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Abstract 

Tuberculosis infections that occur both within the medical facility environments and general population have long been 

attributed to unrecognised strains of the bacteria and to previously unsuccessful treatment. Identifying active pulmonary TB, 

for both the initial activation of the disease and recurring disease, is very crucial in breaking the transmission cycle of the 

disease, particularly in low resourced countries of the developing world. In this paper, a Long Short-Term Memory (LSTM) 

network was adopted for use by training it using radiological data and other admission specific data into a medical facility. 

This data is usually made available upon a patient’s presentation onto a medical facility by the patient themselves, or through 

access to historical data. The objective of the LSTM network in this study is to complement the physician’s expert opinion on 

point of presentation of the patient into a medical facility. This study was set up as a non-concurrent prospective study, using 

data from the National Tuberculosis Laboratory at Mpilo Hospital in Bulawayo, Zimbabwe. Participants were identified 

through access to laboratory historical data, and the participates were divided into two groups. The first group is referred to as 

a derivation group and had a total of 5630 isolated instances of suspected active pulmonary TB. The second group was 

identified as the validation group and had a total of 1388 isolated instances of suspected active pulmonary TB as was 

determined at the point of presentation. The Long Short-Term Memory (LSTM) network was adopted and employed to predict 

active recurrent TB cases given the data available on point of presentation. The results of the LSTM prediction were contrasted 

with both the physicians’ assessments and results of subsequent investigations. The accuracy of both the physicians’ 

assessments and LSTM predictions were measured by calculating a c-index based on the area under the receiver operating 

characteristics curve. The results of this process indicate that the LSTM network significantly outperformed the physicians’ 

assessments, with calculated c-indices of 0.947 ± 0.028 and 0.61 ± 0.045, respectively (p < 0.05). By applying the LSTM 

network to the validation group, similar results are obtained where the corresponding c-indices were 0.923 ± 0.056 and 0.716 ± 

0.095, respectively. In conclusion, the LSTM network was shown to have higher potential in identifying patients with recurring 

pulmonary TB, more accurately than physicians’ clinical assessment. This property may prove useful in low resourced 

countries where health facilities have very high doctor-patient-ratios. 
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1. Introduction 

Tuberculosis is one of the diseases that require close 

monitoring and management at governmental and medical 

facility levels. Normally, the government department 

responsible for health, in many developing countries, attempts 

to achieve this by tracking TB infections and instituting an 

effective treatment and control program. The intended 

effective result is to identify new TB infections, recurrent 

infections, and isolate active cases so as to reduce the spread of 

the disease. Isolation of active TB cases is used as one of the 

methods to minimise the spread of the disease while 

intervention methods such as treatment are implemented to 

cure and/or manage the disease [1-3]. There are many 

challenges that are faced by physicians in the developing world 

when recognising and diagnosing persons with active TB. 

Some of these challenges emanate from the fact that in many 

cases the patients present with incomplete information, and in 

such cases the patients are not able to afford some requisite 

procedures. At the end, the physician will have to arrive at a 

conclusion in spite of the lack of information. The other source 

of challenges is to do with the behaviour of TB itself during a 

recurrence state. In TB recurrence, the symptoms vary widely 

so much that they may be similar to many other diseases, and 

without sufficient information, wrong diagnosis may be made 

[4]. As a result of these challenges, many cases of active 

tuberculosis, either as first-time activations or as recurrent 

activation, have gone unnoticed and have potentially spread as 

new infection to new hosts, thus causing pockets of outbreaks. 

Many developing countries have recorded numerous outbreaks 

of TB in different medical facilities and they have classified 

the cases into the three (3) categories. The first category has 

been identified as nosocomial outbreaks, and it has been 

attributed to late diagnosis of TB within health institutions. 

The second category has been identified as recurrent TB. This 

has been attributed to poor management of treatment, micro-

bacterial drug resistance and poor adherence to treatment by 

the patient [5-8]. The third category has been identified as new 

TB infections. Typically, they are associated with contact with 

an infected person undergoing the active stage of the disease. 

A record of least 2100 recurring episodes of active tuberculosis 

were referred and documented at Mpilo Hospital in the year 

2018 alone. TB recurrence has been considered one of major 

complication that occur post treatment. It has been suggested 

in literature that missed or delayed diagnoses are significantly 

associated with TB recurrence [9-12]. Other factors that 

contribute to TB recurrence include nonclassical and atypical 

radiographic presentation, delayed recognition of drug 

resistance of the bacteria, and poor management in health care 

facilities [11, 12]. 

