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Abstract 

This paper, as a first attempt, examines to design the recursive least-squares (RLS) finite impulse response (FIR) smoother, 

which estimates the signal at each start time of the finite-time interval in linear continuous-time stochastic systems. It is 

assumed that the signal is observed with additive white noise and is uncorrelated with the observation noise. It is a 

characteristic that the FIR smoother uses the covariance information of the signal process in the form of the semi-degenerate 

kernel and the variance of the observation noise besides the observed value. This paper also presents the recursive algorithm 

for the estimation error variance function of the RLS-FIR smoother to show the stability condition of the smoother. 

Keywords 

FIR Smoother, Linear Continuous-Time Stochastic Systems, Wiener-Hopf Integral Equation, White Observation Noise, 

Convolution Integral 

Received: November 7, 2016 / Accepted: December 21, 2016 / Published online: January 9, 2017 

@ 2016 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. 

http://creativecommons.org/licenses/by/4.0/ 

 

1. Introduction 

The Kalman filter estimates the signal recursively based on 

the state-space model of the signal process. The filtering 

estimate at time t uses the updated observed value. In [1], the 

finite impulse response (FIR) filter and smoother are 

proposed for continuous time-invariant state-space models. 

In the algorithms of the FIR estimators, the Riccati-type 

differential equations are calculated on a finite-time interval. 

Compared with growing-memory for the conventional filter, 

the FIR filter has the property of improving filter divergence 

due to modeling errors and sudden changes of the signals in 

systems [2, 3]. Jazwinski [2] and Schweppe [3] introduce the 

FIR filter for discrete-time state-space models without 

driving noises. Bruckstein and Kailath [4] propose recursive 

FIR filter for the general state-space models with driving 

noise for both continuous-time and discrete-time stochastic 

systems. In [5-7], receding horizon Kalman FIR filter is 

devised in continuous-time and discrete-time stochastic 

systems. The horizon FIR filter is derived based on the 

information form of the Kalman filter. Also, the �� smoother 

[8] and the ��  smoother [9], with the FIR structure, for 

discrete-time state-space signal models, are presented. As 

alternatives to the Kalman estimators based on the state-

space models, the filter, the fixed-point smoother [10] and the 

fixed-lag smoother [11] are devised by using the covariance 

information of the signal and observation noise processes. In 

[10] and [11], the auto-covariance function of the signal 

process is expressed in the form of the semi-degenerate 

kernel. In [12], the extended recursive Wiener fixed-point 

smoother and filter are presented in discrete-time wide-sense 

stationary stochastic systems. Here, it is assumed that the 

signal is observed with the nonlinear mechanism of the signal 

and with additional white observation noise. In [12] the 

estimators do not use the information of the input matrix and 

the variance of the input noise. In [13], the recursive least-

squares (RLS) Wiener finite impulse response (FIR) filtering 

algorithm is presented in linear discrete-time stochastic 
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systems. The RLS Wiener FIR filter uses the following 

information: (1) The observation matrix for the signal, (2) the 

system matrix for the state vector, (3) the variance of the 

state vector. In [14], by using the covariance information, the 

RLS-FIR filter is designed in linear continuous-time 

stochastic systems. In [14], the auto-covariance function of 

the signal process is expressed in the form of the semi-

degenerate kernel. Also, in linear discrete-time stochastic 

systems, the RLS Wiener FIR fixed-lag smoothing algorithm 

[15] is proposed by using the covariance information. 

In the RLS-FIR filter [14], the estimation of the signal 

process starts from the finite-time interval ∆, hence the signal 

for 0 ≤ t < ∆  cannot be estimated. From the reason to be 

able to estimate the signal for the time interval 0 ≤ t < ∆, 

this paper, as a first attempt, examines to design the RLS-FIR 

smoother, which estimates the signal at the start time of the 

finite-time interval ∆  in linear continuous-time stochastic 

systems. The current topic, estimating the signal at the start 

time of the finite-time interval, has not been studied 

elsewhere. It is assumed that the signal is observed with 

additive white noise and is uncorrelated with the observation 

noise. The current RLS-FIR smoother uses the covariance 

information of the signal process and the variance of the 

observation noise in addition to the observed value. It is a 

characteristic that the auto-covariance function of the signal 

process is expressed in the form of the semi-degenerate 

kernel. 

