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Abstract 

Internet of Things (IoT) can be sensors, radio frequency identification (RFID) devices, or smart objects with the Internet 

connectivity over physical IP for transmitting data to the network. IoT generates big data with noise, variety, heterogeneity, 

high redundancy, and unstructured features. There are a lot of challenges in processing IoT. Big Data analytics and cloud 

computing are powerful tools for analyzing complicated data generated from IoT. This paper introduces general IoT, RFID, 

Big Data analytics (BDA); presents the progress of Big Data analytics for IoT and IoT data processing based on cloud 

computing. Challenges in these areas are also discussed. 

Keywords 

Big Data Analytics, Internet of Things (IoT), RFID, Cloud Computing, Machine to Machine (M2M),  

Wireless Sensor Networks, Machine Learning, Data Mining, Networking and Communications 

Received: August 11, 2016 / Accepted: August 22, 2016 / Published online: November 2, 2016 

@ 2016 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. 

http://creativecommons.org/licenses/by/4.0/ 

 

1. Introduction 

There are different definitions of the Internet of Things (IoT), 

but it is generally accepted as defined by the RFID group as 

“the worldwide network of interconnected objects uniquely 

addressable based on standard communications protocols” 

[1]. IoT was initially referred to uniquely identifiable, 

interoperable, and connected objects with radio frequency 

identification (RFID). Later on, researchers related IoT with 

more technologies such as sensors, actuators, GPS devices, 

and mobile devices. The integration of sensors/actuators, 

RFID tags, and communication technologies serves as the 

foundation of IoT [2]. 

For IoT, sensors and actuators embedded in physical objects 

– from roadways to pacemakers – are linked through wired 

and wireless networks, often using the same Internet Protocol 

(IP) that connects the Internet. ‘Things’ can be sensors, 

databases, and other devices or software. Sensors could 

include pacemakers, location identifiers such as global 

positioning system (GPS), and individual identification 

devices such as RFID tags [3]. In the IoT paradigm, many 

networking sensors are embedded into various devices and 

machines. Such sensors used in different fields may collect 

different kinds of data, such as environmental data, 

geographical data, astronomical data, and logistic data. 

Mobile equipment, transportation facilities, public facilities, 

and home appliances can be data acquisition equipment in 

IoT [4]. 

Early IoT applications are based on RFID and wireless 

sensor network (WSN) technologies and deliver tangible 

benefits in several areas including manufacturing, logistics, 

trade, retail, and green/sustainable applications, etc. [5]. In 

the field of the IoT, more than 30 million networked sensor 

nodes were functioning in the transportation, automotive, 

industrial, utilities, and retail sectors. The number of these 

sensors was increasing at a rate of more than 30 percent per 
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year [6]. Despite having played a significant role in the 

Industry 4.0 era, IoT is faced with the challenge of how to 

ingest large-scale heterogeneous and multi-type device data. 

Smart manufacturing has become a vital component of 

manufacturing in the Industry 4.0 era. With the development 

of smart manufacturing technology, it can be foreseen that 

IoT will increase the scale of data to an unprecedented level. 

More effective approaches for resolving record storage and 

queries in a big data environment are required [7]. 

IoT can generate big data. RFID tags generate volumes and 

volumes of data. As a result, digital processing becomes a 

requirement of feasibility. The velocity of data associated 

with the 'Internet of Things' explodes as sensors can 

continuously capture data. The variety of data associated with 

the 'Internet of Things' also is expansive as the types of 

sensors and the different sources of data expand. The veracity 

of data in the 'Internet of Things' may also be improving as 

the quality of sensor and other data improves over time [3]. 

In addition to very large data sets, big data can also be a mix 

of structured data (relational database), unstructured data 

(human language text), semi-structured data (RFID or XML), 

and streaming data (from machines, sensors, Web 

applications, and social media). Structured data from 

applications is a common form of big data although it’s not 

new. 10 to 99 terabytes are the big data norm today [8]. IoT 

can comprise billions of devices that can sense, 

communicate, compute, and potentially actuate. Data streams 

coming from these devices challenge the traditional 

approaches to data management and contribute to the 

paradigm of big data. If Wal-Mart operates RFID on an item 

level, it is expected to generate about seven terabytes (TB) of 

data every day [9]. 

In an IoT big data system, bulk amounts of data are 

organized in the form of NoSQL databases. The IoT big 

data is a spatiotemporal database that depends on the time 

and location; more numbers of rows are there along with 

less number of columns. So the column oriented data-

depository can greatly improve the performance of IoT big 

data in data accessing and query processing. The 

heterogeneous IoT big data cannot be stored in any relation 

database. Therefore, IoT big data cell (NoSQL database) 

may be used to resolve the storage limitation and 

constraints of relational database [10]. 

