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Abstract 

In the field of machine learning, many applications require techniques that are able to respond in real time. However, such 

abilities are usually achieved by trading off the accuracy rates in favour of good time complex performance. The Long Short 

Term Memory (LSTM) is a typical example where the technique provides good time complex performance, yet it has fairly 

low accuracy rates. The Bat Optimised Self Organising Map (BOSOM), on the other hand, is a relatively slow processing 

technique for unsupervised classification problems; however, it has fairly high accuracy rates. In this paper, a hybrid technique 

between the standard LSTM network and BOSOM, for use in time and space unconstrained applications, is proposed. The 

objective of the paper is to demonstrate that higher accuracy rates and higher recall rates are better achieved by striking a 

balance between turn-over time and exhaustive learning. To achieve generalisation of performance of the BOSOM-LSTM 

model, datasets of varying sizes from multiple domains are used. The results in this paper show that the BOSOM-LSTM 

hybrid model has considerably better accuracy and recall performance compared to other considered techniques. This 

performance establishes good ground that the BOSOM-LSTM hybrid technique is a competitive technique that can be used in 

application areas that require high accuracy and high reliability. 
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1. Introduction 

Machine learning is a subject discipline that focuses on 

techniques for artificially acquiring knowledge, and using such 

knowledge in solving problems. There are many methods that 

are used in learning, and they may be categorised into two 

distinct branches; supervised learning and unsupervised 

learning [3, 20]. Supervised learning uses a training set that has 

a corresponding desired set of outputs. If there is a discrepancy 

between the output of the learning technique and the desired 

output, then relevant weight structures are adjusted in order to 

correct the discrepancy. On the other hand, in unsupervised 

learning, there is no known desired state, thus the learning 

technique must adjust its structures (weights) according to the 

underlying patterns in the training set. Normally, in Artificial 

Neural Networks (ANNs), the fundamental building unit is a 

neuron [4]. A neuron may be drafted into a neural network 

through the use of structural connections. These connections 

between neurons determine the nature of the neural network. 

For example, if neurons are connected in successive layers 

such that neurons in preceding layers strictly feed their outputs 

to succeeding layers, then such a neural network is called a 

Feed Forward Artificial Neural Network (FFANN) [8, 18]. 

Neural networks with feedback loops among neurons are 

called Recurrent Neural Networks (RNN) [3, 20]. Many 
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variants of both types of networks have been proposed over the 

years. In this paper, a hybridisation process of an unsupervised 

learning network and a supervised learning network is 

proposed. 

The objective of hybridising such networks, despite their 

varying methods of achieving learning, is to seek greater 

accuracy rates. The Long Short Term Memory (LSTM) is a 

recurrent neural network that uses a variant of supervised 

learning proposed by Gers et al. [5]. In their work, Gers et al. 

[5] were building on foundational precepts that were 

developed by Hochreiter and Schmidhuber [9]. The LSTM has 

been shown to be a solution to the vanishing gradient problem 

during learning for the Backpropagation Through Time (BPTT) 

algorithm [7]. The vanishing gradient problem occurs when 

the propagation time window grows too long. In other words, 

the problem becomes apparent and clearly evident when a task 

contains long range contextual dependencies [17]. The range is 

determined by the number of time steps that are spanned by a 

sequence learning algorithm in order for it to label a task. Gers 

et al. [5] proposed the LSTM with a forget gate, however, they 

proceeded to extend the LSTM architecture in order to  

achieve more objectives [6, 7, 17]. In this paper, the basic and 

un-extended LSTM is adopted for use in the hybridisation 

process. However, the peephole LSTM is used in the 

subsequent comparative analysis in order to establish 

performance evaluation of the BOSOM-LSTM hybrid 

technique. 

The Bat Optimised Self Organising Map (BOSOM) was 

proposed by Mzelikahle et al. [12] as a method to optimise a 

Self Organising Map (SOM). In their study, the initial weight 

vector was updated using the Bat Algorithm [12]. This implies 

that the SOM section of BOSOM begins its unsupervised 

learning process with non-random weights that have been 

pushed to a near global optimum point. Similarly, in this paper, 

the output of BOSOM is fed into an adopted LSTM for 

training. Effectively, the BOSOM network is used to first 

cluster the training set into inherent clusters before feeding the 

result into the LSTM. In practice, this requires the use of a 

temporary storage (buffer mechanism) during execution. 