In section 4, the algorithm for the FIR smoothing error 

variance function is formulated to show the stability 

condition of the smoother. In section 5, a numerical 

simulation example is demonstrated to show the estimation 

properties of the proposed RLS-FIR smoother in comparison 

with the RLS-FIR filter [14] and the RLS filter [10] using the 

covariance information. 

2. RLS-FIR Smoothing Problem 

Let an observation equation be given by 

	
�� = �
�� + �
��	                           (1) 

in linear continuous-time stochastic systems, where �
�� is an 

m × 1 signal vector and �
�� is white observation noise. It is 

assumed that the signal and the observation noise are 

mutually independent stochastic processes with zero means. 

Let the auto-covariance function of �
�� be given by 

�[�
����
��] = ��
� − ��, � > 0.               (2) 

Here, �
⋅� denotes the Dirac � function. 

Let !
�, ��  represent the auto-covariance function of the 

signal and let !
�, ��  be expressed in the semi-degenerate 

kernel form [10], [11], [14] of 

!
�, �� = "#
��$�
��, 0 ≤ � ≤ �,
$
��#�
��, 0 ≤ � ≤ �.                  (3) 

Here, α
�� and β
�� are bounded m × ' matrices. 

Let the FIR smoothing estimate �̂
� − ∆, ��  of the signal 

z
� − ∆� be given by 

�̂
� − ∆, �� = * ℎ,
,-∆ 
�, .�	
.�/.                    (4) 

as a linear integral transformation of the observation process 

y
τ�, � − ∆≤ . ≤ �, where h
�, .�, �̂
� − ∆, �� are referred to 

as the impulse response function and the FIR smoothing 

estimate of the signal z
t − ∆�  respectively. The impulse 

response function, which minimizes the mean-square value 

of the FIR smoothing error z
� − ∆� − �̂
� − ∆, ��, 

3 = �[‖�
� − ∆� − �̂
� − ∆, ��‖�],                    (5) 

satisfies 

�[�
� − ∆�	�
��] = * ℎ,
,-∆ 
�, .��[	
.�	�
��]/.        (6) 

by an orthogonal projection lemma [16] 

�
� − ∆� − �̂
� − ∆, �� ⊥ 	
��, t − ∆≤ � ≤ �.       (7) 

Here, “⊥” denotes the notation of the orthogonality. From 

(1), (2) and (6), the impulse response function h
t, s�, for the 

linear RLS-FIR smoothing estimates, satisfies the Volterra-

type integral equation of the second kind 

ℎ
�, ��� = !
� − ∆, �� − * ℎ
�, .�!
., ��,
,-∆ /..         (8) 

In (8), for the variables τ  and s  satisfying, t − ∆≤ τ, s ≤ t , 

from the expression (3) of the semi-degenerate kernel, 

!
� − ∆, ��  is expressed as !
� − ∆, �� = $
� − ∆�#�
�� . 

Then, based on the preliminary formulation on the smoothing 

problem, estimating the signal at the start time of the finite- 

time interval, the RLS-FIR smoothing algorithm is proposed 

in section 3. 

3. RLS-FIR Smoothing 
Algorithm 

From the integral equation (8) for the optimal impulse 

response function, based on the invariant imbedding method 

[10], [11], [14], [17]-[23], the RLS-FIR smoothing algorithm 

is derived. The estimation algorithm is presented in Theorem 

1. 

Theorem 1 Let the observation equation be given by (1). Let 

the auto-covariance function of the signal �
�� be given by 

(3) in the semi-degenerate kernel form in linear continuous-

time stochastic systems. Then the algorithm for the RLS-FIR 
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smoothing estimate �̂
� − ∆, ��  of the signal �
� − ∆� 

consists of (9)-(27). 

FIR smoothing estimate �̂
� − ∆, �� of z
t − ∆�: 

�̂
� − ∆, �� = $
� − ∆�78
��                      (9) 

38
�, �� = 
#�
�� − 98
��#�
����-8                (10) 

3�
�, �� = 
$�
�� − 9�
��#�
����-8                (11) 

38
�, � − ∆� = :#�
� − ∆� − 9̅8
��$�
� − ∆�<�-8     (12) 

3�
�, � − ∆� = :$�
� − ∆� − 9̅�
��$�
� − ∆�<�-8     (13) 

=>?
,�
=, = 38
�, ��:	
�� − #
��7�
��< − 38
�, � − ∆�:	
� −

∆� − $
� − ∆�78
��<, 

78
∆� = 7̃8
∆�                             (14) 