The organization of the paper is as follows: the next section 

introduces Internet of Things (general Internet of Things 

and RFID); Section 3 introduces Big Data analytics; 

Section 4 introduces Big Data analytics and cloud 

computing for Internet of Things; and the final section is 

conclusion. 

2. Internet of Things 

2.1. General Internet of Things 

IoT forms a communicating-actuating network of a large 

amount of things including RFID tags, mobile phones, 

sensors, and actuators, etc. [11]. The data generated from IoT 

has the following features [4]: 

• Large-scale data: Masses of data acquisition equipment are 

distributed. For analysis and processing, not only the 

currently acquired data, but also the historical data within 

a certain time frame should be stored. Therefore, IoT 

generates large-scale data. 

• Heterogeneity: Because of the variety of data acquisition 

devices, the acquired data is also different, which results in 

data heterogeneity. 

• Strong time and space correlation: Every data acquisition 

device is placed at a specific geographic location and 

every piece of data has a time stamp. The time and space 

correlation is an important property of data from IoT. 

• Effective data accounts for only a small portion of big 

data: a great quantity of noises may occur during the 

acquisition and transmission of data in IoT. In some 

situations, only a small amount of abnormal data is 

valuable. For example, a small amount of traffic video 

frames that capture the violation of traffic regulations and 

traffic accidents are really valuable. 

A foundational technology for IoT is RFID. People can 

identify, track, and monitor any objects attached with RFID 

tags automatically. Another foundational technology for IoT is 

the wireless sensor networks (WSNs) [2]. Some technologies 

associated with IoT are summarized as follows [2]: 

• Identification and Tracking Technologies: RFID systems, 

barcode, and intelligent sensors. 

• Communication Technologies. 

• Networks: IoT involves a number of heterogeneous 

networks such as WSNs. These networks must be revised 

before they can be applied to IoT. The reason is that things 

in IoT often have diverse communication and computation 

capabilities. In contrast, nodes in WSNs typically have 

similar requirements for hardware and network 

communication. In addition, the IoT network uses the 

Internet to support information exchange and data 

communication. In contrast, WSNs do not have to involve 

the Internet for communication. 

• Cloud computing 

• Service Management in IoT. 

IoT has three unique features: intermittent sensing, regular 
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data collection, and sense-compute-actuate (SCA) loops [9]. 

Telematics is a prime example of an industry harnessing the 

power of mobile connectivity and IoT. Complex data types 

typically in IoT applications can be modeled and represented 

more efficiently using JSON (JavaScript Object Notation) 

documents, rather than tables [12]. IoT can be divided into 

five layers as shown in Table 1 [13]. 

Table 1. IoT five-layer architecture. 

Layers Description 

Perception Layer 

(device layer) 
Composed of physical objects and sensor devices 

Network Layer 

(transport layer) 
The medium of data transition may be wired or wireless, and the using technology can be Wi-Fi, 3G, Zig-Bee, and Z-Wave, etc. 

Middleware Layer 
Responsible for storing, analyzing, and processing the information of objects that received from the network layer and linked to the 

database. 

Application Layer Offers inclusive management of application that relies on the objects information processed in the middleware layer. 

Business Layer Business layer likes a manager of IoT. The management includes applications, relevant system model, and services. 

 

WSNs are being enabled by the increasing availability of 

sensors and advances in wireless technologies, hardware, and 

the use of IP for connecting resource constrained devices. The 

use of micro IP stacks has enabled constrained devices to be 

connected to IoT. IoT is characterized by an interconnected set 

of individually addressed and constrained (possibly 

autonomous) devices in a distributed system, with sensing/active 

devices for physical phenomena, data collection, and 

applications. However, the potential of WSNs is limited by the 

relatively low number deployed and the difficulties imposed by 

their heterogeneous nature and limited (or proprietary) 

development environments and interfaces. The constrained 

nature of WSN nodes in processing power, memory and energy 

consumption is a challenge. A set of requirements were 

proposed for achieving a pervasive, integrated information 

system of WSNs and associated services. An architecture was 

presented, which considered the data flow from sensors through 

to services and provides a set of abstractions for the different 

types of sensors and services [14]. 

Industrial IoT (IIoT), a sub-paradigm of IoT, focuses more in 

safety-critical industrial applications. Compared with domestic 

IoT, IIoT has long product cycles, often operating in extreme 

conditions. IIoT generally needs to be integrated with other 

industrial systems from different vendors; while domestic IoT 

normally is a vertically integrated, single-vendor solution. IIoT 

must prevent unauthorized access while domestic IoT is more 

concerned with users’ privacy issues. IIoT must be fault-

tolerant and cannot assume continuous access to Internet or 

cloud; therefore, IIoT has to be autonomous and be able to 

function during network interruptions [11]. 

