
 

Industrial and Systems Engineering 

Vol. 1, No. 2, 2016, pp. 37-53 

http://www.aiscience.org/journal/ise  
 

 

* Corresponding author 

E-mail address: Dr.Mustafa.Abbas@gmail.com 

A Step Towards Optimal Operation and Control of 
Batch Distillation Columns Using Reinforcement 
Learning 

M. A. Mustafa* 

Department of Chemical Engineering, Faculty of Engineering, University of Khartoum, Khartoum, Sudan 

Abstract 

An important amount of work exists on the topic of optimal operation and control of batch distillation. Although previous 

efforts are still based on the assumption of an accurate process model being available, there will always remain the challenge 

of practical applications. Reinforcement Learning (RL) has been recognized already as a particularly suitable framework for 

optimizing batch process operation however no successful application to batch distillation has been reported. Thus, this paper 

presents RL as an automatic learning approach to batch distillation. Incremental batch to batch learning is demonstrated, for a 

range of case studies starting from a small initial training data set and with no assumption of prior knowledge of VLE. 

Furthermore the robustness of the RL algorithm, towards uncertainty in process variables, is demonstrated. 
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1. Introduction 

The rising importance of high-value-added, low-volume 

specialty chemicals has resulted in a renewed interest in 

batch processing technologies [1]. Batch distillation is an 

important and widely used separation process in batch 

process industry. Its main advantage, over continuous 

operation, is the ability to be used as a multi-purpose 

operation for separating mixtures into their pure components 

using a single column. Batch distillation can also handle a 

wide range of feed compositions with varying degrees of 

difficulty of separation (e.g. wide ranges of relative 

volatilities and product purities). Although the typical 

consumption of energy is more than in continuous 

distillation, more flexibility is provided with less capital 

investment [2]. Besides the flexibility in the operation of 

batch distillation columns, a range of challenging design and 

operational problems occur due to its inherent unsteady state 

nature. 

2. Literature Survey 

The main sequence of events in operating a batch distillation 

column starts with the feed charged into the reboiler. The 

column is then operated at total reflux until the column 

reaches steady state. This initial phase is known as the start-

up phase. In the second phase, or production phase, light 

component product is collected into a product tank until its 

average composition drops below a certain specified value. 

This cut is referred to as the main cut (The 1
st
 main cut is 

sometimes preceded by taking off the low boiling impurities 

at a high reflux ratio). After that, the first intermediate 

distillate fraction (off-cut or slop cut) is produced and stored 

in a different tank. This procedure is repeated with a second 

main cut and second slop cut and so on until the 

concentration of the heaviest component, in the reboiler of 

the column, reaches a specified value. At the end of the 

batch, the operation of the distillation column goes through a 
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shutdown phase. Slop cuts contain the material distilled, 

which does not meet specification. Considerable work in slop 

handling strategies has been reported in the literature [3, 4]. 

On the other hand, a totally different operating policy is the 

cyclic operation of a batch distillation column. In the case of 

a regular column, the cyclic operation could be characterised 

by repeating a three period operation [5]: Filling, Total 

Reflux, and Dumping. 

The main manipulated variable, in the process of controlling 

a batch distillation column, is the reflux ratio. The frequently 

used and conventional approach towards controlling the 

operation of a batch distillation column, during the 

production of main cuts, is either to operate at constant reflux 

ratio or to operate at a varying reflux ratio (constant distillate 

composition). During operation at constant reflux ratio, the 

distillate composition is allowed to vary resulting in a 

simpler strategy and hence it is more commonly used in 

industry. The second approach is conducted by maintaining a 

fixed overhead composition while varying the reflux ratio. 

The two approaches used are simple but provide sub-optimal 

results. The second manipulated variable, in controlling a 

batch distillation column, is the boil-up rate: the quantity of 

liquid in the reboiler that is evaporated per unit time. In case 

of a batch distillation column, the boilup rate is often held at 

a maximum rate consistent with allowable vapour velocities 

and liquid capacities. In addition to the variables just 

mentioned, Farhat et al. [6] used the switching time for 

different cuts as an extra decision variable. 