2. Long Short Term Memory 

The LSTM uses a variant of Backpropagation Through Time 

(BPTT) for adjusting its learning structures [5]. The technique 

used in the LSTM is for truncating the gradient in order to 

bridge minimal time lags. This technique allows the LSTM to 

span long discrete time steps [7]. Through the use of input gates, 

output gates and buffer gates, the LSTM is able to learn when to 

open and when to close for constant error flow. In essence, the 

LSTM solves the vanishing gradient problem by introducing 

truncation of error into the gradient descent method [7]. Through 

the use of this method, the LSTM network, therefore, is made up 

of memory blocks that employ recurrent feedback loops. The 

memory blocks may be organised into layers, with one or more 

hidden layers. The structure of the LSTM is such that it has three 

gates with special functions; 

(1) The Input gate: This gate controls the activation of the 

weighted sum input signals. This may be achieved by 

learning the underlying trends in the training set. 

(2) The Output gate: This gate controls the flow of 

activations on output points of the LSTM memory block. 

The activation of this gate is learned from the desired 

output set of the training set. 

(3) The Forget gate: This gate controls the duration for which 

a memory cell is to recall the stored state. When activated, 

the forget gate forces the memory cell to reset, thereby 

forget its state. 

Through the use of these gates, the LSTM is able to process 

and manipulate continuous input streams, even if they are not 

segmented into sub-sequences [17]. Figure 1 shows the basic 

structure of a memory block that has a single memory cell. 

 

Figure 1. LSTM memory block with one cell [5]. 
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The LSTM network receives, through input nodes, the input 

vector x�� = 	 (x�, … , x
) and it can perform a non-linear 

mapping of input to a sequence output y , where y�� =
	(y�, … , y
). This is achieved by calculating unit activations 

in the LSTM network as; 

y
 = 	ϕ(W��m
 	+ 	b�)	            (1) 

where W�� is a vector matrix of weights from some node m 

to an output node y, with a bias vector b� , and ϕ is the 

output activation function [6]. This calculation can be 

conducted recursively for all active nodes. By applying this 

to a memory block in a network, it is possible to maintain a 

network state across multiple batches for training. This 

implies that both discrete and continuous samples can be 

processed across time lags. 

3. Bat Optimised SOM 

BOSOM is a hybrid technique that combines the Bat 

Algorithm and a Self Organising Map [12]. In BOSOM, the 

connections to neurons in a SOM are initialised to random 

weights, and the bat algorithm is used to adjust these weights 

in order to determine a near global optimum set of weights. 

When this set of weights has been determined, the SOM is 

set to begin the unsupervised learning process at this near 

global optimum point. The Self Organising Map uses neurons 

in one layer, and they are allowed to compete among 

themselves. This process has been shown to be effective for 

discovering underlying structures in the data. The BOSOM 

model uses an objective function that determines an 

acceptable solution in a solution space [12]. The objective 

function makes use of a learning rate for the purpose of 

controlling possible oscillations during learning; therefore, 

there are few occurrences of twisted map incidents. It is 

observed that for BOSOM, the lower the learning rate the 

lower the tendency to oscillate. However, if the learning rate 

is too low, BOSOM may take unreasonably long periods of 

time to complete the process. BOSOM operates optimally if 

the output layer has been configured into a lattice structure. 

In order to adjust the weights during learning, BOSOM uses 

a weight changing rule calculated as; 

Δw�� 	= 	γx�(y� 	− 	y��w��)           (2) 

where Δw�� is the change in weight of a connection that links 

the input node i to a neuron j on the BOSOM surface, y� is 

the output from neuron j, and w�� is the current weight of a 

connection between i and j . Figure 2 shows the BOSOM 

structure that uses a lattice grid for competing neurons on the 

surface. 

 

Figure 2. BOSOM Lattice Surface [12]. 