=>A
,�
=, = 3�
�, ��
	
�� − #
��7�
��� − 3�
�, � − ∆�
	
� −

∆� − $
� − ∆�78
���, 

7�
∆� = 7̃�
∆�                          (15) 

=B?
,�
=, = 38
�, ��
$
�� − #
��9�
��� − 38
�, � − ∆�
$
� −

∆� − $
� − ∆�98
���, 

98
∆� = 9̃8
∆�                          (16) 

=BA
,�
=, = 3�
�, ��
$
�� − #
��9�
��� − 3�
�, � − ∆�
$
� −

∆� − $
� − ∆�98
���, 

9�
∆� = 9̃�
∆�                          (17) 

=B̅?
,�
=, = 38
�, ��
#
�� − #
��9̅�
��� − 38
�, � − ∆�
#
� −

∆� − $
� − ∆�9̅8
���, 

9̅8
∆� = 9̆8
∆�                          (18) 

=B̅A
,�
=, = 3�
�, ��
#
�� − #
��9̅�
��� − 3�
�, � − ∆�
#
� −

∆� − $
� − ∆�9̅8
���, 

9̅�
∆� = 9̆�
∆�                          (19) 

Initial conditions 7̃8
∆�, 7̃�
∆�, 9̃8
∆�, 9̃�
∆�, 9̆8
∆� and 9̆�
∆� 

required in the differential equations (14)-(19) for 78
t� , 

7�
t�, 98
t�, 9�
t�, 9̅8
t� and 9̅�
t� are calculated by (22)-(27) 

with (20) and (21). 

3D8
�, �� = 
#�
�� − 9̃8
��#�
����-8               (20) 

3D�
�, �� = 
$�
�� − 9̃�
��#�
����-8               (21) 

=>̃?
,�
=, = 3D8
�, ��
	
�� − #
��7̃�
���, 

7̃8
0� = 0                                     (22) 

=>̃A
,�
=, = 3D�
�, ��
	
�� − #
��7̃�
���, 

7̃�
0� = 0                                     (23) 

=B̃?
,�
=, = 3D8
�, ��
$
�� − #
��9̃�
���, 

9̃8
0� = 0                                  (24) 

=B̃A
,�
=, = 3D�
�, ��
$
�� − #
��9̃�
���, 

9̃�
0� = 0                                  (25) 

=B̌?
,�
=, = 3D8
�, ��:#
�� − #
��9̌�
��<, 

9̌8
0� = 0                                  (26) 

=B̌A
,�
=, = 3D�
�, ��:#
�� − #
��9̌�
��<, 

9̌�
0� = 0                                  (27) 

Proof of Theorem 1 is deferred to the Appendix. 

In section 4, the algorithm for the estimation error variance 

function of the proposed RLS-FIR smoother is proposed. 

4. Estimation Error Variance 
Function 

Referring to the derivation of Theorem 1, from (8), the 

estimation error variance function FGH
t − ∆, t�  of the 

proposed RLS-FIR smoother is formulated as follows. 

FGH
t − ∆, t� = E J:z
t − ∆� − �̂
t − ∆, t�<:z
t − ∆� − �̂
t − ∆, t�<�K  
= K
t − ∆, t − ∆� − E[�̂
t − ∆, t��̂�
t − ∆, t�]  
=	!
� − ∆, �� − * ℎ
�, .�!
., ��,

,-∆ /. 

=	!
� − ∆, �� − * $
� − ∆�38
�, .�$
.�/.#�
��,
,-∆  

=$
� − ∆�
#�
�� − 98
��#�
��� 

Here, 98
��  is calculated by (10)-(13) and (16)-(27) recursively. The auto-variance function FĜ
t − ∆, t�  of the RLS-FIR 

smoothing estimate �̂
t − ∆, t� is given by FĜ
t − ∆, t� = $
� − ∆�98
��#�
��. Since the FIR smoothing error variance function 

FGH
t − ∆, t� is the positive semi-definite matrix, it is seen that FĜ
t − ∆, t� is upper bounded by $
� − ∆�#�
�� and lower 



 Systems Science and Applied Mathematics Vol. 1, No. 3, 2016, pp. 29-37 32 

 

bounded by the zero matrix as 

0 ≤ FĜ
t − ∆, t� ≤ K
t − ∆, t�, K
t − ∆, t� = $
� − ∆�#�
��.                                            (28) 

 

(28) indicates that the proposed RLS-FIR smoother is stable, 

provided that the function K
t − ∆, t� is bounded. 