Throughout the literature, the formulation of the optimal 

control problem in batch distillation has been categorised as 

either a: Maximum Distillate Problem [7, 8]; Minimum Time 

Problem [9-13]; Maximum Profit Problem [14, 15]. Mujtaba 

and Macchietto [16] provided an efficient framework for on-

line optimization of batch distillation with chemical reaction. 

The technique starts by finding optimization solutions to the 

batch distillation with chemical reaction problem, in order to 

solve the maximum conversion problem. The optimization 

was performed for a fixed batch time and given product 

purity. The maximum conversion, the corresponding amount 

of product, optimal constant reflux ratio, and heat load 

profiles were plotted for different batch times. Polynomial 

curve fittings were then applied to the results of the 

optimization and were used to formulate a non-linear 

algebraic maximum profit problem. 

Mujtaba and Hussain [13] developed an optimization 

framework to tackle efficiently the optimal operation of 

dynamic process due to process/model mismatches. The 

method was applied to a batch distillation process where use 

is made of a neural network to predict the process/model 

mismatch profiles for the case study used. The Neural 

Network was then trained to predict the process/model 

mismatch, for each state variable, at the present discrete time. 

The mismatch then between the actual process/model 

(represented by error between rigorous model and simple 

model) and that predicted by the network was used as the 

error signal to train the Neural Network. The simple model 

was then used together with the Neural Network, to calculate 

the optimal reflux ratio to achieve the separation in minimum 

time. The results were then compared with the more rigorous 

model, which was used to represent the actual process in 

their case study. It was concluded that with the use of a 

simple model with mismatches, the optimal operation policy 

could be predicted quite accurately using the Neural 

Network. Although important work by Mujtaba et. al. [13, 

16] reduces drastically the computational time used to solve 

differential equations, however exact knowledge of a 

mathematical process model is still assumed. 

One of the first applications of Artificial Intelligence as the 

central part of batch distillation automation was by Cressy et 

al. [17]. They made use of Neural Networks in order to learn 

the control profiles of a batch distillation with a binary 

mixture: methanol and water. Two Neural Networks were 

used in the methodology: Neural Emulator (used to 

approximate the input/output function defined by the forward 

dynamics of the column) and a Neural Controller. The trained 

Neural Network achieved an error of less than 3% over a 

narrow range of conditions. Over a wider range, the results 

were not uniformly good. Furthermore, the amount of 

training data of 4080 training patterns would justify such a 

good fit to the observed data. The immediate concern is the 

issue of acquiring such an amount of data in practice. 

Stenz and Kuhn [18] managed to integrate operator's 

knowledge, using fuzzy technology, into the automation of 

the batch distillation process. They concluded that fuzzy 

logic is not a superior method, but is rather an addition to the 

toolbox of the automation engineer, which is potentially 

useful. Although fuzzy logic presents the operator’s know 

how as a sequence of acting steps, it still does not aim at 

giving the optimum solution. Wilson and Martinez [19] 

proposed a novel approach towards batch process automation 

involving simultaneous reaction and distillation. The 

methodology proposed combined fuzzy modelling and RL. 

The RL part of the methodology meant that the controller 

implemented is geared towards incrementally achieving 

goals, using rewards obtained as guideline. However, a large 

amount of data (1000 randomly chosen batches) is required 

for learning, which is well beyond the small number of initial 

batch runs that would be practically available in industry. 

Further important work to determine efficient time profiles still 

depends upon having an accurate process model [20-23]. In 

practice such models are never available partly because 

conditions and parameters vary from one batch to another. 
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Furthermore, the classical open loop time profile cannot react 

to measurements during the progress of a batch. The industry 

is faced with composition analyzers which are again often not 

available and seldom instantaneous [2]. Despite all those 

problems human operators have managed so far to 

incrementally drive those processes to near optimal operation. 