In developing economies with low resource health care 

facilities, prediction models that can be used to identify 

patients with recurrent active TB, presenting itself with 

atypical radiologic findings have been lacking [10]. The 

reasons for poor prediction capabilities lie in the complexity of 

radiologic findings, the low patient samples to allow for 

generalisation, and the lack of inexpensive modelling 

techniques with inexpensive supporting equipment [10, 11, 13]. 

Efforts have been made in literature, to develop computer 

models through the use of stochastic methods, as well as neural 

network-based methods, such that they can be used for 

prediction of active TB at the point of presentation by an 

incoming patient. El-Solh et al [1] introduced a classification 

tree to assist physicians in their decision-making processes by 

regarding whether respiratory isolation for suspicion of active 

pulmonary TB is needed. The predictive neural network 

proposed by El-Solh et al [1] achieved a high degree of 

sensitivity at the expense of low specificity. Other researchers 

[14-17] have used different types of artificial neural networks 

to provide a prediction outcome for complex clinical problems, 

including identification of active TB. The Long Short-Term 

Memory network is a neural network that was proposed by 

Gers et al in an effort to develop a network capable of 

predicting future values given incomplete present value data 

[20]. The LSTM achieves this by minimising the gradient 

vanishing problem found in general recurrent neural networks. 

In essence, the LSTM uses an input gate, output gate and 

forget gate to control the behaviour of the recurrent learning 

procedure. Therefore, the LSTM uses a recurrent neural 

network structure to achieve computations using parallel 

information processing units, known as neurons [18]. The 

LSTM network has been shown to be very successful in tasks 

that involve pattern recognition, when the underlying function 

is unknown [19, 20]. These intrinsic properties of the LSTM 

network have been shown to have higher performance 

accuracy in outcome prediction compared to expert opinion or 

traditional stochastic methods [19, 20]. Therefore, in this study, 

we hypothesised that the ability to identify patients correctly 

with active recurrent pulmonary TB could be improved by 

using computer analysis involving an LSTM network in a low 

cost medical facility. To test this hypothesis, we applied an 

LSTM (available at the CRAN site, at: https://cran.r-

project.org/web/packages/automl/) to the analysis of data from 

patients who are considered to be at high risk for recurrent 

active pulmonary TB and compared the network’s output to 

physicians’ prediction. 

2. Materials and Methods 

2.1. Study Setting 

The study was conducted in retrospect by considering 

treatment data obtained at Mpilo Hospital, Bulawayo, 
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Zimbabwe. In this hospital, a total of 480 beds are dedicated 

for tertiary-care of TB patients. The data was collected from 

the central laboratory dedicated to TB management on site; 

the National Tuberculosis Laboratory, Mpilo Site. The data 

used was abridged to remove personal information, however, 

all other disease related properties ware available. At the 

Mpilo Site Laboratory, the study period under consideration 

ran from January 2012 to December 2017. Mpilo Hospital is 

the major referral centre for TB treatment and management 

for four (4) provinces of the country and provides all 

inpatient medical care for inmates from nearby State prisons 

and correctional facilities. Because of the shortcomings in the 

diagnosis of TB and the resulting delays in considering the 

diagnosis, an automatic isolation policy was instituted by the 

Ministry of Health and Child Welfare, beginning the early 

1990s for all patients from whom an acid-fast smear and 

culture test was requested. In principle, isolation is 

discontinued only after documentation of three negative 

results of acid-fast bacilli smears that were obtained on 3 

separate days, or a negative result of an acid-fast bacilli 

smear derived from BAL. In practice however, patients may 

abscond from isolation points without official discharge. 

2.2. Study Population 

Between January 2012 and December 2017, 7040 patients 

were isolated for suspicion of active recurrent pulmonary TB. 

Their data was used for retrospective analysis using the Long 

Short-Term Memory network, against physicians’ decisions. 

Data from 22 patients was excluded from the study because 17 

were discharged before three respiratory specimens were 

collected, and 5 refused diagnostic bronchoscopy. A total of 

5630 consecutive patients were used to design a configuration 

of the LSTM network used in this study, and this dataset is 

thus referred to as the derivation set. The remaining data from 

1388 patients formed the validation set. The decision to isolate 

patients for suspicion of active TB was made by emergency 

department physicians, medical residents’ or infectious disease 

fellows after consultation with the attending physician based 

on symptoms, history of TB exposure, HIV status, positive 

results of tuberculin skin tests, and radiographic findings. 

Information regarding demographics (age, gender, date, and 

duration of isolation), social status, risk factors for HIV 

infection, and clinical symptoms (fever, night sweats, chest 

pain, and productive cough for ≥ 2  weeks) was collected 

from each patient at the time of presentation at the health-care 

facility. Significant weight loss was defined as a fall of 

≥ 10% of ideal body weight within the previous 6 months. 