5. A Numerical Simulation 
Example 

Let a scalar observation equation be given by 

	
�� = �
�� + �
��.                             (29) 

Let the observation noise �
��  be a zero-mean white 

Gaussian process with the variance �, M
0, ��. Let the auto-

covariance function of the signal �
�� be given by  

!
�, �� = N
8O 7-|,-Q| + R

ST 7-N|,-Q|.                   (30) 

From (30), the functions α
�� and β
�� in (3) are expressed 

as follows: 

#
�� = J N
8O 7-, R

ST 7-N,K , β
�� = [7Q 7NQ].      (31) 

If we substitute (31) into the RLS-FIR smoothing algorithm 

of Theorem 1, we can calculate the FIR smoothing estimate 

recursively. In the calculations of the differential equations, 

the 4
th

 order Runge-Kutta-Gill method, with the step size 

∆t = 0.001, is used. Fig. 1 illustrates the signal z
t − ∆� and 

the FIR 

 

Figure 1. Signal and RLS-FIR smoothing estimate for white observation noise N
0, 0.1��. 

smoothing estimate �̂
� − ∆, �� vs. t, 0.501 ≤ t ≤ 5.5, for the 

white Gaussian observation noise N
0, 0.1��. Here, the value 

of the finite-time interval ∆ in the RLS-FIR smoother is 0.5 

and the signal z
t − ∆�  at the start time t − ∆ , with the 

observed values between t − ∆ and t, is estimated. From Fig. 

1, it is seen that the RLS-FIR smoothing estimate approaches 

gradually the signal as time t advances. Table 1 compares the 

mean-square values (MSVs) of the current FIR smoothing 

errors, 
8

�WWW ∑ 
�
500 ∙ ∆� + Z ∙ ∆�� − �̂
500 ∙ ∆� + Z ∙�WWW[\8
∆�, 1000 ∙ ∆� + Z ∙ ∆���� , ∆= 500 ∙ ∆� , with those by the 
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RLS-FIR filtering errors [14], 
8

�WWW ∑ 
�
500 ∙ ∆� + Z ∙�WWW[\8
∆�� − �̂
500 ∙ ∆� + Z ∙ ∆�, 500 ∙ ∆� + Z ∙ ∆���� , for the 

observation noises N
0, 0.1�� , N
0, 0.3�� , N
0, 0.5��  and 

N
0, 0.7��. Table 1 indicates, for both the FIR smoothing and 

filtering estimates, as the variance of the observation noise 

becomes small, the estimation accuracies are improved. Also, 

From Table 1, the estimation accuracy of the proposed RLS-

FIR smoother is inferior to the RLS-FIR filter [14]. Table 2 

shows the MSVs of the current FIR smoothing 

errors,
8

SRWW ∑ 
�
500 ∙ ∆� + Z ∙ ∆�� − �̂
500 ∙ ∆� + Z ∙SRWW[\8
∆�, 1000 ∙ ∆� + Z ∙ ∆���� , for the observation noises 

N
0, 0.1��, N
0, 0.3��, N
0, 0.5�� and N
0, 0.7��. In Table 2, 

the MSVs are calculated based on 4500 number of FIR 

smoothing errors for the signal z
t� , 0.501 ≤ t ≤ 5 , and 

∆= 0.5. Whereas in Table 1, 2000 number of FIR smoothing 

errors are used for 0.501 ≤ t ≤ 2.5, ∆= 0.5. Table 3 shows 

the MSVs of the current FIR smoothing 

errors,
8

SRWW ∑ 
�
500 ∙ ∆� + Z ∙ ∆�� − �̂
500 ∙ ∆� + Z ∙SRWW[\8
∆�, 750 ∙ ∆� + Z ∙ ∆���� , for the observation noises 

N
0, 0.1�� , N
0, 0.3�� , N
0, 0.5��  and N
0, 0.7�� . Here, 

∆= 250 ∙ ∆t . In comparison of Table 2 for the finite-time 

interval ∆= 0.5  with Table 3 for ∆= 0.25 , the estimation 

accuracy of the proposed FIR smoother in Table 2 is 

preferable to that in Table 3. This might be based on the fact 

that, in the case of the finite- time interval ∆= 0.5,	the RLS-

FIR smoother uses twice number of the observed values in 

calculating each FIR smoothing estimate recursively in 

contrast with ∆= 0.25. Table 4 shows the MSVs of the FIR 

Table 1. Mean-square values of the current FIR smoothing errors and FIR 

filtering errors by [14] in terms of 2000 number of estimation errors for 

0.501 ≤ t ≤ 2.5, ∆= 0.5. 