The particular suitability of Reinforcement Learning (RL) as 

a framework for optimizing batch process operation has been 

recognized already [19, 24, 25]. The proposed hybrid 

predictive model (which form part of the RL algorithm) 

delivered adequate performance in previous applications to 

batch reactors, however difficulties were faced when 

applications to batch distillation where conducted by Mustafa 

and Wilson [26] who identified the predictive model to be 

crucial to the success of the RL algorithm. Following the 

unsuccessful implementation, of the hybrid predictive model 

(proposed by Martinez et al.[24, 25] in RL applications, 

Mustafa and Wilson [26] investigated the use of various 

predictive models in the form of a linear function, a second 

order polynomial and a Neural Network (using one node in 

the hidden layer) in place of the generalised hybrid predictive 

model. The use of higher order polynomial model forms was 

not pursued since larger amounts of training data would be 

required to fit the additional model parameters. Although 

limited success was achieved by Mustafa and Wilson [26], 

however the proposed predictive model is short of achieving 

a truly general predictive model for efficient RL applications 

to batch distillation processes. Thus it is the aim of this work 

to develop a general predictive model and to apply the 

algorithm to a range of different case studies. Furthermore, 

the impact of uncertainty in process variables, on the 

performance of the RL algorithm, is investigated. 

3. Methodology 

Reinforcement Learning (RL) algorithms could be seen as a 

way of providing a computational approach focused on goal-

directed learning and decision making from interaction. 

Following the book on the subject by Sutton and Barto [27], 

one could define RL as simply being the mapping of situations 

to actions so as to maximize a numerical reward. An important 

point to add is that during learning, the algorithm is not told 

which actions to take but must explore and exploit to discover 

actions that yield the most reward by trying those actions. The 

RL algorithm tends to learn an optimum control policy by 

gathering data from a series of batch runs. 

Batch distillation problems fit nicely with a typical 

Reinforcement Learning problem, characterized by setting of 

explicit goals, breaking of problem into decision steps, 

interaction with environment, sense of uncertainty, sense of 

cause and effect. The main elements of RL comprise of an 

agent (e.g. operator, software) and an environment. The agent 

is simply the controller, which interacts with the environment 

by selecting certain actions. The environment then responds 

to those actions and presents new situations to the agent. The 

agent’s decisions are based on signals from the environment, 

called the environment's state. Figure 1 shows the main 

framework of RL. 

 

Figure 1. Main framework of Reinforcement Learning. 

The Reinforcement Learning algorithm proposed by 

Martinez et al. [24, 25, 28] contains the following 

components: 

a. Value Function 

Is defined as Q(s,a) which acts as the objective function, 
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reflecting how good or bad it is to be at a certain state “s” and 

taking a given action “a”. 

b. Bellman Optimality Equations 

The Bellman Optimality Equations form the second key 

component in Reinforcement Learning. In fact, by solving 

the Bellman Optimality Equations, the Reinforcement 

Learning optimization problem is solved and the optimum 

Value Function is calculated. One of the main advantages of 

Dynamic Programming [29] over almost all other existent 

computational methods, and especially classical optimization 

methods, is that Dynamic Programming determines absolute 

(global) maxima or minima rather than relative (local) optima 

[27]. Hence we need not concern ourselves with the vexing 

problem of local maxima and minima. 

c. Neural Network 

Artificial Neural Networks take their name from the 

networks of nerve cells in the brain. They are computational 

methods, which try to simulate the learning process that takes 

place in the mind. The Artificial Neural Networks, usually 

referred to as Neural Networks (NN), learn the relationship 

between inputs and outputs of a function [30]. One of the 

widely used algorithms in NN training is the error back-

propagation algorithm. One neural network is used 

throughout the methodology as the learning function part of 

the Wire Fitting approximation. Learning is achieved by 

adjusting the weights and biases in the NN so as to obtain 

better approximation to the Value Function. The NN was set 

in the current application as follows: 2 inputs, 1 hidden layer, 

1 output and a Tansigmoidal function as the activation 

function. 