When adjusting connection weights in BOSOM, during 

learning, there is need to determine the neurons that shall 

have their weights adjusted. In this paper, soft competition is 

used. That is, to determine the neurons for which to adjust 

connection weights, and to calculate topological weight 

adjustments, a neighbourhood calculation function is applied 

as follows; 

λ(j, k) 	= 	exp "− ||$%	&	$'||(
�)*(

+         (3) 

where λ(∙) is the neighbourhood function, k is the winning 

neuron and j  is the neuron for which a determination is 

required, and r� is the radius of neuron j from k, while σ/ 

is the allowable standard deviation on the neighbourhood 

function λ(∙). 
3.1. Experimentation Using BOSOM 

Before the hybridisation process between the LSTM and 

BOSOM can be addressed, it is imperative to assess the 

performance of BOSOM against other competing techniques. 

To achieve this objective, BOSOM was compared against the 

standard SOM [10] and the K-Means clustering algorithm 

[20]. Three well known datasets were used for this 

experiment and these are the IRIS dataset, the SERVO 

dataset and the LENSES dataset. All the three datasets were 

obtained from the University of California, Irvine (UCI) 

Machine Learning Repository. Table 1 summarises the 

properties of the datasets used. 

Table 1. Dataset summary on BOSOM experimentation. 

Property Iris Servo Lenses 

Input node 4 4 4 

Data Size 150 167 24 

Training Size 120 (80%) 134 (80%) 9 (37.5%) 

Testing Size 30 (20%) 33 (20%) 15 (62.5%) 

Classes/Range 3 0.13 – 7.10 3 
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3.2. Results on BOSOM Experimentation 

Both BOSOM and SOM were configured in this 

experimentation process using a 5 × 5 lattice structure. On 

the other hand, the K-Means clustering algorithm was 

configured using a default 2 dimensional value set. To 

comparatively assess performance of these techniques, three 

metrics were used. These are; 

(1) The Clustering Accuracy (CA): This is a property metric 

that indicates how well the classes are separated on a 

cluster map. 

(2) The Quantisation Error (QE): This is a property metric 

that measures how accurately the network or technique 

responds to input vectors. Its range is [0,1] and a network 

seeks to minimise the error. 

(3) The Convergence Error (CE): This is a property metric 

that measures the rate of convergence to a solution by 

calculating the error associated with oscillation. This 

error is in range [0,1] and the network seeks to minimise 

this error. 

Table 2. Performance summary of BOSOM on metrics. 

 BOSOM SOM K-Means 

Clustering Accuracy (%) 94.7418 92.8724 93.1052 

Quantisation Error 0.0563 0.1129 0.1375 

Convergence Error 0.1056 0.1875 0.1692 

Runs 30 30 30 

Epochs 2000 2000 2000 

Table 2 shows the average performance of techniques 

measured over 30 repetitions (runs), with each run having 

2000 epochs. As shown in Table 2, all the competing 

techniques perform significantly well. These results appear to 

be consistent with results reported by other researchers [16, 

19, 21]. On a comparative assessment, BOSOM shows better 

performance compared to both the standard SOM and K-

Means algorithm. For clustering accuracy, the K-Means 

algorithm shows better performance compared to SOM, 

however, BOSOM appears to have the best performance. 

SOM performs better than K-Means on the quantisation error, 

implying that SOM has very good response to input vectors. 

This result corroborates results reported by Spanakis and 

Weiss [19]. Based on these results, it may thus be put forth 

that the BOSOM technique is a highly competitive technique 

and may therefore be adopted for hybridisation with the 

LSTM. 