The physicians’ prediction regarding whether the patient had 

active recurrent pulmonary TB was also recorded. Data 

concerning the results of acid-fast bacilli smears and cultures 

were recorded once the data were available. For those patients 

who are known to be HIV seropositive, the cluster of 

differentiation 4 (CD4) counts were entered into the database 

only if they were obtained within the previous 3 months of 

patient isolation. HIV-seronegative patients were presumed to 

have CD4 counts > 200 cells/mL. 

2.3. Radiographic Analysis 

Chest roentgenograms were divided into two zones: the 

upper zones delineated by the area above the right and the 

left fifth ribs posteriorly, and the lower zones below the right 

and left fifth ribs posteriorly. Upper zone disease was defined 

as absent only if there were no radiographic abnormalities 

involving the area above the fifth rib posteriorly. The pattern 

and distribution of the parenchymal infiltrates (interstitial, 

nodular, or miliary) or cavities were recorded. The presence 

and location of adenopathy and pleural effusion were also 

noted. Interpretation of the chest radiographs was performed 

by a pulmonologist and a radiologist who were blinded to the 

microbiology, results of sputum stains, or cultures. 

2.4. Bacteriology 

The auramine-rhodamine fluorescent stain was used to detect 

acid-fast organisms on respiratory specimens. Radiometric 

broth medium (BACTEC; Becton Dickinson Diagnostic 

Instruments Systems; Sparks, MD) was used for inoculation of 

acid-fast bacilli cultures. Mycobacterium tuberculosis isolates 

were confirmed with nucleic acid probes. The bacteriology 

processes were conducted at the National Tuberculosis 

Laboratory at Mpilo Hospital in Bulawayo, Zimbabwe. 

2.5. Development of the Long Short-Term 

Memory Network 

A Long Short Term Memory (LSTM) network was used in 

the development of the predictive model. The advantage of 

the LSTM network lies in the fact that whereas conventional 

nonlinear regression techniques involve a priori specification 

of the structure of the regression equations to yield a best fit 

for the data presented, the LSTM network circumvents these 

restrictions by adjusting the surface dimension in which the 

regression surface resides without constraining it to a specific 

form [21-23]. Generalisation is optimised by modifying the 

learning rate factor, d, which determines how tightly the 

network matches its predictions to the data in the training 

patterns. The structure of the LSTM network used in this 

model consists of three stacked layers, that is, an input layer, 

three hidden layers, and an output layer. Input parameters 

were chosen based on data obtained from the laboratory. The 

input patterns are formed by 21 distinct parameters shown in 

Table 1. These parameters were divided into three groups: 

demographic variables, constitutional symptoms, and 

radiographic findings. Intervening layers of processors, 

called LSTM memory blocks, detect higher-order features in 



83 Jabusile Madondoro et al.:  Recurrent Active Tuberculosis Prediction Using a Long Short-Term Memory Network  

 

the input layer, analyse the signal, and relay the output to 

other neurons to make a correct response. The number of 

neurons in each memory block is determined by the number 

of patterns in the training set as the LSTM requires one 

memory block per pattern processed. The output of the 

LSTM network provides an estimate of the likelihood of 

recurrent active pulmonary TB. 

A 10-fold cross-validation approach was used for evaluation. 

The entire dataset of the derivation group was divided with a 

random number generator into 10 subsets. Nine of the 10 

subsets were pooled and used for training. The data from the 

10th subset was used as an evaluation set during training. The 

entire process was repeated nine additional times by rotating 

the subset that was used as the evaluation set during training. 

The Mean Square Error (MSE) was computed for each of the 

experimental instance on the entire derivation data set. The 

mean square errors were averaged, and the LSTM 

configuration that had a mean square error closest to the 

average was selected. To normalise the inputs, all independent 

variables were scaled to a value over a range between 0 and 1. 

Missing values were handled using data filling methods, where 

by the missing data item was substituted with the class mean. 

2.6. Performance Evaluation 

The predictive model derived from the LSTM was tested on 

an entirely different set of patients (validation dataset) who 

were not included in the derivation set. The validation dataset 

comprised all patients who were isolated between January 

2011 and June 2012. 

Table 1. Input Variables Used to Train the Long Short-Term Network*. 

Class Vulnerability Remark 

Demographic variables 

Age 

CD4 counts 

Diabetes mellitus 

Class Vulnerability Remark 

HIV Status 

PPD 

Constitutional 

symptoms 

Chest pain 

Weight loss 

Cough 

Night sweats 

Fever 

Shortness of breath 

Radiographic findings 

Upper lobe infiltrate 

Lower lobe infiltrate 

Upper lobe cavity 

Lower lobe cavity 

Adenopathy 

Unilateral pleural effusion 

Bilateral pleural effusion 

Pleural thickening 

Miliary pattern 

Normal 

*PPD 5 purified protein derivative. 