Interoperability is a key challenge in IoT. This is due to the 

intrinsic fabric of IoT: (1) high–dimensional, with the co-

existence of many systems (devices, sensors, and equipment, 

etc.) in the environment that need to communicate and 

exchange information; (2) highly heterogeneous, where these 

vast systems are conceived by a lot of manufacturers and are 

designed for many different purposes and diverse application 

domains, making it extremely difficult to reach out for global 

agreements and widely accepted specification; (3) dynamic 

and non-linear; and (4) hard to describe/model due to 

existence of many data formats. Sustainable interoperability 

is needed in IoT. The framework for sustainable 

interoperability in IoT needs to address the following aspects: 

(1) management of interoperability in IoT; (2) dynamic 

interoperability technologies for IoT; (3) measurement of 

interoperability in IoT (need to quantify and/or qualify 

interoperability); (4) interaction and integration of IoT in the 

global Internet: IPv6 integration, global interoperability, and 

IoT-Cloud integration, etc. In other words, it is needed to 

address how to bridge billion of smart things globally, while 

respecting their specific constraints [15]. 

IoT, mobile computing (MC), pervasive computing (PC), 

wireless sensor networks (WSNs), and most recently, cyber 

physical systems (CPS) are five research communities. 

However, as technology and solutions progress in each of 

these fields there is an increasing overlap and merger of 

principles and research questions. Research in IoT, PC, MC, 

WSN and CPS often relies on underlying technologies such 

as real-time computing, machine learning, security, privacy, 

signal processing, and big data, etc. [16]. 

The spectrum of research required to achieve IoT at the scale 

requires significant research along many directions, which 

are highlighted in eight topic areas: massive scaling, 

architecture and dependencies, creating knowledge and big 

data, robustness, openness, security, privacy, and human-in-

the-loop. As for human-in-the-loop, IoT applications will 

become more sophisticated when they proliferate. Many of 

these new applications will intimately involve humans, i.e., 

humans and things will operate synergistically. Human in-

the-loop systems offer great opportunities to a broad range of 

applications, including energy management, health care, and 

automobile systems. However, modeling human behaviors is 

a challenge due to complicated physiological, psychological, 



 American Journal of Information Science and Computer Engineering  Vol. 2, No. 6, 2016, pp. 70-78 73 

 

and behavioral aspect of human beings. New research is 

needed to raise human-in-the-loop control to a central 

principle in system design. One vision of the future is that 

IoT becomes a utility with increased sophistication in 

sensing, actuation, communications, control, and in creating 

knowledge from vast amounts of data [16]. 

There are several techniques or tools for solving IoT data 

management challenges. They are: Big data, cloud 

computing, semantic sensor web, data fusion techniques, and 

middleware [13]. In addition, the following research trends 

[2] also should be our concerns: 

• Developing green IoT technologies: There is a need to 

develop energy-efficient techniques that can reduce the 

consumed power by sensors. 

• Developing context-aware IoT middleware solutions to 

better understand sensor data and help decide what data 

needs to be processed. 

• Employing artificial intelligence techniques to create 

intelligent things or smart objects: Future IoT systems 

should have characteristics including “self-configuration, 

self-optimization, self-protection, and self-healing”. 

• Combining IoT and cloud computing, implementing new 

models or platforms that provide “sensing as a service” on 

the cloud. 

2.2. Radio Frequency Identification 

With the IoT technologies such as RFID implemented in 

manufacturing sites, enormous data will be generated. Such 

data are so complex, abstract, and variable that it is difficult 

to make full use of the data that carry useful information 

[17]. RFID-enabled item-level tagging, is expected to 

generate not only huge operational and strategic data across 

the value chain of all industries, but also an impressive 

volume of RFID data [18]. 

EPCIS is an RFID event repository, which is one of the core 

component of the EPCglobal Architecture Framework. It 

helps store RFID event information and share the information 

among supply chain partners. Electronic Product Code (EPC) 

refers to a coding scheme for unambiguous code for the 

designation of physical goods. RFID and sensor technologies 

are the core technologies of future IoT [19]. RFID creates 

new possibilities and processes such as real time inventory 

and item-level process validation. As a result, a much larger 

volume of data is generated, and it is item-level data rather 

than transactional data. When a major retailer implements 

RFID on a significant portion of their products, the result can 

be literally billions of additional data points. Most existing 

enterprise systems were designed to handle transaction-level 

data (like a P.O. or shipment) and not designed to handle 

item-level data. What is needed is a new breed of application 

designed specifically to handle item-level RFID data, while 

integrating to existing legacy systems and processes. The 

new systems should be able to [20]: 

• Translate item-level data into transaction-level data that 

existing systems can absorb. 