d. Wire Fitting 

Wire Fitting [31] is a function approximation method, which 

is specifically designed for self-learning control problems 

where simultaneous learning and fitting of a function takes 

place. It is particularly useful to Reinforcement Learning 

systems, due to the following reasons: It provides a way for 

approximating the Value Function; It allows the maximum 

value function to be calculated quickly and easily (hence 

allowing the identification of the best action at a given state). 

Wire Fitting is an efficient way of representing a function 

since it fits surfaces using wires as shown in Figure 2. Three 

wires are used to support the approximation of the Value 

Function for all later case studies. The Interpolated Function 

is then defined by a weighted-nearest-neighbor interpolation 

of the control points as follows: 
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Where the constant c determines the amount of smoothing 

for the approximation and m defines the number of control 

wires. 

e. Predictive Models 

Predictive models are used at each stage, instead of the actual 

model, to provide a one step-ahead prediction of states and 

reward given current state and action. The general structure 

of the predictive models for the various stages is provided by 

Eq. 2. The predictive models are as follows: 

1 ( , )t t ts f s a+ =                                  (2) 

where st+1 (state at time t+1) is a function of the current state 

st (state at time t) given a certain action at (action taken at 

time t). 

 

Figure 2. (a) Wire Fitting Architecture (b) Wire Fitting using 3 wires. 
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The criteria used for convergence, is the Bellman Optimality 

Equation, (Equation 3). 
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where (rt) is the reward for given a t time t. 

Since the rewards (rt) are not known, in advance, until the run 

has been completed, ∀r (s t, a) = 0, t < T was imposed. Also, γ 

is set to 1, since the problem breaks down into episodes. 

Hence, the Bellman Optimality Equation could be rewritten 

as follows: 
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The Value Function is calculated in general using the following relationships: 
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where PI is the Performance Index (a function of the final conditions at time T). Penalty of -1 is nominal value and it may be 

appropriate to use other values in particular problems 

Since the main aim of the algorithm is defining the optimal actions which result in the optimal value function, Equation 5 

could be rewritten as follows (Since the goal is always achieved with an optimal policy (*) and hence the Value Function never 

equals -1): 
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Equation 6 is true only when the RL algorithm converges to the actual optimal value function. During incremental learning of 

the optimal value function, differences occur which define the error: Bellman error. The mean squared Bellman error, EB, is 

then used in the approach to drive the learning process to the true optimal value function (Equation 7 defines EB for a given 

state-action pair (st,at)). 
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The main aim of the Reinforcement Learning algorithm is to 

optimize the operation of the process through the following 

control law: 

where Ω represents the set of feasible control actions. 

( )*
arg ,max

a
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                         (8) 

An initial training data set is provided and the Reinforcement 

Learning algorithm (Figure 3) is executed offline. Following 

the completion of the learning phase, the Reinforcement 

Learning algorithm is implemented online. The control 

policy is then to calculate the optimal action a*, for every 

state encountered during progress of the batch run, based on 

a constrained optimization of equation 8. At the end of the 

batch run, the training data set is updated, followed by update 

of the predictive models and testing of convergence criteria.. 
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Figure 3. Summary of Reinforcement Learning algorithm. 

3.1. Case Study 

The RL technique is applied to a batch distillation case study 

which involves a 10-tray batch distillation column with a 

binary mixture having a relative volatility of 2.5. Simulations 

of the batch distillation column were conducted using 

Smoker's equation [32] for a binary mixture. Smoker’s 

equation, although does not consider column holdup, is 

useful for preliminary evaluation studies, optimization 

problems, process control studies and real-time control 

algorithms [33, 34]. The operation of the batch distillation 
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column is divided into a three-stage problem (Figure 4). The 

process starts at state ST-3, corresponding to the initial state, 

and terminates at state ST (at time interval T). During 

different time intervals (T-3, T-2 and T-1), samples of the 

state of the process are taken, and accordingly 3 actions are 

chosen (aT-3, aT-2, and aT-1). States are, for example, the 

bubble point temperature except for the final state where it 

represents the product purity whereas the actions are the 

reflux ratios. 