A receiver operating characteristic curve was generated for 

the LSTM network against physicians’ results. The receiver 

operating characteristic curve represents a graphic display of 

the true-positives (sensitivity) plotted against the false-

positives (specificity) for various thresholds that are used to 

define active pulmonary TB [24-26]. The c-index was used to 

estimate diagnostic accuracy by a method described in detail 

elsewhere [27, 28]. The c-index is equivalent to the area 

under the receiver operating characteristic curve. In brief, it 

is calculated by determining the probability of diagnosing 

active recurrent TB correctly in every possible pair of 

patients: one who has active recurrent TB, against the other 

who does not. A bootstrap method was used to calculate 

directly this measure of accuracy by generating 1000 datasets 

from our database by random sampling with replacement. 

Comparisons between the c-indices were assessed based on 

the confidence intervals (CIs). Statistical significance was 

accepted at the 5% level. 

3. Results 

Table 2. Patients’ Descriptive Characteristics. 

Characteristics 
Derivation Group (n = 5630) Validation Group (n = 1388) 

MTB (+) n = 2784 MTB (-) n = 2846 MTB (+) n = 604 MTB (-) n = 784 

HIV (+) 1422 1666 185 443 

PPD (+) 1481 254 258 65 

Inmate 1659 987 110 341 

DM 533 44 37 0 

Cough 2251 2190 369 573 

Fever 1955 1677 255 438 

Weight loss 1777 772 221 174 

Night sweats 1540 143 295 167 

Upper lobe infiltrate 1836 171 182 203 

Upper lobe cavity 711 66 74 1 

Unilateral pleural effusion 237 215 70 43 

Miliary pattern 118 0 35 0 
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Table 3. Comparison of the Clinician and the LSTM Network Performance on the Validation Group (n = 1388). 

Group 
Sensitivity Specificity c-Index 

% 95% CI % 95% CI % 95% CI 

Derivation 

Physicians 47 32-62 75 71-79 61.3 56.4 - 65.8 

LSTM 100 91-100 72 65-77 94.8 91.0 - 98.2 

Validation 

Physicians 64 31-89 80 72-89 71.7 64.5 - 78.9 

LSTM 100 72-100 69 61-78 92.4 85.8 - 99.1 

 

 

Figure 1. Comparison of the receiver operating characteristic curves for the 

Long Short Term Memory network (LSTM) and physicians’ performance as 

applied to the validation set. 

The characteristics of the population under study are shown 

in Table 2. A total of 10 experimental instances were 

conducted. The LSTM model was configured to produce 

normalised output, that is, output values ranging from 0 (no 

active pulmonary TB) to 1 (active pulmonary TB). The 

average mean squared error (MSE) for all 10 experimental 

instances was 0.009. The LSTM configuration that has an 

experimental instance with the closest mean square error to 

the average was used for further analysis. The chosen 

configuration achieved a sensitivity of 100% (at 95% CI) and 

a specificity of 72% (at 95% CI). From recorded data, the 

physicians correctly diagnosed active recurrent pulmonary 

TB in 654 of 1392 patients, thus an approximate human 

sensitivity of 47% (at 95% CI) and a specificity of 75% (at 

95% CI). The corresponding c-indices for the Long Short-

Term Memory network and the physicians were 0.947 ± 

0.028 and 0.610 ± 0.045, respectively (p < 0.001). The 

performance of the LSTM network was tested prospectively 

on the validation dataset of 1388 patients isolated for 

suspicion of active TB. The LSTM network identified all 126 

patients with recurrent active pulmonary TB for a sensitivity 

of 100% (at 95% CI), and a specificity of 69% (at 95% CI). 

In comparison, the physicians correctly diagnosed recurrent 

active pulmonary TB in 80 of the 126 patients, yielding a 

sensitivity of 64% (at 95% CI), and a specificity of 79% (at 

95% CI). Table 3 depicts a comparison of the diagnostic 

performance of the LSTM network against that of the 

physicians. The diagnostic accuracy of the LSTM network, 

when applied to the validation set as reflected by the c-index, 

was 0.923 ± 0.056 compared with 0.716 ± 0.09 for the 

physicians’ prediction (p < 0.05). Figure 1 shows a 

comparison of the receiver operating characteristic curves for 

the Long Short-Term Memory network (LSTM) and 

clinicians’ performance as applied to the validation set. 

4. Discussion 

This study is, to our knowledge, the first to use a Long Short 

Term Memory network for the diagnosis of recurrent active 

pulmonary TB in resource constrained settings. The current 

recommendation issued by the Zimbabwean government to 

control the spread of TB calls for direct isolation of any 

patient suspected of having or known to have active TB [29]. 