• Filter and consolidate item-level data into meaningful 

business events, making efficient use of network 

bandwidth. 

• Provide management-by-exception via rules-based 

monitoring of these enormous new data flows. 

• Store item-level data in an EPICS-compliant database, 

organized in a hierarchical manner (i.e. consolidating local 

event data up to higher levels business event data as 

needed). 

• Provide business intelligence and analytic tools designed 

specifically to leverage this granular item-level data. 

The RFID-enabled logistics big data usually include some 

“noise” such as incomplete, redundant, and inaccurate 

records. The major noises in RFID-enabled logistics data 

come from redundant records. Thus, it is important to detect 

and remove the redundancy. However, current methods are 

not suitable for removing the above noises. The knowledge 

hidden in the RFID-enabled big data is sporadic. That means 

hundreds of RFID records may create a piece of information 

which indicates the detailed logic operations [21]. Therefore, 

raw RFID data are typically of low quality and may contain 

many anomalies because of physical device limitations and 

different types of environmental noise. RFID data poses 

many challenges for data analysis: (1) RFID data are 

inherently noisy and redundant; (2) RFID data are temporal, 

streaming, high volume, and must be processed on the fly [6]. 

Several key procedures are proposed: an RFID-Cuboid 

cleansing algorithm was presented for detecting and 

removing the noise data from the logistics dataset; an RFID-

Cuboid compression algorithm was demonstrated for 

reducing the storage space and enhancing information 

granularity; and an RFID-Cuboid classification algorithm 

was reported for clustering the cuboids according to the 

practical applications/considerations [21]. 

3. Big Data Analytics 

Big data comes from a variety of sources, in very large 

amounts, and often in real-time settings. This trend is largely 

driven by the pervasive diffusion and adoption of mobile 

devices, social media tools, and IoT enabled by RFID and 

other RF-related tracking and sensor devices [1]. Table 2 [22] 

lists the classification of big data. 
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Table 2. Big data classification. 

Classification Description 

Data Sources 

• Web & Social: Generating data via URL to share or exchange information in virtual communities and networks, such as blogs, 

Facebook, and Twitter. 

• Machine: automatically generating data from computers, medical devices, or other machines. 

• Sensing: generating data from sensing devices 

• Transactions: Transaction data, such as financial and work data. 

• IoT: Internet of things produces huge amounts of data. 

Content 

Formats 

• Structured: Structured data are often managed SQL, a programming language created for managing and querying data in RDBMS. 

• Semi-structured: not following a conventional database system; in the form of structured data that are not organized in relational 

database models. 

• Unstructured: such as text messages, videos, and social media data; not following a specified format. 

Data Stores 

• Document-oriented: A document-oriented data store is similar to a record or row in a relational database but is more flexible and can 

retrieve documents based on their contents. 

• Column-oriented: A column-oriented database stores its content in columns aside from rows, with attribute values belonging to the 

same column stored contiguously. 

• Graph based: storing and representing data that utilize a graph model with nodes, edges, and properties related to one another 

through relations. 

• Key-value: Key-value is an alternative relational database system that stores and accesses data designed to scale to a very large size. 

Data Staging 

• Cleaning: identifying incomplete and unreasonable data. 

• Normalization: structuring database schema to minimize redundancy. 

• Transform: transforming data into a form suitable for analysis. 

Data Processing 
• Batch: MapReduce-based systems have been adopted for long-running batch jobs. 

• Real time: such as simple scalable streaming system (S4). 

Although Hadoop has become a mainstay of big data analytics platforms, it remains far from mature. First, Hadoop must 

integrate with real-time massive data collection & transmission and provide faster processing beyond the batch-processing 

paradigm. Second, Hadoop provides a concise user programming interface, while hiding the complex background execution. In 

some senses, this simplicity causes poor performance. It is difficult for current and mature batch-processing paradigms to adapt 

to the rapidly growing data volume and the substantial real-time requirements. In-situ analysis avoids the overhead of file 

transfer to the centralized storage infrastructure to improve real-time performance. Due to the value-sparse feature of big data, 

a new data analysis mechanism should adopt dimensionality reduction or sampling-based data analysis to reduce the amount of 

data to be analyzed [6]. MapReduce is a programming and processing model in big data. Some MapReduce projects and 

related software are shown in Table 3. 

Table 3. Some MapReduce projects and related software. 