White observation 

noise 

Proposed FIR 

smoother 
FIR filter [14] 

N
0, 0.1��  0.03852663748488 0.00424440904600 

N
0, 0.3��  0.18299566881715 0.09770149325886 

N
0, 0.5��  0.33468033778719 0.26227092046015 

N
0, 0.7��  0.42001848300409 0.37579151353174 

Table 2. Mean-square values of 4500 number of FIR smoothing errors for 

0.501 ≤ t ≤ 5, ∆= 0.5. 

White observation noise Proposed FIR smoother 

N
0, 0.1��  0.01789108936854 

N
0, 0.3��  0.08636231797571 

N
0, 0.5��  0.15833788859690 

N
0, 0.7��  0.20011689928251 

Table 3. Mean-square values of 4500 number of FIR smoothing errors for 

0.501 ≤ t ≤ 5, ∆= 0.25. 

White observation noise Proposed FIR smoother 

N
0, 0.1��  0.03904190953610 

N
0, 0.3��  0.21034992321872 

N
0, 0.5��  0.37426672023247 

N
0, 0.7��  0.45627204880488 

smoothing errors, by the current smoother, in terms of 4500 

number of estimation errors during 0.501 ≤ t ≤ 5  for the 

observation noises 	N
0, 0.1�� , N
0, 0.3�� , N
0, 0.5��  and 

N
0, 0.7�� . Here, the finite-time interval is ∆= 0.1 . In 

comparison of Table 4 with Table 2, the estimation accuracy 

for the finite-time interval ∆= 0.1 in Table 4 is almost same 

as the case of ∆= 0.5 in Table 2. In Table 4, the MSVs of the 

filtering errors by the RLS-FIR filter [14] are also shown. 

The MSVs indicate that the estimation accuracy of the 

current RLS-FIR smoother is almost same as the RLS-FIR 

filter [14] for the finite-time interval ∆= 0.1 . Table 5 

compares the estimation accuracy of the proposed RLS-FIR 

smoother with the RLS filter [10] in terms of the MSVs. The 

MSVs are calculated by 
8

RWW ∑ 
�
Z ∙ ∆�� − �̂
Z ∙ ∆�, 500 ∙RWW[\8
∆� + Z ∙ ∆����, ∆= 500 ∙ ∆�, in the current FIR smoother, and 

8
RWW ∑ 
�
Z ∙ ∆�� − �̂
Z ∙ ∆�, Z ∙ ∆����RWW[\8  in the RLS filter [10] 

for the observation noises	N
0, 0.1��, N
0, 0.3��, N
0, 0.5�� 

and N
0, 0.7��. Table 5 indicates that the estimation accuracy 

of the proposed RLS-FIR smoother is superior to the RLS 

filter [10]. Since the FIR filter does not calculate the estimate 

for 0 ≤ t < ∆, compared with the RLS filter, the proposed 

RLS-FIR smoother is feasible in estimating the signal for the 

time interval. 

Table 4. Mean-square values of the current FIR smoothing errors and FIR 

filtering errors by [14] in terms of 4500 number of estimation errors for 

0.501 ≤ t ≤ 5, ∆= 0.1. 

White observation 

noise 
Proposed FIR smoother FIR filter [14] 

N
0, 0.1��  0.00595664323788 0.00199442556197 

N
0, 0.3��  0.04248846038658 0.09107671530332 

N
0, 0.5��  0.16968153664460 0.16827987421769 

N
0, 0.7��  0.22209880741773 0.19533079651226 

Table 5. Mean-square values of the current FIR smoothing errors and 

filtering errors by [10] in terms of 500 number of estimation errors for 

0.001 ≤ t ≤ 0.5, ∆= 0.5. 

White observation 

noise 
Proposed FIR smoother RLS filter [10] 

N
0, 0.1��  0.04615176201626 0.18257946156209 

N
0, 0.3��  0.65943784263031 1.00607646891999 

N
0, 0.5��  1.27908984687148 1.56994678334137 

N
0, 0.7��  1.66000159888783 1.85646944470027 

For references, the state-space model, which generates the 

signal process, is specified by 

�
�� = `8
��, 
/`8
��

/� = `�
��, /`�
��
/� = −3`8
�� − 4`�
�� − 2c
��, 

�[c
��c
��] = �
� − ��. 