4. BOSOM-LSTM Hybridisation 

BOSOM is connected to the LSTM network through the use 

of a buffer mechanism. The LSTM memory blocks are 

ordered in a p × q  matrix of Constant Error Carousels 

(CECs). Given that the LSTM has to be fed BOSOM’s 

output, a parallel connection is used. In this parallel 

connection, a buffering mechanism is used to synchronise 

the read-write operations. In the buffering mechanism, 

BOSOM first directs output to a temporary storage and 

sends an activation signal to the LSTM network for it to 

start accessing the buffer. In the buffer, BOSOM writes a 

set of connection weight vectors corresponding to both the 

connection weights and the topological weights. This 

process preserves the topological structure of the BOSOM 

surface. When data is read through the buffering 

mechanism into the LSTM, the weights to the connections 

are initialised from the topology connection weights, 

depending on the clusters and strengths between nodes on 

the BOSOM surface. During learning, the weights are 

adjusted for each input vector, on connections between 

BOSOM and the LSTM. The LSTM uses an input gate and 

an output gate to regulate when data is to be written into, 

and when data is to be read from the LSTM memory block, 

respectively. For this reason, there is need for a method to 

synchronise operations, such that no data may be 

overwritten in the LSTM before being read. On a p × q 

LSTM, p properties of data can be fed into the network and 

q  time steps can be accounted for before activating the 

forget action. The reading and writing actions are thus 

synchronised as shown in Table 3. In Table 3, the LSTM is 

only activated for performing both read and write 

operations when the input signal corresponds to the output 

signal from the buffering mechanism. This means that the 

activation values from firing neurons are able to flow 

through the network, with connections undergoing weight 

adjustments during learning, without disruption by untimely 

overwriting. 

Table 3. Activation of LSTM for Read and Write operations. 

Input Output Read Write 

0 0 1 1 

0 1 0 0 

1 0 0 0 

1 1 1 1 

 
Figure 3 shows the structure of connections between 

BOSOM and the LSTM by making use of a buffer. In this 

figure, one CEC column is shown, however, more memory 

blocks can be added in parallel to form an array of memory 

cells. 
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Figure 3. BOSOM-LSTM connection. 

The learning process within the LSTM is adopted from the 

standard LSTM proposed by Gers et al. [5] without 

modifications. On the other hand, adjusting weights 

connecting BOSOM to the buffer mechanism needs to be 

accounted for. These weights are updated as follows;  

∆456(7) 	= 	895(7):6(7 − 1), 4ℎ=>= 

95(7) 	= 	− ?@(A)
?BC(A)                     (4) 

In this case, ΔwD�(t)  is the change in weight of a 

connection between unit m on the BOSOM surface and an 

input unit k  in the buffer mechanism connecting to the 

LSTM, at a time step t. The learning rate of the LSTM, α, is 

maintained constant during a run, and δD(t)  is an error 

function defined for BOSOM. The previous output of unit m 

is y�(t − 1). 

5. Experiments Configuration 

In order to assess the utility of the BOSOM-LSTM hybrid 

technique, experiments were conducted in a highly controlled 

environment. Three well known datasets were utilised to 

assess the performance of the BOSOM-LSTM technique in a 

comparative study against other known techniques. The 

BOSOM surface was maintained as a 5 × 5	lattice and thus 

the LSTM was configured to a 25 × 40 memory block array. 

For all the three datasets used, the configuration of the 

BOSOM-LSTM structure was maintained a constant. In the 

BOSOM-LSTM connection, there are three (3) segments of 

data that are represented within the buffer mechanism, and 

these are:-  

(1) Neighbourhood connection weights: These are weight 

vectors for the connections between neurons (nodes) on 

the BOSOM surface. Contours and clusters can be 

extracted through analysis of these connection weights. 

(2) Bridging weights: These are connection weight vectors of 

links that connect the BOSOM surface to the buffer gates 

in the buffering mechanism. It is possible to change the 

BOSOM surface structure into some other organisation of 

nodes; however, in this experiment the BOSOM structure 

is maintained as a square lattice. 

(3) Activation values: Each of the surface nodes (neurons) 

has an activation value that is obtained from the 

BOSOM learning process. These activation values have 

their highest excitation at the centre of a learned cluster, 

and they gradually decrease as the radius from the 

winning neuron increases. As influence of the next 

cluster is felt, the activation values increase in the 

direction of the new focal point. Such an activation 

value is a vector in nature because it has both magnitude 

and direction in its quantity. 

Table 4. Segment properties of data from BOSOM training. 

Property Segment Size 

Nodes 25 

Neighbourhood connections 40 

Bridging vectors 38 

Activations 25 

Maximum Classes 15 

Table 4 presents a summary of the segments of data obtained 

from the BOSOM configuration employed in this paper. In 

the experiment, these segments of data are ordered such that 

they are fed in parallel into the LSTM structure (see Figure 

3). The LSTM structure is configured such that it perfectly 

aligns with the nodes (neurons) in the buffering mechanism. 

For example, in this experiment, there are 25 BOSOM 

surface nodes, implying 25 input parameters into the buffer, 

and therefore 25 input nodes for the LSTM structure. 