Software Brief Description 

Hive Offers a warehouse structure in HDFS 

Pig Involves a high-level scripting language (Pig Latin) and offers a run-time platform allowing users to execute MapReduce on Hadoop 

Hbase Scalable distributed database supporting structured data storage for large tables 

SparkTM A fast computation engine for Hadoop data 

YARN A new Apache–Hadoop–MapReduce framework 

Cassandra A scalable multi-master database with no single point of failure 

ZookeeperTM 
High-performance service to coordinate the processes of distributed applications; a distributed service with master and slave nodes and 

stores configuration information 

MadoutTM A machine-learning and data-mining library that can be executed in a distributed mode and is executable by MapReduce 

 

Approaches to handling big data workloads are such as: (1) 

classical data warehouses; (2) batch processing (e.g., Apache 

Hadoop); (3) real-time processing (e.g., Twitter Storm); and 

(4) edge computing. Real-time Processing Systems such as 

Apache Storm are much better suited to processing large 

amounts of streaming data than Hadoop-based systems. The 

advantage of these systems is that they can process much 

more data per second. However, Storm does not provide 

high-level query languages for data analysis such as Pig or 

Hive. Edge computing covers a wide range of technologies 

such as distributed data storage, mobile data acquisition, and 

fog computing that extends the cloud computing paradigm to 

the edge of the network. The edge servers are globally 

distributed to ensure consistent low latency when users 

request a page. There are different big data challenges such 

as real-time (velocity), scale-out (volume), and edge 

processing (variety and low latency combined with 

connectivity challenges). Many actually require data 
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ingestion from multiple sources (variety) and at the same 

time—especially within the IoT domain—involve some real-

time aspect or a direct feedback component [4]. 

Joining big data with traditional data is another path to value. 

For example, so-called 360-degree views of customers and 

other business entities are more complete and bigger when 

based on both traditional enterprise data and big data. 

Streaming big data is easy to capture, but tough to process in 

real time. Interest is high in distributed file systems and 

distributed analytic processing. In-database analytics takes 

processing to the data, instead of vice versa. Reducing disk 

I/O increases the performance of data intense processes. As 

for in-memory databases, one way to get high performance 

(in the sense of fast data access) from a database is to manage 

it in server memory, thereby eliminating disk I/O and other 

bottlenecks. A cloud can be central to a data management 

strategy [8]. 

A heterogeneous device data ingestion model was proposed 

for an Industrial Big Data Platform (IBDP). The model 

includes device templates and four strategies for data 

synchronization, data slicing, data splitting and data 

indexing, respectively. Device data from multiple sources can 

be ingested using this heterogeneous device data ingestion 

model, which is verified on the IBDP [7]. 

The existing relational database technologies are inadequate to 

handle IoT-generated data due to the limited processing speed 

and the significant storage expansion cost. Thus, big data 

processing technologies, which are normally based on 

distributed file systems, distributed database management, and 

parallel processing technologies, have arisen as a core 

technology to implement IoT-generated data repositories. A 

sensor-integrated RFID data repository-implementation model 

was proposed using MongoDB, a popular big data-savvy 

document-oriented database system and a document-oriented 

NoSQL database that offers high performance and scalability. 

A MongoDB-based RFID/sensor data repository was designed. 

It can integrate and store RFID and sensor data by referencing 

event types of Electronic Product Code Information Services 

(EPCIS) in the EPCglobal network [19]. 

4. Big Data Analytics and Cloud 
Computing for Internet of 

Things 

4.1. Cloud Computing for IoT 

IoT and mobility provide sensors that can sense in real-time 

even while moving. These sensors will produce big data that 

is high volume, high variety, and high velocity. An elastic 

infrastructure such as the cloud needs to be used to process 

the big data. In other terms, the cloud binds to the IoT. Cloud 

computing consists of three main layers or model: 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS). In addition, some 

other layers are such as Sensing as a service (SaaS), Data as a 

Service (DaaS), and Network as a Service (NaaS), etc. In 

general, all these models are called XaaS. The objective of 

IoT is to provide utility-based services such as Sensing as a 

service, Location-as-a-Service, and Traceability-as-a-Service. 

Very large scale sensor networks domain use cloud 

computing to process data in the cloud. Such data can be 

characterized as polymorphous, heterogeneous, large in 

quantity and time-limited. In a very large scale sensor 

network, managing the sensing resources and computational 

resources, and storing and processing these data are key 

challenges [9]. 