However, in many cases, recurrent TB does not present with 

the standard symptoms, thus its identification in the general 

population is difficult [1, 29]. Therefore, a standard criterion 

for early identification of patients with recurrent TB, in 

resource constrained environments, has not been well 

established [9, 16, 17]. Further, the task is complicated by the 

ongoing HIV epidemic, which has created a new profile for 

patients with recurrent TB that has none of the typical 

features recognised in classic cases of active pulmonary TB 

[9]. Predictive models have been developed; however, they 

have been found to require expensive equipment, thus they 

are not adept for resource constrained environments such as 

the developing world [17]. For this reason, many predictive 

models are not readily usable in resource constrained 

environments, thus they have not fared very well. Further, 

many such models lack sensitivity required to operate with 

insufficient information, hence adding to evidence of the 

complexity of the problem. A review of the literature 

revealed only a handful of studies that have attempted to 

tackle this problem using cases from developing countries. In 

a study assessing the usefulness of routine admission chest 

radiography for the detection of pulmonary TB, Narula et al 
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[12] concluded that chest roentgenograms are still useful in 

suggesting the diagnosis, particularly in geographic areas 

with high prevalence for HIV and TB [12]. Nonetheless, 

failure to suspect TB occurred in 64 of 177 cases of culture-

proven TB. Seventeen cases had atypical presentation, and in 

29 patients, TB was not diagnosed because of the failure to 

consider TB despite the presence of upper lobe disease or 

miliary pattern. 

In a similar study, Lakhani and Sundaram [17] evaluated 

the clinical symptoms and radiographic configuration in 

101 patients who were isolated for suspicion of recurrent 

active TB. The absence of a typical chest radiograph along 

with the presence of cough, sputum production, and weight 

loss for 2 weeks were strong negative predictors of active 

TB. Lakhani and Sundaram [17] acknowledged, however, 

that the population under study was relatively small in 

number, and did not include HIV patients with normal 

radiographic presentation as has been described by Azeez et 

al [27]. Recently, Fojnica et al [15] developed a 

classification feed-forward neural network model to predict 

recurrent active pulmonary TB at the time of admission to a 

health-care facility. The predictor variables were upper 

zone disease on chest roentgenogram, fever, weight loss, 

and CD4 count. The FFANN model was validated in a 

separate cohort of patients yielding a sensitivity and a 

specificity of 100% and 48.1%, respectively. The high 

precision achieved in that population was supposedly less 

than perfect when tested in a different setting. In contrast to 

our study, Fojnica et al [15] had full access to information 

regarding the predictor variables. This is rather unusual for 

resource constrained health-care facilities, because more 

often than not, such decisions have to be made with 

incomplete information. In our LSTM network, an output 

value is still obtainable with up to 50% of predictor 

variables missing, however, specificity is significantly 

impacted by the missing information. The advantage of 

Long Short-Term Memory networks lies in their ability to 

process long chains of nonlinear relationships [20]. Because 

of the clinical complexity, and the pathologic heterogeneity 

of TB in both initial cases and recurrent cases, correct 

identification of patients with active disease is unlikely to 

depend on the presence or absence of a single defining 

feature. This is even more-so particularly true for resource 

constrained medical facilities, like those found in the 

developing world. Hence, it is not surprising that standard 

linear statistical methodologies are relatively inadequate 

solutions for this type of problem. In addition, previous 

studies [1, 3, 10, 16] have shown that clinicians are not 

exhaustive of the complex interaction among variables, 

likely due to the high doctor-patient ratio, yet a neural 

network can exploit these interactions exhaustively. In 

literature, there are some separate studies that have 

compared the accuracy of neural networks with that of 

clinicians to predict disease or outcome [18, 26]. In such 

studies, emergency department physicians and medical 

residents were asked to identify myocardial infarction in 

patients presenting at an emergency department based on 

clinical and ECG findings. Their conclusions suggest that 

about 22% of cases of myocardial infarction were missed 

by physicians, compared with only about 0.03% of cases 

missed by using a neural network of some kind, thus 

yielding sensitivities of 77.7% (95% CI, 77 to 82.9%) and 

97.2% (95% CI, 97.2 to 97.5%), respectively. In an 

unrelated study, a conclusion was reached that the overall 

accuracy of physicians to predict outcome for colorectal 

cancer ranged from 75% (95% CI, 66 to 84%) to 79% (95% 

CI, 71 to 87%), compared with 90% (95% CI, 84 to 96%) 

for the neural network. Even though the study did not 

isolate for TB, the superior prediction capability of neural 

networks over physician assessment was observed, which 

implies that the complexity of biological systems may be 

beyond the quick field analytic capabilities of physicians in 

low cost settings. 