However, the length of the LSTM memory blocks rather 

depends on the problem at hand. In general, the more 

columns of memory blocks, the higher the LSTM’s ability to 

process bigger dataset sizes. Both these configuration 

parameters may be adjusted at the beginning of each 

experiment or use. In this experimentation process, three (3) 

datasets were used and Table 5 presents a summary of their 

properties. In general, the dataset splitting rule used is 80% 

training set, and 20% testing set. All datasets were acquired 

for use from the UCI, Irvine repository. The three (3) well 
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known datasets used in this experiment are; the Stanford 

Sentiment Treebank dataset [13], the Yahoo! Music User 

Rating dataset, and the Skytrax User Reviews dataset [14]. In 

these datasets, there were some few missing data-points. In 

this paper, the missing data points were filled using the 

window averaging data filling method. 

Table 5. Summary of dataset properties on BOSOM-LSTM experimentation. 

Property Stanford Yahoo! Skytrax 

Inputs 19 7 21 

Size (Instances) 11855 10000000 41396 

Training Size 9645 8000000 33117 

Testing Size 2210 2000000 8279 

Classes 5 13 9 

In this experimentation procedure, the training vectors for the 

input gate and output gate of the LSTM were obtained from 

the random Gaussian normal distribution, with K = 0  and 

L� = 1. Due to the need to synchronise the activation of the 

input gate and that of the output gate, the Gaussian normal 

distribution was observed to exhibit the best behaviour. In 

order to assess the performance of the BOSOM-LSTM model, 

a comparative study was done, where four (4) other 

techniques were used as control models. These four (4) 

competing techniques are; the FFANN, the peephole LSTM 

(p.LSTM) [7], the Gated Recurrent Unit (GRU) network [2], 

and the Independent Recurrent Neural Network (IndRNN) 

[11]. These competing techniques were carefully chosen 

because of their high performance and wide usage in industry. 

In this experimentation process, the FFANN was configured 

to have 3 hidden layers with specification: 25 input nodes, 3 

hidden layers at 25-30-25 nodes, and 15 output nodes. The 

peephole LSTM was configured with specifications: 25 input 

nodes, 40 CEC nodes, and 15 output nodes. The Gated 

Recurrent Unit network was configured with specifications: 

25 input nodes, 40 GRU units, and 15 output nodes. The 

Independent Recurrent Neural Network was configured with 

specifications: 25 input nodes, 40 IndRNN units, and 15 

output nodes.  

The experiments were carried out on a high performance 

computer system, and the allocated resources on login are: 

Intel Xeon E5-2670 CPU, @ 2.5 GHz, 16 cores, 10 nodes, 

128 GB memory (RAM), 1 TB storage space, 850 GB Temp 

in /tmp. Operating system: Red Hat Enterprise Linux Sever 

(HPC), v7.5. The basic tools used were clang v4.0.0 –posix 

(cc), R v3.5.0 and python v2.7_3. 

6. Results 

All the five (5) techniques were independently run across the 

datasets, with each technique run 30 times and results 

recorded. This approach, of independently running the 

techniques, allows for performance metrics to be measured in 

a controlled environment. The performance metrics were 

measured during and after execution of an experimental 

instance. In this set of experiments, five metrics were used to 

assess performance of the competing techniques. Further, the 

time complexity and space complexity are measured on all 

the competing techniques, for all experimental instances. The 

five (5) performance metrics measured are as discussed 

below. 

The Mean Square Error (MSE). This metric is a measure of 

the averaged value of errors that a technique suffers 

compared to the desired output of a testing set. This measure 

calculates the average of squares of the determined errors for 

every epoch in a run. Since the differences of these errors are 

squared, then the MSE is a non-negative quantity. By this 

definition, the values closer to zero reflect better performance 

of the measured technique (or quantity), and the values 

farther away from zero reflect poor performance. In this 

paper, we calculate the MSE as;  

MSE(y) 	= 	E[(δ(Y) 	− 	y)�]          (5) 

where δ(Y)  is an estimator of the mean of the random 

variable y. 

The Average Convergence Error (ACE). The ACE measures 

the rate of convergence of a technique towards its determined 

solution. The ACE, in a way, measures a technique’s 

tendency to oscillate away from settling on a solution. For a 

given technique; the lower the average convergence error, the 

better the performance. The ACE is an iterative measure, 

therefore it is measured during execution of an experimental 

instance, where each epoch is a contributor. In this paper, the 

average convergence error is a quantity in the range [0, 1] 

and is calculated as; 

ACE = limD→W
|X'YZ[\|
|X'&\|              (6) 

where ε is the epoch error margin, x is the epoch on step k, 

and N is the total number of epochs. 