4.2. Big Data Analytics for IoT 

IoT data can be big data. There are large volumes of data to 

read and write. The amount of data can be TB(terabytes), PB 

(petabytes), and even ZB(zettabyte). There are 

Heterogeneous data sources and data types to integrate. Data 

sources are diverse; for example, it is needed to integrate 

sensors data, cameras data, social media data, and so on. All 

these data are different in format: byte, binary, string, and 

number, etc. There is complex knowledge to extract. The 

knowledge is deeply hidden in large volumes of data. There 

are lots of challenges in processing IoT big data; the quantity 

of data is big but the quality is low due to different data 

sources and different types and representation forms 

(structured, semi-structured, and unstructured) [23]. 

Context-based devices have been a concern of the ‘Internet 

of Things’. The ‘Internet of Things’ provides potential for 

capturing and generating context about relevant ‘things’. If 

the ‘things’ are RFID tags representing inventory, then people 

would have some understanding and expectations regarding 

behavior because the tags are representing inventory. ‘Big 

Data’ also should be able to provide ‘Big Context’. Sensor 

information operates in real time, speeding the velocity, 

resulting in a continuous monitoring of the ‘Internet of 

Things’ that is a source of ‘Big Data’ [3]. Semantic challenge 

is to extract the meaning of the information from massive 

volumes of unstructured dirty data [9]. 

Real-time data classification and clustering for agile data 

streams are challenging issues especially in IoT big data 

environment. A data classification process is expected to 

formulate fused data into multiple data groups. The fused 

data can be classified into multiple groups of having multiple 

event types such as machine status data, functional data, 

inventory data, production data, and product quality data, etc. 

Some nonlinear data classification process over the 
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multilayer perceptron may be fit to the problem of large scale 

IoT big data classification. IoT big data management systems 

can be distributed computing systems that especially deal 

with semi-structured and unstructured IoT big data. Table 4 

and Table 5 show an IoT big data management subsystem 

and an IoT big data layering architecture, respectively [10]. 

Table 4. IoT Big Data Management Subsystem. 

Layers Management Subsystems 

Layer 1 IoT objects management (physical devices) 

Layer 2 IoT big-data management 

Layer 3 IoT intelligence management 

Layer 4 IoT applications management 

Table 5. Overall IoT Big Data Layering Architecture. 

Layering Architecture Representation 

Application layer IoT applications 

Knowledge processing layer IoT tools 

Data management layer IoT middleware 

Transport layer IoT network 

Physical sensing layer IoT objects 

Machine to Machine (M2M) is regarded as the predecessor 

of the IoT in the industry. However, the evolution from M2M 

to the IoT is not only an issue of adding more devices. IoT 

will drive Big Data by providing more information, from 

many different sources, in real-time. This allows us to gain 

completely new perspectives on the environments around us. 

Big Data has five key capabilities for data management in 

IoT [12]: 

• Creating rich and functional applications: Data 

management must support the development of functionally 

rich applications with complex data and algorithms. 

• Unlocking business agility: The ability to support many 

new and frequently changing business requirements. 

• Enabling a single point of truth & business convergence: 

Aggregate multiple views of related data from multiple 

systems into one consistent version of the data. 

• Real-time operational insight: Support both operational as 

well as analytical applications from the same data source 

• Enterprise-grade platform: Provide highly scalable, cloud-

based, robust, and secure applications 

The application of big analog data is the precursor to the rise 

of the Industrial Internet of Things (IIoT). By making 

machines smarter through local processing and 

communication, the IIoT will solve problems in ways that 

were previously inconceivable [24]. The result of rapid 

development of IoT/IIoT is that the enormous amount of 

collected data from different sources will have to be 

processed, analyzed, and visualized in a timely manner. This 

is where big data analytics (BDA) will fit in. In fact, BDA 

and IoT complement each other and develop as a double 

“helix”. BDA on sensor-enabled operation data can improve 

energy efficiency and environmental performance, safety 

verification and assessment, and the monitoring of accidents 

and environment risks. In general, BDA requires heavy 

computational power. As people have observed in the HPC 

community, super computers have already been built with a 

hybrid CPU and GPU architecture to make use of the large 

pool of processing units in GPUs [11]. 

A holistic Big Data approach was proposed to excavate the 

frequent trajectory from massive RFID-enabled 

manufacturing data for supporting production logistics 

decision-makings. This approach comprises several key 

steps: warehousing for raw RFID data, cleansing mechanism 

for RFID big data, mining frequent patterns, as well as 

pattern interpretation and visualization [21]. 

For IoT applications, the obtained massive sensing data can 

be in various features, which is a challenge. Big Data 

analytics has been massive heterogeneous data analytics in 

nonlinear, high-dimensional, distributed, and parallel data 

processing. In Big Data techniques for IoT, an algorithm was 

proposed for anomaly detection in big sensor data. In 

particular, an algorithm of contextual anomaly detection was 

introduced to progress a point anomaly detection algorithm. 