6. Conclusions 

In the RLS-FIR filter [14], the estimation of the signal 

process starts from the finite-time interval ∆, hence the signal 
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for the time interval, 0 ≤ t < ∆, is not estimated. From the 

reason to be able to estimate the signal for the time interval, 

0 ≤ t < ∆, this paper, as a first attempt, proposes the RLS-

FIR smoother, which estimates the signal at the start time of 

the finite-time interval ∆ in linear continuous-time stochastic 

systems. The numerical simulation example has shown that 

the current RLS-FIR smoother is feasible. Also, the 

algorithm for the RLS-FIR smoothing error variance function 

and the condition for the stability of the RLS-FIR smoother 

are shown. 

The proposed RLS-FIR smoother has the following 

properties. 

(1) As the variance of the white observation noise becomes 

small, the estimation accuracy of the RLS-FIR smoother 

is improved. 

(2) In the simulation, the estimation accuracies of the 

proposed RLS-FIR smoother for the finite-time intervals 

∆= 0.1  and ∆= 0.5  are almost same. Also, for ∆= 0.1 

and ∆= 0.5 , the estimation accuracy of the proposed 

RLS-FIR smoother is almost same as the RLS-FIR filter 

[14]. In addition, in the proposed RLS-FIR smoother, the 

estimation accuracies for ∆= 0.1 and ∆= 0.5 are superior 

to the case of ∆= 0.25. 

(3) Since the RLS-FIR filter [14] does not calculate the 

estimate for 0 ≤ t < ∆ , compared with the RLS filter 

[10], from the point of the estimation accuracy, the 

proposed RLS-FIR smoother is feasible in estimating the 

signal for the time interval. 

Appendix Proof of Theorem 1 

From the auto-covariance function (3) of the signal in the 

semi-degenerate kernel, (8) is rewritten as 

ℎ
�, ��� = $
� − ∆�#�
�� − * ℎ
�, .�!
., ��,
,-∆ /..   (A-1) 

Let us introduce an auxiliary function 38
�, ��, which satisfies 

38
�, ��� = #�
�� − * 38
�, .�!
., ��,
,-∆ /..          (A-2) 

From (A-1) and (A-2), we obtain an expression for the 

optimal impulse response function 

h
t, s� = β
t − ∆�38
�, ��.                       (A-3) 

Differentiating (A-2) with respect to t, we have 

de?
,,Q�
d, � = −38
�, ��!
�, �� + 38
�, � − ∆�!
� − ∆, �� − * de?
,,f�

d, !
., ��,
,-∆ /..                            (A-4) 

From (3), for t − ∆≤ s ≤ t, K
t − ∆, s� = β
t − ∆�#�
�� is valid. Hence, (A-4) is rewritten as 

de?
,,Q�
d, � = −38
�, ��#
��$�
�� + 38
�, � − ∆�β
t − ∆�#�
�� − * de?
,,f�

d, !
., ��,
,-∆ /..                       (A-5) 

Let us introduce an auxiliary function 3�
�, ��, which satisfies 

3�
�, ��� = $�
�� − * 3�
�, .�!
., ��,
,-∆ /..                                                    (A-6) 

From (A-2) and (A-6), we obtain 

de?
,,Q�
d, = −38
�, ��#
��3�
�, �� + 38
�, � − ∆�β
t − ∆�38
�, ��.                                           (A-7) 

In a similar manner, differentiating (A-6) with respect to t and using (A-2) and (A-6), we obtain 

deA
,,Q�
d, = −3�
�, ��#
��3�
�, �� + 3�
�, � − ∆�β
t − ∆�38
�, ��.                                           (A-8) 

Putting s = t in (A-2), we have 

38
�, ��� = #�
�� − * 38
�, .�!
., ��,
,-∆ /..                                                            (A-9) 

From (3), in (A-9), !
., �� = $
.�#�
�� is valid for t − ∆≤ τ ≤ t. Introducing a function 

98
�� = * 38
�, .�$
.�,
,-∆ /.,                                                                      (A-10) 

we obtain (10). Similarly, putting s = t − ∆ in (A-2), and introducing a function 

