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Abstract 

The first general solution of the problem of Сaushy for an extensive class of partial differential equations was given by 

Riemann almost a century ago in his well-known paper on the propagation of sound waves of finite amplitude. Although stated 

only for certain special equations, it is applicable to any linear equation of hyperbolic type of the second order in two 

independent variables; it depends ultimately on finding a certain subsidiary function, often called the Riemann function, which 

is the solution of a characteristic boundary value problem for the adjoint equation. This paper is of a synthetic nature, being a 

result of combining Riemann’s method for integrating second-order linear hyperbolic equations with Lie’s classification of 

such equations. In paper was found the solution of the Cauchy problem by the Riemann method for a hyperbolic equation. It 

was also shown the invariance of the Riemann function relatively to the symmetry of the fundamental solutions. 
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1. Introduction 

Group analysis of differential equations is widely used in the 

study of equations of mathematical physics. Recent advances 

and applications of group analysis are reflected in 

monographs [1-6]. The most widely used are invariant with 

respect to the subgroup of permissible solutions group 

transformations. In [7] in relation to the private hyperbolic 

equation of second order with two independent variables 

Riemann proposed a "Riemann method of integration" which 

received extensive development in the future [8, 9]. For use 

this method it is need to build the so-called Riemann 

function. General method of construction of the Riemann 

function does not exist. In [10] in relation to the private 

hyperbolic equation of second order with two independent 

variables Riemann proposed a "Riemann method of 

integration" which received extensive development in the 

future [8, 9]. For use this method it is need to build the so-

called Riemann function. General method of construction of 

the Riemann function does not exist. This paper is of a 

synthetic nature, being a result of combining Riemann’s 

method [11] for integrating second-order linear hyperbolic 

equations with Lie’s classification [12] of such equations. 

One can find in [13] a detailed description of known methods 

of constructing Riemann’s function (called in [14] the 

Riemann–Green function) for particular types of equations. 

Specifically, six methods are described there. So far as I 

know, six ways have been used to find the Riemann-Green 

function for particular types of hyperbolic equations. These 

will be discussed in the following order. 

(i) Riemann’s original method was based on the fact that the 

Riemann-Green function does not defend in any way on the 

curve carrying the Cauchy data. If it is possible to solve by 

some other means the Problem of Cauchy for a special curve 

C depending on one variable parameter, a comparison of the 

two solutions should give the Riemann-Green function. In 

the case of the two equations considered by Riemann, it was 

possible to solve the Problem of Cauchy by a Fourier cosine 
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transform with Cauchy data on a straight line. 

(ii) Hadamard pointed out that the coefficient of the 

logarithmic term in his elementary solution is the Riemann-

Green function of the adjoint equation. It is possible to 

modify Hadamard’s construction so as to give both functions 

at the same time. 

(iii) It is easy to construct an integral equation whose unique 

solution is the Riemann-Green function. 

(iv) Chaudy, in his work on partial differential equations of 

hypergeometric type, was able to construct the Riemann-

Green function by the use of symbolic operators and power 

series. This work appears to be little known. 

(v) A. G. Mackie has constructed complex integral solutions 

of certain equations. Such a complex integral gives the 

Riemann-Green function for an appropriate choice of 

contour. To some extent, Mackie was anticipated by Chaudy, 

whose approach was rather different. 

2. Main Results 

Сonsider the following hyperbolic equation of the second 

order: 

�� = ����� − �	��

 − 4��� = 0              (1) 

in an open domain  , which is bounded by curves of �� 

(� = 2�), �� (�� = 1) and with the section 	�� (� = 1). 

Let’s pose the problem of Cauchy: Find in the domain 	 

function �(�, �), satisfying the conditions 

�(�, �) ∈ �(�) ∩ ��( ∪ ��) ∪ �	();          (2) 

��(�, �) ≡ 0, (�, �) ∈ ,                      (3) 

�|
�� =  (�), !"!
#
�� = $(�), �	 ≤ � ≤ 1       (4) 

where  (�), $(�)	− given sufficiently smooth functions. 

With the help of the change of variables & = �� , ' = 
�	 
equation (1) leads to the canonical form: 

�() − �	( �) + '� = 0                         (5) 

To solve the problem we use the method of Riemann, which 

is based on the following identity: 

2(+�� − ��∗+) = (+�) − �+) + 2-�+)( + (+�( − �+( + 2.�+)) (6) 

where 

�� = �() + -(&, ')�( + .(&, ')�) + /(&, ')�,    (7) 

�∗� = �() − (-�)( − (.�)) + /� 

− adjoint with ��  differential operator; 0  − domain of 

integration with piecewise-smooth contour Γ. 