A post-processing context-aware anomaly detection 

algorithm was proposed based on a multivariate clustering 

algorithm. A MapReduce methodology was also proposed to 

outline the sensor profiles used in the context detector [13]. 

4.3. Convergence Among Cloud Computing, 

Big Data Analytics and IoT 

In the age of big data, hardware is evidently no longer the 

limiting factor in acquisition applications, but the 

management of acquired data is. It is simple to use cloud 

storage and cloud computing resources to create a single 

aggregation point for data coming in from a large number of 

embedded devices and provide access to that data from any 

group within an organization [24]. The convergence of IoT, 

Big Data and cloud lies in [25]: 

• For Big Data, data collection is one of the main concern, 

and IoT can play important roles for data collection and 

data sharing 

• Cloud offers Everything as a Service business model for 

IoT and Big Data. 

Cloud services and Big Data approaches can be used to store 

and analyze IoT data to improve scalability and availability, 

which will be required for the billions of devices envisaged 

in IoT. It is necessary to enable WSNs to become extensions 

of the Internet infrastructure and take full advantage of cloud 

and Big Data services. The availability of increased storage 
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and processing power at a lower cost with greater bandwidth 

has enabled a range of cloud computing services. In terms of 

IoT, this allows more sources of data to be collected and for 

the data to be held for a longer time and to be processed by 

powerful cloud based applications and Big Data techniques, 

e.g. HBase and MapReduce [14]. 

Big data storage and processing are considered as one of the 

main applications for cloud computing systems. Furthermore, 

the development of the IoT paradigm has advanced the 

research on M2M communications and enabled novel 

telemonitoring architectures for e-Health applications. 

However, there is a need for converging current decentralized 

cloud systems, general software for processing big data and 

IoT systems. Most IoT applications are based on M2M 

communication protocols between large numbers of 

heterogeneous and geographically distributed sensors. As a 

result, they need to handle hundreds (sometimes thousands) 

of sensor streams, and could directly benefit from the 

immense distributed storage capacities of cloud computing 

infrastructures. Furthermore, cloud infrastructures could 

boost the computational capacities of IoT applications. Also, 

several IoT services (e.g., large scale sensing experiments, 

smart city applications) could benefit from a utility-based 

delivery paradigm, which emphasizes the on-demand 

establishment and delivery of IoT applications over a cloud-

based infrastructure. An M2M system was proposed based on 

a decentralized cloud architecture, general systems and 

remote telemetry units (RTUs) for e-Health applications. The 

system was built for big data processing of sensors 

information in the way that data can be aggregated to 

generate “virtual” sensors [5]. 

5. Conclusion 

IoT and its tools cover RFID, wired/wireless sensors, 

networks, embedded systems, and computing and analytics 

such as cloud computing. IoT generates big data because of 

masses of data in a real timescale, often semi-structured or 

unstructured data, and valuable data only after being 

analyzed. Big data generated by IoT has some different 

features compared with general big data because of the 

different types of data collected. 

RFID can identify, track, trace, and monitor objects. WSNs 

enable applications and services that may be located across 

the Internet from the sensing network. Both RFID and WSNs 

are foundational technologies for IoT. IoT has some 

challenges such as interoperability. Big data and cloud 

computing are powerful approaches to solving IoT 

challenges. 

The following aspects can be future research topics: 

Engineered Resilient Systems (ERS) for IoT, artificial 

intelligence in IoT systems, green IoT technologies, context-

aware IoT middleware for better understanding sensor data, 

real-time processing for IoT big data, and convergence of 

IoT, cloud computing and Big Data analytics. 

References 

[1] Riggins, F. J., & Wamba, S. F. (2015, January). Research 
directions on the adoption, usage, and impact of the internet of 
things through the use of big data analytics. In System 
Sciences (HICSS), 2015 48th Hawaii International 
Conference on (pp. 1531-1540). IEEE. 

[2] Da Xu, L., He, W., & Li, S. (2014). Internet of things in 
industries: A survey. IEEE Transactions on Industrial 
Informatics, 10(4), 2233-2243. 

[3] O'Leary, D. E. (2013). BIG DATA’, THE ‘INTERNET OF 
THINGS’AND THE ‘INTERNET OF SIGNS. Intelligent 
Systems in Accounting, Finance and Management, 20(1), 53-
65. 

[4] Chen, M., Mao, S., & Liu, Y. (2014). Big data: a survey. 
Mobile Networks and Applications, 19(2), 171-209. 