9̅8
�� = * 38
�, .�#
.�,
,-∆ /.,                                                                      (A-11) 

we obtain (12). 
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Putting s = t in (A-6), we have 

3�
�, ��� = $�
�� − * 3�
�, .�!
., ��,
,-∆ /..                                                (A-12) 

From (3), in (A-12), !
., �� = $
.�#�
�� is valid for t − ∆≤ τ ≤ t. Introducing a function 

9�
�� = * 3�
�, .�$
.�,
,-∆ /.,                                                           (A-13) 

we obtain (11). Similarly, putting s = t − ∆ in (A-6), and introducing a function 

9̅�
�� = * 3�
�, .�#
.�,
,-∆ /.,                                                           (A-14) 

we obtain (13). 

Differentiating (A-10) with respect to t, we have 

=B?
,�
=, = 38
�, ��$
�� − 38
�, � − ∆�$
� − ∆� + * de?
,,f�

d, $
.�,
,-∆ /..                             (A-15) 

Substituting (A-7) into (A-15) and using (A-10) and (A-13), we obtain (16). 

Differentiating (A-13) with respect to t, we have 

=BA
,�
=, = 3�
�, ��$
�� − 3�
�, � − ∆�$
� − ∆� + * deA
,,f�

d, $
.�,
,-∆ /..                             (A-16) 

Substituting (A-8) into (A-16) and using (A-10) and (A-13), we obtain (17). 

Differentiating (A-11) with respect to t, we have 

=B̅?
,�
=, = 38
�, ��#
�� − 38
�, � − ∆�#
� − ∆� + * de?
,,f�

d, #
.�,
,-∆ /..                             (A-17) 

Substituting (A-7) into (A-17) and using (A-11) and (A-14), we obtain (18). 

Differentiating (A-14) with respect to t, we have 

=B̅A
,�
=, = 3�
�, ��#
�� − 3�
�, � − ∆�#
� − ∆� + * deA
,,f�

d, #
.�,
,-∆ /..                             (A-18) 

Substituting (A-8) into (A-18) and using (A-11) and (A-14), we obtain (19). 

Substituting (A-3) into (4), we have 

�̂
� − ∆, �� = * β
t − ∆�38
�, .�,
,-∆ 	
.�/..                                           (A-19) 

Introducing a function 

78
�� = * 38
�, .�,
,-∆ 	
.�/.,                                                         (A-20) 

we obtain (9) for the FIR smoothing estimate �̂
� − ∆, ��. 

Differentiating (A-20) with respect to t, we have 

=>?
,�
=, = 38
�, ��	
�� − 38
�, � − ∆�	
� − ∆� + * de?
,,f�

d,
,

,-∆ 	
.�/..                                  (A-21) 

Substituting (A-7) into (A-21) and introducing 

7�
�� = * 3�
�, .�,
,-∆ 	
.�/.,                                                        (A-22) 

we obtain (14). Similarly, differentiating (A-22) with respect to t, we have 

=>A
,�
=, = 3�
�, ��	
�� − 3�
�, � − ∆�	
� − ∆� + * deA
,,f�

d,
,

,-∆ 	
.�/..                                (A-23) 

Substituting (A-8) into (A-23), and using (A-20) and (A-22), 
we obtain (15). 
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From (A-10), the initial condition on the differential equation 

for 98
�� at t = ∆ is given by 

98
∆� = * 38
∆, .�$
.�∆
W /..                    (A-24) 

Corresponding to 38
∆, .� , we introduce, from (A-2), a 

function 3D8
�, ��, which satisfies 

3D8
�, ��� = #�
�� − * 3D8
�, .�!
., ��,
W /..        (A-25) 

Here, we note that 38
∆, .� = 3D8
�, .�|,\∆ . Hence, we 

introduce 

9̃8(�) = * 3D8(�, .)$(.)
,

W
/..                 (A-26) 

In (16), the initial condition 98(∆) is given as the value of 

9̃8(�) at t = ∆. Let us differentiate (A-25) with respect to t. 

deD?(,,Q)

d,
� = −3D8(�, �)!(�, �) − *

deD?(,,f)

d,
!(., �)

,

W
/..   (A-27) 

Let us introduce an equation, which 3D�(�, �) satisfies 

3D�(�, �)� = $�(�) − * 3D�(�, .)!(., �)
,

W
/..        (A-28) 

Taking into account of the auto-covariance function !(�, �) 
in (3) for 0 ≤ s ≤ t and using (A-28), we obtain 

deD?(,,Q)

d,
= −3D8(�, �)#(�)3D�(�, �).             (A-29) 

Differentiating (A-26) with respect to t, we have 

=B̃?(,)

=,
= 3D8(�, �)$(�) + *

deD?(,,f)

d,
$(.)