The objective of the study was to establish the 

generalisability of LSTM predictive results on different and 

separate TB population samples. There are many factors that 

affected generalisability of TB prediction results in our 

LSTM design, and these include: 

a) The structure of the neural network. Factors affecting the 

design of the LSTM are the number of neurons used, the 

activation function, the activation window of the forget 

gate, and the extent of training for the LSTM. 

b) The quality of training data in the training dataset, herein 

referred to as the derivation set. The LSTM has a strong 

inclination towards overfitting if the derivation set is not 

wide enough. To avoid overfitting, the selection criteria for 

cases that were included in the derivation set had to be 

carefully designed. 

c) The quality of data in the testing dataset, herein referred to 

as the validation set. The testing dataset has to be broad 

enough to include all reasonable possible TB scenarios 

such that the network is sufficiently tested. 

The results obtained from the experiments reveal that the 

LSTM configured in this study was able to successfully 

generalise active TB cases, for both initial active cases and 

recurrent active cases. The strength of the LSTM network 

was clearly observed when dealing with incomplete data. The 

LSTM network was able to use data filling techniques for 

missing values, for example by using a mean of a class as the 

filling data-point. With this property, the LSTM was 

observed to out-perform traditional logistic regression 
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methods because they lack the ability to handle missing data 

values, since they omit incomplete tuples from analysis [6, 

21]. In our study, the highest percentage of missing data 

occurred in recalling the result of the purified protein 

derivative skin test (23%), acid-fast bacilli smear test (9%), 

and CD4 counts (6%). The high amounts of missing data in 

the derivative skin test was associated to indeterminant 

results due to pre-exposure to TB and anti-TB vaccination in 

childhood. In this study, the LSTM network incorporated 

these cases after substituting the missing values with the 

respective class mean. 

Many limitations were observed in the study, and they were 

noted to have the potential of affecting interpretation of 

results. The limitations include: 

a) Training Convergence: The LSTM is a slow converging 

neural network; thus, it requires large training datasets in 

order to fully converge. In this study, the derivation set is 

considerably small at the size of 5630 instances in the data. 

In these experiments, the LSTM successfully converged 

however, it is not clear if these results are replicable on 

different data with the same configurations. 

b) Overfitting due to overtraining: Typically, the problem of 

overfitting happens when the neural network is over-

trained on a particular dataset. Since the training dataset 

was considerably small in this study, there was a danger of 

overfitting. To minimise the chances of overfitting, the 

number of neurons for each hidden layer of the LSTM 

were reduced accordingly such that they corresponded to 

the dataset size. This process was conducted empirically, 

and the resulting network size was obtained using the 

gradual adjustment-error minimisation method. In our case, 

the network was observed to end up learning not only the 

training set but also the noise in the data, which led to 

generalisation with reduced sensitivity. It is, however, 

encouraging that the accuracy of prediction observed in 

the validation set, points to the fact that the network 

architecture is based on robust features rather than 

memorising the idiosyncrasies embedded in the dataset. 

c) Epidemiological differences: It can be postulated that the 

results obtained in this study may differ from results 

obtainable from a different population sample. This 

difference may be attributed to a variance in TB 

epidemiology based on location and other factors such as 

the rate of drug resistance, HIV/AIDS prevalence, and 

access to medical facilities by the general population. 

Until this model has been extended onto different 

populations, the study may be viewed only as a pioneering 

attempt in the use of the LSTM model in the diagnosis of 

recurrent pulmonary TB, in resource constrained 

environments. 

In addition, only the diagnosis of recurring active pulmonary 

TB was studied. Application of the model to extrapulmonary 

or extra-thoracic TB was not conducted. A good case could 

be made for the extension of this technology for other aspects 

of TB, should this technique prove to be accurate and 

reproducible, as the data imply. Our study has several 

implications regarding the clinical application of artificial 

neural networks as diagnostic tools for recurrent active TB in 

resource constrained environments. The use of the LSTM 

network could provide physicians and health-care workers 

with a simple, and fast tool with which to assess the risk of 

recurrent active TB in any patient presenting at a health-care 

facility, given a history of initial TB treatment. The estimated 

probability would enable physicians to initiate isolation 

without delay, thus reducing the risk of TB exposure to 

health-care workers, and other members of society. 