The Precision Recall Graph. This is a graph that shows the 

relationship between positive predictive values of a technique 

against its sensitivity for all epochs in a run. The precision 

recall graph runs in range [0, 1] for both axes, and thus the 

area under the curve for a perfect measure is 1. By 

calculating the area under the graph, the performance of a 

technique is thus determined. 

The Pearson Correlation Coefficient (PCC). The PCC is a 

bivariate correlation measure of a linear correlation between 

two variables, say X and Y. The PCC varies between +1 and 

−1 , wherein values closer to +1  indicate a strong linear 

relationship, values closer to zero indicate that there is no 
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linear correlation between the variables, and values closer to 

−1 indicate existence of a negative linear correlation. In this 

paper, the PCC (ρ`,a) between two variables is calculated as;  

ρ`,a = bcd(`,a)
)e)f

                  (7) 

where cov(X, Y) is the covariance of variables X and Y, σ` 

is the standard deviation of variable X , and σa  is the 

standard deviation of variable Y. 

The Cross Entropy loss (CE). The CE loss between two 

variable distributions, p  and q  drawn from the same 

underlying set, measures the fraction average number of data 

points required to identify an event drawn from the set. The 

CE loss runs in the range [0, log(N)], with values closer to 

zero reflecting less loss rate than values closer to log(N). 

Therefore, a technique with loss levels closer to zero 

performs better than a technique with loss levels closer to 

log(N). In this paper, the CE loss is calculated as;  

H(p, q) = −∑ p(x)log(q(x))X          (8) 

where H(p, q)  is the cross entropy between variable 

distributions p and q, and x is the data point position on 

either distribution. Table 6 presents the performance of the 

competing techniques on the Mean Square Error (MSE) 

metric. As shown in Table 6, all the competing techniques 

perform considerably well; however, there are some 

noticeable performance differences. On average, the 

BOSOM-LSTM technique outperforms all the other four (4) 

competing techniques, at 1.7895 error rate. However, when a 

direct comparison is made against the peephole LSTM, it can 

be observed that the performance difference is quite narrow. 

This performance indicates that the BOSOM-LSTM hybrid 

technique is a very competitive technique on the MSE metric, 

but the peephole LSTM is not significantly inferior. 

Table 6. Performance of Techniques on the MSE metric. 

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN 

Stanford 1.4371 13.5784 2.8742 3.7546 4.6217 

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN 

Yahoo! 2.9681 9.6322 3.2566 5.3321 3.1436 

Skytrax 0.9634 7.6131 1.5631 3.1625 2.8731 

Average 1.7895 10.2746 2.5646 4.0831 3.5461 

Epoch 10000 10000 10000 10000 10000 

Runs 30 30 30 30 30 

All the other techniques have considerably inferior 

performances, with the least performer being the FFANN, on 

the MSE metric. Table 7 presents comparative performances 

of the competing techniques on the Average Convergence 

Error (ACE) metric. As shown in Table 7, the BOSOM-

LSTM technique appears to have the best performance 

because it has the lowest average ACE value, at 0.1453. This 

means that the BOSOM-LSTM has quick convergence, by 

epochs count, to a solution and has minimal oscillatory 

tendencies, in this experiment.  

Table 7. Performance of techniques on the ACE metric. 

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN 

Stanford 0.1436 0.3897 0.2639 0.2978 0.3219 

Yahoo! 0.0856 0.1172 0.0974 0.1477 0.2420 

Skytrax 0.2068 0.1923 0.1438 0.0736 0.1351 

Average 0.1453 0.2331 0.1684 0.1730 0.2330 

Epoch 10000 10000 10000 10000 10000 

Runs 30 30 30 30 30 

The peephole LSTM has equally very good performance on 

the ACE metric, averaging 0.1684. The oscillatory tendencies 

for the peephole LSTM are considerably significant; however, 

compared to the other competing techniques, the peephole 

LSTM has sufficient competitive performance. Both the 

IndRNN and the FFANN have poor performances on the 

ACE metric. The IndRNN and FFANN have their 

performances averaging 0.2330 and 0.2331 respectively. This 

shows that both the IndRNN and FFANN have high 

oscillatory tendencies. In fact, the FFANN has been observed, 

in literature, to suffer from overshooting and over-fitting 

during learning [21, 1]. Table 8 presents comparative 

performances of competing techniques on the Pearson 

Correlation Coefficient (PCC) metric. 