 

Figure 4. Three decision steps (batch distillation case study). 

The strategy for operating and simulating the batch 

distillation column was set as follows: 

1. The still is initially charged with a feed of 1 kmol 

containing 0.7 mole fraction of the more volatile 

component. The specification for the product purity was 

set at 0.98 mole fraction. 

2. Three periods of operation each at a fixed reflux ratio (i.e. 

three decision steps as shown in Figure 4). 

3. Still temperature measured and used to decide on change 

to reflux ratio when still pot contents lie at 1.0, 0.68 and 

0.48 kmol (those values were selected following an 

analysis of optimal operation of case study). The 

temperatures were calculated using the following 

relationship [33] 

TS = ((17.7507x-17.2679)x-30.5983)x+109.7767    (9) 

where TS is the temperature of the still pot and x is the mole 

fraction of the more volatile component in the still 

4. Each batch is terminated when still pot contents falls to 

0.35 kmol. 

5. Constant vapour boilup rate of 0.2 kmol/h. 

6. The target for the RL algorithm is then set to achieve the 

goal of obtaining a product purity of 0.98 mole fraction. 

In addition, the preference is given to meeting the goal in 

the minimum amount of time so as to achieve the 

maximum profit. The Performance Index (PI) is defined 

as follows: 

PI = D. Pr – V. BxTime.Cs                  (10) 

where D is the amount of product distilled (kmol), Pr is the 

sales value of product (£/kmol), V is the vapour boilup rate 

(kmol/h), BxTime is the time for completion of batch and CS 

is the heating cost £/kmol. 

Three additional case studies, with the same feed and product 

specifications as in base case, were investigated with feed 

mixtures having different relative volatilities and numbers of 

column trays (Table 1). 

Table 1. Description of various case studies. 

Case Study No of trays Relative volatility 

Base 10 2.5 

1 10 3 

2 10 2 

3 16 1.5 

A comparison between the different case studies is possible 

through the measure defined by Kerkhof and Vissers [14], 

σdiff, which indicates the degree of difficulty of separation: 

,
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where xD,preset is the pre-set product purity (mole fraction), xF 

is the feed purity (mole fraction), ρ is the relative volatility 

and N is the number of theoretical plates in the column. They 

further categorize the results into the following: Easy 

separation (σdiff <1%), Moderate separation (1%< σdiff <10%), 

Difficult separation (σdiff >10%) and very difficult separation 

(σdiff >15%). Hence, according to those categories, base case 

(σdiff = 0.08%), Case study 1 (σdiff = 0.01%), Case study 2 
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(σdiff = 0.98%) and Case Study 3 (σdiff = 2.03%) represent 

easy to moderate degrees of difficulty of separation. The 

predictive model for the last decision stage at T-1 is 

1 2 2( , )T T Ts f s a− − −=                             (12) 

for the intermediate decision stage at T-2 

2 3( )T Ts g a− −=                               (13) 

where st (state at time t) denotes the bubble point 

temperature of the mixture in the still pot (representing the 

composition of the mixture), with the exception of the last 

decision stage T-1 where it represents the final product 

purity (mole fraction), and at (action taken at time t) denotes 

the reflux ratio. 

For the initial stage there is a slight difference in the 

predictive model, since all batches were assumed to start 

from the same initial point. This would mean that the 

predictive model would have no dependency on the initial 

state, and hence the state at T-2 (still pot temperature at T-2) 

becomes only a function of the action at T-3 (reflux ratio at 

time T-3). 