5. Conclusion 

The significant effects of developments and novelties in 

machine learning tools and expert system methodologies 

have been widely used in different domains, with one of the 

most important fields being medicine. Based on experience 

from previous studies, decision making in the medical field 

has not been simple. The classification systems implemented 

in medical decision making deliver medical data for faster, 

and more detailed inspection. Analysis of national statistical 

data on tuberculosis, in Zimbabwe, indicates that this disease 

is amongst the most predominant kinds. In this research a 

new machine learning method of diagnosing active recurrent 

tuberculosis disease was proposed. The method is an adopted 

LSTM network developed to be a specialised predictive 

model. Furthermore, an initial randomised weighting 

procedure was employed prior to training with data, in order 

to increase generalisation. The dataset collected from the 

National Tuberculosis Laboratory at Mpilo Hospital in 

Bulawayo, Zimbabwe, was applied in this research, making it 

possible to compare the proposed classification accuracy 

with other methods. In the current work, an average of 99.1% 

classification precision was attained via 10-fold cross 

validation. This is undeniably the highest accuracy rate 

reported for recurrent TB diagnosis in resource constrained 

environments. In addition, it was proved in this research that 

the proposed system can be implemented for various TB 

diagnosis settings, with very little impact on classification 

accuracy, especially for large datasets. Further work is thus 

needed to prove the extensibility of this method across other 

low cost health-care environments. For further work, data 

from other countries in the SADC region may be used to 

further qualify the extensibility and applicability of the 

technique. 



87 Jabusile Madondoro et al.:  Recurrent Active Tuberculosis Prediction Using a Long Short-Term Memory Network  

 

References 

[1] El-Solh, A. A., Hsiao, C. B., Goodnough, S., Serghani, J. and 
Grant, B. J., 1999. Predicting active pulmonary tuberculosis 
using an artificial neural network. Chest, 116 (4), pp. 968-973. 

[2] Er, O., Temurtas, F. and Tanrıkulu, A. Ç., 2010. Tuberculosis 
disease diagnosis using artificial neural networks. Journal of 
medical systems, 34 (3), pp. 299-302. 

[3] Elveren, E. and Yumuşak, N., 2011. Tuberculosis disease 
diagnosis using artificial neural network trained with genetic 
algorithm. Journal of medical systems, 35 (3), pp. 329-332. 

[4] Pavlou, A. K., Magan, N., Jones, J. M., Brown, J., Klatser, P. 
and Turner, A. P., 2004. Detection of Mycobacterium 
tuberculosis (TB) in vitro and in situ using an electronic nose 
in combination with a neural network system. Biosensors and 
Bioelectronics, 20 (3), pp. 538-544. 

[5] Khaliq, A., Batool, S. A. and Chaudhry, M. N. Seasonality and 
trend analysis of tuberculosis in Lahore, Pakistan from 2006 
to 2013. J. Epidemiol. Global Health 2015, 5, 397-403. 

[6] Willis, M. D., Winston, C. A., Heilig, C. M., Cain, K. P., 
Walter, N. D. and Mac Kenzie, W. R. Seasonality of 
tuberculosis in the United States, 1993 - 2008. Clin. Infect. 
Dis. 2012, 54, 1553-1560. 

[7] Naranbat, N.; Nymadawa, P.; Schopfer, K.; Rieder, H. L. 
Seasonality of tuberculosis in an Eastern-Asian country with an 
extreme continental climate. Eur. Respir. J. 2009, 34, 921-925. 

[8] Soetens, L. C., Boshuizen, H. C.; Korthals Altes, H. 
Contribution of seasonality in transmission of mycobacterium 
tuberculosis to seasonality in tuberculosis disease: A 
simulation study. Am. J. Epidemiol. 2013, 178, 1281-1288. 

[9] Karim, S., Churchyard, G., Karim, Q. and Lawn, S. (2009). HIV 
infection and Tuberculosis in South Africa: An urgent need to 
escalate the public health response. Lancet, 374, 921-933. 

[10] Claassens, M. M.; Du Toit, E.; Dunbar, R.; Lombard, C.; 
Enarson, D. A.; Beyers, N.; Borgdorff, M. W. (2013) 
Tuberculosis patients in primary care do not start treatment. 
What role do health system delays play? Int. J. Tuberc. Lung 
Dis, 17, 603-607. 

[11] Karim, S. S. A., Naidoo, K., Grobler, A., Padayatchi, N., 
Baxter, C., Gray, A., Gengiah, T., Nair, G., Bamber, S., Singh, 
A., et al. Timing of antiretroviral drugs during tuberculosis 
therapy. N. Engl. J. Med. 2010, 362, 697-706. 

[12] Narula, P., Sihota, P., Azad, S., and Lio, P. Analyzing 
seasonality of tuberculosis across Indian states and union 
territories. J. Epidemiol. Global Health 2015, 5, 337-346. 