Integrating both sides of (6) in the domain of	0 and, using the 

formula of Ostrogradsky, obtain 

21(+�� − ��∗+)
2

3&3' = 45+�) − �+) + 2-�+63'
7

− 

−5+�( − �+( + 2.�+63& 

Riemann’s method reduces the problem of integrating the 

equation (1) to construct an auxiliary Riemann’s 

function	+ = 9(&, '; &:, ':), that satisfies the homogeneous 

adjoint equation (the variables (&, ')): 
�∗9 = 0 

and the following conditions on the characteristics of: 

(9) − -9)|(�(; = 0, 

(9( − .9)|)�); = 0,                           (8) 

9(&:, ':; &:, ':) = 1. 

The Riemann’s formula in general is for the solution of 

equation (7) has the form 

�(&:, ':) = (�9)< + (�9)=2 − 12 >59�) − �9) + 2-�963'?@
 

−5�9 − �9( + 2.�963& +19A3&3',
2

 

where the double integral is taken over the domain bounded 

by the characteristics & = &:, ' = ':, and the curve γ (PQ). 

The solution of the Goursat problem (8) is unique. 

The group-theoretical approach presented below provides the 

seventh method. Using the results for the group classification 

of homogeneous hyperbolic equation of the second order, it 

was suggested to find a function of Riemann using the 

symmetries of the equation. Let us demonstrate this with a 

following examples. 

Example 1. The telegraph equation 

�() + � = 0	                                  (9) 

is one of the simplest equations to which Riemann’s method 

is applicable. In this case, the Goursat problem has the form 

+() + + = 0, +|(�(; = 1, 	+|)�); = 1. 
Usually, textbooks offer the following “method” for solving 

it: let us look for a solution of the problem (9) in the form 
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+ = D(E), E = (& − &:)(' − ':).                (10) 

This leads to the ordinary differential equation 

EDFF + DF + D = 0, 
which is Bessel’s equation and assumes the standard form 

GDFF + DF + GD = 0, 
upon the substitution G = √4E. Thus the Riemann function 

for the telegraph equation (9) is expressed in terms of 

Bessel’s function I: in the form 

+(&, '; &:, ':) = I: JK4(& − &:)(' − ')L. 
On the other hand the telegraph equation (9) admits the three-

parameter group with the generators 

M� = NN& , M	 = NN' , M� = & NN& − ' NN'. 
Let us find a linear combination of these operators 

M = O�M� + O	M	PO�M�, 

admitted by the Goursat problem (9). Let us require first the 

invariance of the characteristics & = &: , ' = ': . The 

invariance test has the form 

M(& − &:) = O + Q&: = 0, M(' − ':) = R − Q': = 0 

It follows that 	Q ≠ 0, since otherwise α = β = 0. Therefore 

one can set γ = 1 and obtain O = −&: , R = ': . One can 

readily verify that the resulting operator 

M = (& − &:) !!( − (' − ':) !!)	          (11) 

is admitted by the Goursat problem (9). Therefore one can 

use the invariance principle and look for the solution to the 

Goursat problem among invariant functions with respect to 

the one-parameter group with the generator (11). This group 

has two independent invariants, namely v and E =(& − &:)(' − ':) . Therefore the invariant solution has the 

form (10). 

Example 2. Riemann himself applied the method he 

suggested to the following equation 

+() + T(& + ')	 + = 0, T = /UVWX. 
For this equation the conditions (8) on the characteristics are 

written 

+|(�(; = 1, 	+|)�); = 1. 
Riemann reduces the resulting characteristic Cauchy problem 

to an ordinary differential equation (which defines a special 

Gauss’ hypergeometric function) by assuming that v is a 

function of the one variable 

E = (& − &:)(' − ':)(& + ')(&: + ':). 
Equation also admits three operators, namely: 

M� = NN& − NN' , M	 = & NN& + ' NN' , M� = &	 NN& − '	 NN'. 
As in the previous example, one can find uniquely this linear 

combination 

M = (& − &:)(& + ':) NN& − (' − ':)(' + &:) NN', 
leaving invariant the characteristics and the conditions on the 

characteristics. Therefore we shall look for the solution of the 

problem in the class of invariant functions. Since the 

invariants for the operator X are v and 

G = (& − &:)(' − ':)(& + ')(&: + ':), 
the invariant solution has the form v = v(µ). 

This is the invariant solution found by Riemann; the variable 

z he used is related to the invariant µ by the functional 

relation z = µ/(1 − µ), and hence is also an invariant. 

In our case, the equation adjoint equation (5) has the form 

�() − �	( �) + '� = 0                      (12) 

The function of Riemann 	+ = 9(&, '; &:, ':), Let’s note that 

in our case the desired function of Riemann satisfies the 

following conditions on the characteristics: 

9|)�); = Y(;( , 9|(�(; = 1, 9(&:, ':; &:, ':) = 1.     (13) 

The symmetry operator of the homogeneous equation (12) 

has the form [4]: 

M = Z(&) NN& + [(') NN' + \(&, ')� NN�. 
Thus, as follows from [5], must be done the following 

relations: 

N\N& + N(.Z)N& + [ N.N' = 0, N\N& + N(.Z)N& + [ N.N' = 0, 
N	\N&N' + - N\N& + . N\N' + N(/Z)N& + N(/[)N' = 0. 

