segment. 

Table 3. Multifractal Dimensions for image Id: 2743. 

Retinal Region D-10 D0 D1 D2 D10 

Whole 2.36 1.869 1.86 1.853 1.782 

Superotemporal 2.575 1.935 1.905 1.882 1.7542 

Superior 2.53 1.947 1.913 1.891 1.767 

Nasal superior 2.36 1.868 1.859 1.853 1.782 

Temporal 2.47 1.904 1.889 1.879 1.77 

Macular 2.412 1.8015 1.7578 1.7272 1.6122 

Nasal 2.353 1.913 1.882 1.856 1.7207 

Inferotemporal 2.341 1.925 1.916 1.909 1.824 

Inferior 2.186 1.883 1.878 1.862 1.711 

Nasal inferior 2.31 1.868 1.828 1.799 1.672 

Abnormal Eyes: 

Left Eye: 

Id: 2190L 
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                                                                              (a)                                                                                          (b) 

 
(c) 

Figure 7. Left abnormal eye Image with Id: 2190 (a) SWEPT-Source Image (b) binary image (c) multifractal spectrum for each segment. 

Table 4. Multifractal Dimensions for image Id: 2190. 

Retinal Region D-10 D0 D1 D2 D10 

Whole 2.323 1.891 1.8846 1.878 1.8 

Nasal superior 2.415 1.904 1.8995 1.892 1.7875 

Superior 2.191 1.907 1.927 1.9217 1.801 

Superotemporal 2.218 1.892 1.934 1.94 1.846 

Nasal 2.385 1.919 1.9045 1.8922 1.774 

Macular 2.414 1.8706 1.802 1.7534 1.569 

Temporal 2.443 1.883 1.885 1.876 1.714 

Nasal inferior 2.221 1.889 1.927 1.937 1.858 

Inferior 2.32 1.907 1.8936 1.877 1.718 

Inferotemporal 2.11 1.875 1.907 1.904 1.766 

Right Eye: 

Id: 6004R 
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                                                                             (a)                                                                                           (b) 

 
(c) 

Figure 8. Right abnormal eye Image with Id: 6004 (a) SWEPT-Source Image (b) binary image (c) multifractal spectrum for each segment. 

Table 5. Multifractal Dimensions for image Id: 6004. 

Retinal Region D-10 D0 D1 D2 D10 

Whole 2.39 1.875 1.863 1.858 1.804 

Superotemporal 2.54 1.943 1.937 1.934 1.874 

Superior 2.4 1.888 1.899 1.887 1.767 

Nasal superior 2.274 1.888 1.9203 1.9222 1.796 

Temporal 2.29 1.907 1.921 1.912 1.785 

Macular 2.42 1.723 1.621 1.558 1.356 

Nasal 2.28 1.895 1.916 1.913 1.8 

Inferotemporal 2.29 1.846 1.867 1.863 1.749 

Inferior 2.61 1.863 1.773 1.71 1.541 

Nasal inferior 2.58 1.881 1.824 1.785 1.639 

These indications can encourage changes in vascular 

architecture that are characteristic of diabetes retinopathy. In 

this research, we used different methods that could discern 

the geometric structure of the retinal blood vascular network. 

The Optical Coherence Tomography Angiography photos are 

used in place of Fluorescein Angiography [16]. The retinal 

blood vascular network has a fractal dimension that is larger 

than 1 and lower than 2 closes to 2 indicating a more 

complex network especially in OCTA images due to the tiny 

details observed in these image types, especially 3 * 3 nm 

scanning pattern than FA images. By using the method of 

box counting fractal dimensions [19], the results between 

normal and retinopathic eyes are very close to each other and 

do not give high diagnostic accuracy. For all cases, 

multifractal and lacunarity analyzes are applied to the entire 

image, as lacunarity has the ability to recognize various 

fractal structures with a close fractal dimension or the same 

as measuring heterogeneity [13]. 
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For regular and retinopathic situations, the lacunarity and 

GFD parameters were not statistically different from those in 

sec. (4.1). Multifractal analyzes do not obtain the results for 

the entire image, which give the exact diagnosis. The 

multifractal segmentation method (singularity spectrum) is 

then applied in all cases, as OCTA images of retinal blood 

vessels have been binarized and fractionated into nine equal 

regions following a multifractal analysis by Image J Software 

(Frac-lac). The condition of generalized dimension that can 

be described as follows: D0 ≥ D1≥D2 [12, 16, 19] is in 

agreement with all normal cases images figures 5, 6 and 

tables 2 and 3. It should be noted, however, that all abnormal 

cases of diabetic retinopathy images such as figures 7, 8 and 

tables 4 and 5 deviate from our criterion condition D0 [D1] 

D2. From these results we can identify the regions indicating 

early diagnosis of retinopathy in patients with diabetes and 

the specific damaged regions. 

4. Conclusion 

The computer image visualization of retinal layers using 

fractal geometry can provide some insight into early 

detection and diagnosis of retinal diseases. The most 

common feature of fractal objects is that they are self-similar 

in terms of statistical invariance of scale. The fractal analysis 

is used to describe and characterize images representing 

complex anatomical structures. Be careful, however, that the 

fractal dimension measurement as a key index is deeply 

based on the quality of the images obtained. Furthermore, the 

selected segmentation method and the method for measuring 

the fractal dimension must be standardized. The main interest 

of this work is the reliable anatomized segmentation of the 

vessel, the retinal vascular being analyzed as a multifractal 

object. Ophthalmologists can identify the regions where the 

specific damaged regions in retinopathy in diabetic patients 

are accurately differentiated. 
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