3.2. Development of Predictive Model 

Observing the behaviour of a distillation column (i.e. 

separate from RL) for the various case studies, would allow a 

regressive model form to be chosen to capture relationships 

between variables of interest. Starting from different initial 

states (still pot temperatures), and applying a range of actions 

(reflux ratio's), the resulting states (still pot temperatures or 

product purity for last but one stage) were calculated for the 

various case studies as shown in Figure 5 to 7. Similar trends 

of lines curving initially and then gradually reaching 

asymptotic values is observed for all case studies. 

Figure 8 shows the final product purity as a function of still 

pot temperature at T-1 (lines of constant reflux ratio) for the 

distillation column in base case. Figure 9 shows the still pot 

temperature at T-1 as a function of the still pot temperature at 

T-2 at lines of constant reflux ratio for base case. Linear and 

approximately parallel lines can be observed at both stages. 

The initial stage (T-3 to T-2) was not investigated since it is 

assumed that the predictive model starts from the same initial 

staring point (for each specific case study) and thus was a 

function of reflux ratio only. Similar relationships were 

observed for all other case studies. 

 

Figure 5. Final product purity as a function of reflux ratio at T-1 (Fixed still pot temperature at T-1) for the various case studies. 
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Figure 6. Temperature at Stage T-1 as a function of reflux ratio at T-2 (Fixed still pot temperature at T-2) for the various case studies. 

 

Figure 7. Temperature at Stage T-2 as a function of reflux ratio at T-3 (fixed still pot temperature at T-3) for the various case studies. 
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Figure 8. Final product purity as a function of still pot temperature at T-1 (lines of constant reflux ratio) for the base case. 

 

Figure 9. Still pot temperature at T-1 as a function of still pot temperature at T-2 (lines of constant reflux ratio) for the distillation column in base case. 

The use of a simple predictive model (Table 2) was 

investigated to capture the trends presented in Figure 5 to 9. 

Figure 10 shows how the model seems to adequately capture 

the trends for the base case (Relative volatility =3) and Case 
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Study 3 (Relative volatility =1.5) especially for intermediate values of reflux ratios. 

Table 2. Description of proposed predictive model forms for different stages where s is state (temperature or final product purity composition) and a is action 

(reflux ratio). 

Decision Stage Name of model Equation of model 

Initial stage T-3 to T-2 Q st+1 = at
β + p 

T-2 to T-1 and T-1 to T S st+1 = st
α + a β + p 

 

Figure 10. Use of Model S for base case and case study 3 at stage T-1 to T to fit the relationship between final product purity as a function of reflux ratio at T-

1 (dotted lines represent predictions of Model S). 

4. Results and Discussion 

Starting with an initial training data set of six batch runs, 

the RL algorithm with an embedded predictive model (Q-S-

S) was applied using MATLAB. The values of all free 

parameters (α, β and p) in the predictive mode are 

computed based on a constrained optimization MATLAB 

routine so as to provide a best fit with the current training 

data set. To investigate the minimum amount of batches 

required for learning, the RL algorithm was repeated twice 

using the same initial training data set equally split into 2 

sets of three batch runs. The RL algorithm was executed, 

for all cases, until a total number of 24 batch runs were 

produced (including the initial training data set). The results 

obtained are shown in Figure 11 and clearly demonstrate 

how the RL algorithm has managed to incrementally 

improve beyond the best performance achieved in the initial 

training data set of 40.9 to achieve a Performance Index of 

44.22 in Run 3. 

The next step was to apply the RL algorithm to case Study 1 

(α=3 and number of trays = 10) using 3 sets of initial training 

data. The first set consists of 6 batches whereas the two other 

sets consist of the same 6 batches equally split into 2 sets. 

The results obtained are shown in Figure 12 and clearly 

demonstrate how the RL algorithm has successfully managed 

to incrementally improve beyond the best performance 

achieved in the initial training data set of 47.4 to reach a new 

value of 49.37. 
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Figure 11. Performance Index as a function of number of additional batch runs (using one set of 6 initial batch runs and 2 sets of 3 batch runs each) for base 

case. 