[13] Saha, S. and Raghava, G. P. S., 2006. Prediction of continuous 
B-cell epitopes in an antigen using recurrent neural network. 
Proteins: Structure, Function, and Bioinformatics, 65 (1), pp. 
40-48. 

[14] Lee, M. J. and Chen, J. T., 1993. Fluid property predictions 
with the aid of neural networks. Industrial & engineering 
chemistry research, 32 (5), pp. 995-997. 

[15] Fojnica, A., Osmanović, A. and Badnjević, A., 2016, June. 
Dynamical model of tuberculosis-multiple strain prediction 
based on artificial neural network. In 2016 5th Mediterranean 
Conference on Embedded Computing (MECO) pp. 290-293, 
IEEE. 

[16] Yang, H., Tang, H., Chen, X. X., Zhang, C. J., Zhu, P. P., Ding, 
H., Chen, W. and Lin, H., 2016. Identification of secretory 
proteins in mycobacterium tuberculosis using pseudo amino 
acid composition. BioMed research international, 2016. 

[17] Lakhani, P. and Sundaram, B., 2017. Deep learning at chest 
radiography: automated classification of pulmonary 
tuberculosis by using convolutional neural networks. 
Radiology, 284 (2), pp. 574-582. 

[18] Wang, K. W., Deng, C., Li, J. P., Zhang, Y. Y., Li, X. Y. and Wu, 
M. C., 2017. Hybrid methodology for tuberculosis incidence 
time-series forecasting based on ARIMA and a NAR neural 
network. Epidemiology & Infection, 145 (6), pp. 1118-1129. 

[19] Mzelikahle, K., Mapuma, D. J., Hlatywayo, D. J. and Trimble, 
J., (2017). Optimisation of Self Organising Maps Using the 
Bat Algorithm. American Journal of Information Science and 
Computer Engineering, 3 (6), pp. 77-83. 

[20] Mzelikahle, K., Trimble, J. and Hlatywayo, D. J., (2018). A 
Hybrid Technique Between BOSOM and LSTM for Data 
Analysis. International Journal of Mathematics and 
Computational Science, 4 (4), pp. 128-138. 

[21] Yan, W., Xu, Y., Yang, X.; Zhou, Y. (2010) A hybrid model for 
short-term bacillary dysentery prediction in Yichang City, 
China. Jpn. J. Infect. Dis., 63, 264-270. 

[22] Wei, W., Jiang, J., Liang, H., Gao, L., Liang, B., Huang, J., 
Zang, N., Liao, Y., Yu, J., Lai, J. and Qin, F., 2016. Application 
of a combined model with autoregressive integrated moving 
average (ARIMA) and generalized regression neural network 
(GRNN) in forecasting hepatitis incidence in Heng County, 
China. PloS one, 11 (6), p. e0156768. 

[23] Zheng, Y. L., Zhang, L. P., Zhang, X. L., Wang, K. and Zheng, 
Y. J., 2015. Forecast model analysis for the morbidity of 
tuberculosis in Xinjiang, China. PloS one, 10 (3), p. e0116832. 

[24] DeVries, P. M., Thompson, T. B. and Meade, B. J., 2017. 
Enabling large-scale viscoelastic calculations via neural 
network acceleration. Geophysical Research Letters, 44 (6), 
pp. 2662-2669. 

[25] Goh, G. B., Siegel, C., Vishnu, A., Hodas, N. O. and Baker, N., 
2017. Chemception: A deep neural network with minimal 
chemistry knowledge matches the performance of expert-
developed qsar/qspr models. arXiv preprint arXiv: 
1706.06689. 

[26] Fei, Y., Hu, J., Gao, K., Tu, J., Li, W. Q. and Wang, W., 2017. 
Predicting risk for portal vein thrombosis in acute pancreatitis 
patients: A comparison of radical basis function artificial 
neural network and logistic regression models. Journal of 
critical care, 39, pp. 115-123. 

[27] Azeez, A., Obaromi, D., Odeyemi, A., Ndege, J. and 
Muntabayi, R., 2016. Seasonality and trend forecasting of 
tuberculosis prevalence data in Eastern Cape, South Africa, 
using a hybrid model. International journal of environmental 
research and public health, 13 (8), p. 757. 

[28] Glaziou, P., Sismanidis, C., Floyd, K. and Raviglione, M. 
(2015) Global Epidemiology of Tuberculosis. Cold Spring 
Harb. Perspect. Med., 5, 1-18. 

[29] Corbett, E. L., Marston, B., Churchyard, G. J., and De Cock, K. 
M. (2006) Tuberculosis in sub-Saharan Africa: Opportunities, 
challenges, and change in the era of antiretroviral treatment. 
Lancet, 367, 926-937. 