Substituting in this case - = 0, . = − �	(, / = ', we’ll obtain 

the following relations 
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\ = �� − �	2 , Z = �	& + �], [ = �	 '2 + �� 1', 
where ��, �	, ��, �]− arbitrary constants. We write out a finite 

part of the basis of the Lie algebra of symmetry operators of 

the equation (5): 

M� = NN& , M	 = 1' NN', 
M� = & NN& + '2 NN' − 12� NN� , M] = � NN�. 

Let’s construct a linear combination of these operators 

M = O�M� + O	M	PO�M� + O]M], 

where O�, O	, O�, O]− arbitrary constants. 

Following [6], we require invariance characteristics & = &: 
and ' = ': 

regarding construction of the operators: 

M(& − &:) = 0, M(' − ':) = 0. 
If we choose O� = 1, we’ll get O	 = − );̂	 , O	 = −&: . Then 

the resulting operator takes the form 

M = (& − &:) NN& + _'2 − ':	2'` NN' + � NN�. 
9 = A(E)a(b), 

Invariants of this operator have the form 

c� = (& − &:)('	 − ':	), 	c	 = �& − &:, 
therefore we’ll seek the solution of equation (5) as a function 

of 9 = A(E)a(b),  where E = (& − &:)('	 − ':	), b = & − &:. 
As a result of substitution of R in equation (12), it splits into 

two ordinary differential equations 

2EAFF(E) + 2AF(E) + A(E) = 0, 
2(b + &:)aF(b) + a(b) = 0. 

The solutions of the obtained equations are functions 

A = I: _Y2(& − &:)('	 − ':	)` , a = 1�K&, 
where I:(∙)− Besel’s function of the first kind of order zero, 

C  − an arbitrary constant. 

Then satisfied with the decision 	9 = A(E)a(b) of the 

conditions (6), we obtain the Riemann’s function 

9(&, '; &:, ':) = e&:& I: _Y2(& − &:)('	 − ':	)`. 

Since = Y() , 	� = K&', then 

N�N&f()�� = g12 N�N� + 12& N�N�h()��, 
N�N'f()�� = _−&	2 N�N� + &2 N�N�`()��, 
N�N&f()�� =

12 F(&) + 12& $(&), 
N�N'f()�� = −&	2  F(&) + &2$(&) 

and 

�|()�� =  (&). 
Substituting in the formula (9) - = 0, . = − �	(, A = 0 and, 

taking into account, that 

�(i) =  (&:), �(j) =  g 1':h, 
9(i) = 9 g&:, 1&: ; &:, ':h = 1, 

9(j) = 9 g 1': , ':; &:, ':h = K&:':, 
we’ll get 

�(&:, ':) =  (&:)2 + K&:':2  g 1':h + 

+K&:4 >  (&)
K&� I: k(& − &:) g

1&	 − ':	hl
mn;

(;
3& − 

K&:2 > $(&)
K&o (3& − &�':	 − 2&:)I: k(& − &:) g

1&	 − ':	hl
mn;

(;
3& 

Returning to the old variables x and y, we’ll get the solution 

of the Cauchy’s problem 

�(�, �) =  (��)2 + �2 g��h + 

+K��4 > (W)√W� I: k(W − ��) g 1W	 − J��L
	hl

qr

�

3W − 

− √
	� s t(u)uv �u�^wuv
^w	�v
K	(uw�
)(�wu
) 	I� _(W − ��) g �u^ − J
�L	h`qr�
 3W.	 (14) 

Theorem. If the functions  (�) ∈ �	 x�	 ; 1y , $(�) ∈ x�	 ; 1y , 
then the Cauchy’s problem for equation (1) has a unique 
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solution, which is defined by (14). 

As in first case, the theorem is proved by direct verification 

that the formula (8) is a solution of equation (6). 

3. Conclusions 

We formulate an algorithm for constructing the Riemann 

function through the use of symmetries of the fundamental 

solutions: 

1. Finding symmetries of linear equation (1). 

2. Construction of invariant solutions with symmetries of the 

fundamental solutions. 

3. Isolation of the Riemann function of invariant solutions 

found by using the Riemann function continuity condition 

and its first derivatives at the point (&:, ':) and the condition 

that 9(&:, ':; &:, ':) = 1. 

This algorithm allows to find the Riemann function 

hyperbolic equations without characteristic variables. This 

underlines the invariant nature of this method of construction 

of the Riemann function. 
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