 

Figure 12. Performance Index as a function of number of additional batch runs (using one set of 6 initial batch runs and 2 sets of 3 batch runs each) for Case 

Study 1. 
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The results shown on Figure 11 and 12 reveal how 

sometimes no off-spec batches (Figure 11, Run 2), 1 off-spec 

batch (Figure 11, Run 1 and 3) or even 3 off-spec batch runs 

are produced (Figure 12, Run 5 & 6) before actual 

improvement in PI takes place. The results produced, through 

the application of the RL algorithm, seem to be dependent on 

the quantity and quality of the initial training data set 

provided for learning. 

The RL algorithm was further applied to case Study 2 (α=2 

and number of trays = 10) using 3 sets of initial training data. 

The first set consists of 6 batches whereas the other two sets 

consist of the same 6 batches equally split into 2 sets. The 

Results obtained are shown in Figure 13. It is clear that 

although there is a steady improvement in PI, however using 

the 6 batch initial data set (Run 7) results in the production of 

off-spec batches (PI=-1). Runs 8 and 9 produce a steady, 

although small, improvement in performance which is clearly 

related to the higher degrees of difficulty of separation. 

 

Figure 13. Performance Index as a function of number of additional batch runs (using one set of 6 initial batch runs and 2 sets of 3 batch runs each) for Case 

Study 2. 

Give-away is a common term in industry and is used when 

dealing with problems where a hard constraint has to be met 

and could not be violated. For example the goal, in the case 

studies presented, is to meet a product purity of 0.98 mole 

fraction. If the batch distillation is controlled in practice 

along that value of product purity, the controller is bound to 

produce off-spec batch runs some of the time. Hence in 

industry, they are willing to give away a slightly more pure 

product on average, so as to reduce the risk of losing money 

through production of off-spec batches. Hence, the term give-

away in this context refers to the amount of average product 

purity that one could give-away above the fixed product 

specification. Concerning the analysis in the following 

sections, the product specification is set throughout at 0.98 

mole fraction. Give-away values of 0.005 are used to reflect 

how all batches produced to a product purity of 0.975 

fraction is accepted as being on-spec. The RL algorithm was 

again repeated for the failed run (6 batches in initial training 

data set) with a giveaway in product purity of 0.005. It is 

clear that the RL algorithm has steadily managed to improve 

the PI and to produce additional batches with product purity 

above 0.975 except in an odd case where an off-spec batch is 

produced (Figure 14). This shows that although off sepc 

batches are produced, this happens due to a very small 

violation of the product purity specs. 
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Figure 14. Performance Index as a function of number of additional batch runs (using same set of 6 initial batch runs however with and without a giveaway in 

product purity of 0.005) for Case Study 2. 

 

Figure 15. Performance Index as a function of number of additional batch runs (best batch run in initial training data set results in a PI equal to 11.36) for Case 

Study 3. 
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The RL applications to case study 3, using 2 sets of 3 initial 

training batch runs, produced only off-spec additional 

batches (i.e. which did not meet the goal). The RL algorithm 

was thus repeated using the same initial training data set of 3 

batches however with 0.005 give away in product purity. The 

RL algorithm successfully managed to improve the PI value 

and to produce on-spec batches as shown in Figure 15. It is 

evident that the main challenge with such kind of 

optimization problems is that a hard constraint needs to be 

met. PI values of -1 do not necessarily mean that the batches 

produced are widely off-spec as values of product purity 

slight less than 0.98 are considered off-spec. This is clear 

when giveaway values of 0.005 in product purity are 

allowed; all subsequent produced batch runs are on-spec. 