[5] Suciu, G., Suciu, V., Martian, A., Craciunescu, R., Vulpe, A., 
Marcu, I., ... & Fratu, O. (2015). Big Data, Internet of Things 
and Cloud convergence–an architecture for secure e-health 
applications. Journal of medical systems, 39(11), 1-8. 

[6] Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable 
systems for big data analytics: A technology tutorial. IEEE 
Access, 2, 652-687. 

[7] Ji, C., Shao, Q., Sun, J., Liu, S., Pan, L., Wu, L., & Yang, C. 
(2016). Device Data Ingestion for Industrial Big Data 
Platforms with a Case Study. Sensors, 16(3), 279. 

[8] Russom, P. (2013). Managing big data. TDWI Best Practices 
Report, TDWI Research, 1-40. 

[9] Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). 
Sensing as a service and big data. arXiv preprint 
arXiv:1301.0159. 

[10] Mishra, N., Lin, C. C., & Chang, H. T. (2015). A cognitive 
adopted framework for IoT big-data management and 
knowledge discovery prospective. International Journal of 
Distributed Sensor Networks, 2015, 6. 

[11] Wang, H., Osen, O. L., Li, G., Li, W., Dai, H. N., & Zeng, W. 
(2015, November). Big data and industrial internet of things 
for the maritime industry in northwestern Norway. In 
TENCON 2015-2015 IEEE Region 10 Conference (pp. 1-5). 
IEEE. 

[12] Bosch and MongoDB, IoT and Big Data, A Joint Whitepaper 
by Bosch Software Innovations and MongoDB, August 2015. 

[13] Aly, H., Elmogy, M., & Barakat, S. Big Data on Internet of 
Things: Applications, Architecture, Technologies, Techniques, 
and Future Directions. 

[14] Tracey, D., & Sreenan, C. (2013, May). A holistic architecture 
for the internet of things, sensing services and big data. In 
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th 
IEEE/ACM International Symposium on (pp. 546-553). IEEE. 



78 Lidong Wang and Cheryl Ann Alexander:  Big Data Analytics and Cloud Computing in Internet of Things  

 

[15] Friess, P. (2013). Internet of things: converging technologies 
for smart environments and integrated ecosystems. River 
Publishers. 

[16] Stankovic, J. A. (2014). Research directions for the internet of 
things. IEEE Internet of Things Journal, 1(1), 3-9. 

[17] Zhong, R. Y., Lan, S., Xu, C., Dai, Q., & Huang, G. Q. (2016). 
Visualization of RFID-enabled shopfloor logistics Big Data in 
Cloud Manufacturing. The International Journal of Advanced 
Manufacturing Technology, 84(1-4), 5-16. 

[18] Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, 
D. (2015). How ‘big data’can make big impact: Findings from 
a systematic review and a longitudinal case study. 
International Journal of Production Economics, 165, 234-246. 

[19] Kang, Y. S., Park, I. H., Rhee, J., & Lee, Y. H. (2016). 
Mongodb-based repository design for iot-generated rfid/sensor 
big data. IEEE Sensors Journal, 16(2), 485-497. 

[20] Software Snapshot, FRPT Research, 2014, 11-13 

[21] Zhong, R. Y., Huang, G. Q., Lan, S., Dai, Q. Y., Chen, X., & 
Zhang, T. (2015). A big data approach for logistics trajectory 
discovery from RFID-enabled production data. International 
Journal of Production Economics, 165, 260-272. 

[22] Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, 
A., & Khan, S. U. (2015). The rise of “big data” on cloud 
computing: Review and open research issues. Information 
Systems, 47, 98-115. 

[23] Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & 
Rong, X. (2015). Data mining for the internet of things: 

literature review and challenges. International Journal of 
Distributed Sensor Networks, 2015, 12. 

[24] Nair, C. (2015). Managing big data, from an analog world. 
SMT Magazine, November, 56-62. 

[25] Rahim, I. A. (2015). Empowering Urban Innovation Through 
Convergence of IoT-Big data and Cloud, Forum on Internet of 
Things: Empowering the New Urban Agenda Geneva, 
Switzerland, 19 October 2015. 

Biography 

Dr. Lidong Wang is an Associate Professor 

at Mississippi Valley State University, USA. 

He worked at Ohio State University, 

Mississippi State University, and the 

University of South Carolina; and conducted 

projects supported by the Department of 

Defense, the National Science Foundation, 

and the National Aeronautics and Space 

Administration (NASA). His current research interests include Big 

Data, Internet of Things, cybersecurity, cyber-physical systems, 

and Industry 4.0, etc. He has published over 70 papers in various 

journals. He was the President of the Electricity, Electronics & 

Computer Technology (EECT) Division of the Association of 

Technology, Management, and Applied Engineering. 

 

 