,

W
/..       (A-30) 

Substituting (A-29) into (A-30) and introducing 

9̃�(�) = * 3D�(�, .)$(.)
,

W
/.,              (A-31) 

we obtain (24) for 9̃8(�) with the initial condition 9̃8(0) = 0. 

Differentiating (A-31) with respect to t, we have 

=B̃A(,)

=,
= 3D�(�, �)$(�) + *

deDA(,,f)

d,
$(.)

,

W
/..        (A-32) 

Differentiating (A-28) with respect to t, we have 

deDA(,,Q)

d,
� = −3D�(�, �)!(�, �) − *

deDA(,,f)

d,
!(., �)

,

W
/..  (A-33) 

Taking into account of the auto-covariance function !(�, �) 
in (3) for 0 ≤ s ≤ t and using (A-28), we obtain 

deDA(,,Q)

d,
= −3D�(�, �)#(�)3D�(�, �).                 (A-34) 

Substituting (A-34) into (A-32) and using (A-31), we obtain 

(25) for 9̃�(�) with the initial condition 9̃�(0) = 0. 

From (A-11), the initial condition on the differential equation 

for 9̅8(�) at t = ∆ is given by 

9̅8(∆) = * 38(∆, .)#(.)
∆

W
/.,                 (A-35) 

Corresponding to 38(∆, .) , we introduced, from (A-2), a 

function 3D8(�, �) , which satisfies (A-25). Here, 38(∆, .) =

3D8(�, .)|,\∆ is valid. Hence, we introduced 

9̌8(�) = * 3D8(�, .)#(.)
,

W
/..                 (A-36) 

In (18), the initial condition 9̅8(∆) is given as the value of 

9̌8(�) at t = ∆. 

Differentiating (A-36) with respect to t, we have 

=B̌?(,)

=,
= 3D8(�, �)#(�) + *

deD?(,,f)

d,
#(.)

,

W
/..      (A-37) 

Substituting (A-29) into (A-37) and introducing 

9̌�(�) = * 3D�(�, .)#(.)
,

W
/.,                 (A-38) 

we obtain (26) for 9̌8(�) with the initial condition 9̌8(0) = 0. 

Differentiating (A-38) with respect to t, we have 

=B̌A(,)

=,
= 3D�(�, �)#(�) + *

deDA(,,f)

d,
#(.)

,

W
/..       (A-39) 

Substituting (A-34) into (A-39), we obtain (27) for 9̌�(�) with 

the initial condition 9̌�(0) = 0. 

Putting s = t in (A-25), we have 

3D8(�, �)� = #�(�) − * 3D8(�, .)!(., �)
,

W
/..        (A-40) 

From (3), !(., �) = $(.)#�(�) , 0 ≤ τ ≤ t , is valid. From 

(A-26), we obtain (20). 

Putting s = t in (A-28), we have 

3D�(�, �)� = $�(�) − * 3D�(�, .)!(., �)
,

W
/..         (A-41) 

From (3), !(., �) = $(.)#�(�) , 0 ≤ τ ≤ t , is valid. From 

(A-31), we obtain (21). 

Let us introduce a function 

7̃8(�) = * 3D8(�, .)
,

W
	(.)/..                 (A-42) 

Differentiating (A-42) with respect to t, we have 

=>̃?(,)

=,
= 3D8(�, �)	(�) + *

deD?(,,f)

d,

,

W
	(.)/..        (A-43) 

Substituting (A-29) into (A-43), we obtain (22). 7̃8(∆)  is 

given as the initial condition of (14) for 78(t) at t = ∆. Here, 

7̃�(�) is given by 

7̃�(�) = * 3D�(�, .)
,

W
	(.)/..                  (A-44) 

Differentiating (A-44) with respect to t, we have 

=>̃A(,)

=,
= 3D�(�, �)	(�) + *

deDA(,,f)

d,

,

W
	(.)/..         (A-45) 
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Substituting (A-34) into (A-45), we obtain (23). 7̃�
∆�  is 

given as the initial condition of (15) for 7�
t� at t = ∆. 

(Q.E.D.) 
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