Thus it is clear that it is crucial, for further applications of the 

RL algorithm, to allow for a slight giveaway in product 

purity to avoid production of off-spec batches. Furthermore, 

there is a trade-off between the learning rate of the RL 

algorithm (exploration of new state-action pairs) versus the 

possibility of losing performance through the production of 

off-spec batch runs. A less aggressive exploitation of the 

existing accumulated data will guarantee that no off-spec 

batches are produced however at the expense of very slow 

convergence of the RL algorithm (Lots of additional batch 

runs may be required to reach near optimal PI values). 

4.1. Introduction of Process Uncertainty 

One of the issues facing the methodology in real practice 

would be the issue of random disturbances or uncertainty in 

process states. Uncertainty was simulated by the addition of 

random noise to the value of intermediate states (random 

noise was added to states at T-2 and T-1 for the initial 

training data set and for all subsequent intermediate states. 

Final product purity measurements were assumed to be 

unaffected) representing, for example, errors in 

measurements or sampling. To achieve this, a random 

number generator was used to generate random numbers with 

mean zero and variance one. Three runs were produced using 

10%, 50% and 100% respectively of random disturbances 

produced through the MATLAB function “RANDN”. In each 

case the random number generator was initially reset to the 

same state. 

Incremental learning of the Value Function was conducted 

for cases study 3 (moderate degree of difficulty of separation 

[14] using three levels of noise and an initial training data set 

of 3 batches. The results for the three runs (Figure 16) show 

the effect of disturbances on the performance of the 

Reinforcement Learning algorithm, and the speed of 

convergence. As the disturbances increase, the performance 

becomes worse and the algorithm takes longer to learn the 

optimal profile. This is in agreement with what might be 

expected with high noise levels. On the other hand, fairly 

similar trends are followed in the three cases, which show 

that the Reinforcement Learning algorithm is able to cater for 

uncertainties in process states. 

 

Figure 16. Effect of introducing uncertainty in process measured states on incremental learning of value function for Case Study 3. 
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4.2. Conclusions 

Reinforcement Learning application has shown huge 

potential and a step towards full automation of batch 

distillation. Following the analysis of data from different 

case studies, a predictive model has being put forward. It 

is demonstrated how predictive model Q-S-S is able to 

adequately capture the different trends for the various case 

studies. The results obtained are quite impressive if taken 

into account that the algorithm has learned the Value 

Function without knowledge of VLE data and with a 

minimum initial training data set of three batch runs. The 

RL algorithm produces very encouraging results for easy 

separations as defined by Kerkhof and Vissers [14]. For 

moderate separation, smaller improvements in 

Performance Index are produced, however slight giveaway 

in product purity is required to make sure that production 

of off-spec batches is reduced. Furthermore, it was shown 

that the introduction of random process disturbances 

degrades the performance of incremental learning, as 

expected, however similar trends are maintained with 

different levels of noise. Thus, the Reinforcement 

Learning algorithm is shown to be able to deal with 

practical issues regarding uncertainty. 

Nomenclature 

A Control action 

BxTime Time for completion of batch (h) 

Cs Heating cost (£/kmol) 

D Amount of product distilled (kmol) 

E Squared error 

NN Neural Network 

P Sales value (£/kmol) 

PI Performance Index 

PM1 Predictive model for stage T-1 to T 

PM2 Predictive model for stage T-2 to T-1 

PM3 Predictive model for stage T-3 to T-2 

Q (s,a) Value Function for state action pair 

RL Reinforcement Learning 

m, n, p Free parameters 

s Process state 

T Final stage 

T-1 Last decision stage 

T-2 Intermediate decision stage 

T-3 Initial decision stage 

V Vapour boilup rate (kmol/h) 

X Product purity 

Greek Letters 

γ  Learning rate 

α,β Free parameter 

σ Measure [14] 

ρ Relative volatility 

Ω  Set of feasible control actions 

Subscripts 

B Bellman 

diff Difficulty 

D Product 

F Feed 

r Product 

T Time 

T Final time step 

Superscripts 

* Optimum 

N Number of theoretical plates in column 
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