Table 8. Performance of techniques on the PCC metric. 

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN 

Stanford 0.7287 0.5963 0.8145 0.6731 0.7086 

Yahoo! 0.8861 0.6257 0.9256 0.7354 0.5648 

Skytrax 0.9053 0.7283 0.8769 0.5786 0.7365 

Average 0.8400 0.6492 0.8723 0.6624 0.6700 

Epoch 10000 10000 10000 10000 10000 

Runs 30 30 30 30 30 

 
In this set of experiments, the PCC is used to assess the 

extent to which a technique is able to predict the target 

output during the testing phase. In Table 8, the best PCC 

value in any of the 30 runs per technique is recorded. On 

average the peephole LSTM has the best predictive power 

compared to all other competing techniques, at 0.8723. 

This performance implies that the peephole LSTM has 

approximately 87.23% correct prediction rate, compared 

to the BOSOM-LSTM at 84.00% prediction rate. The 

FFANN is the least performer on this metric, at 0.6492. 
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The performances of the IndRNN and the GRU network 

are considerably good despite the fact that they are lower 

than both the peephole LSTM and the BOSOM-LSTM 

technique. 

 

Figure 4. Cross Entropy performance on Stanford dataset. 

 

Figure 5. Cross Entropy performance on Yahoo! Dataset. 

 

Figure 6. Cross Entropy performance on Skytrax dataset. 

The performance of competing techniques for the considered 

datasets, on the cross entropy loss metric is shown in Figures 

4, 5, and 6. It is evident that all techniques exhibit consistent 

behaviour, that is, at the beginning of a run there are high 

rates of CE loss and the rate of loss decreases as a technique 

learns in the process. The major difference lies in a 

technique’s ability to reduce the CE loss significantly 

towards zero. Further, it appears, there are datasets wherein 

generally all techniques are able to reduce the CE loss 

significantly (for example, the Stanford dataset) to near zero 

values while in other datasets all techniques have generally 

higher loss levels (for example, the Skytrax dataset). Despite 

this behaviour, it is clear that the BOSOM-LSTM technique 

has the least loss on the CE loss metric. This performance 

suggests that the BOSOM-LSTM is a reliable technique for 

application areas that require high precision and high 

reliability. Similarly, the peephole LSTM has significantly 

good performance on the CE loss metric for all datasets. The 

performance put up by the peephole LSTM corroborates 

results reported in several studies [17, 15, 1]. In a way, the 

performance of the peephole LSTM, in these experiments, 

acts as a control measure for the newly proposed BOSOM-

LSTM technique.  

The GRU network and the IndRNN are average performers 

on the CE loss metric. These two techniques are relatively 

competitive; however, they have high loss levels. These 

results have not yet been reported in literature. The major 

metric on which the GRU and IndRNN have been tested is 

the MSE metric. On the MSE metric, results in this paper 

corroborate results reported by several researchers [2, 11], 
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however, there are several deviations that have been reported 

by other researchers [18]. The FFANN is the least performer 

on the CE loss metric. In fact, the FFANN has been the least 

performer on all the metrics used in this experimentation 

process. It may thus be put forth that non-recurrent Artificial 

Neural Networks do not perform well on data analysis 

problems that require review of long sequences in input 

vectors. Figures 7, 8, and 9 present the performances of the 

techniques on Precision Recall Graphs. 

 

Figure 7. Precision Recall performance on Stanford dataset. 

 

Figure 8. Precision Recall performance on Yahoo! Dataset. 

 

Figure 9. Precision Recall performance on Skytrax dataset. 

By observing the curves in Figures 7, 8, and 9, it can be 

concluded that all the competing techniques have very good 

recall performance. It can be observed that all the techniques 

involved are able to reach 100% recall rate, meaning that all 

the techniques can be relied upon. Significant performance 

differences can be observed on the Precision axis, where the 

precision rates appear to decrease across runs. By calculating 

the average area under each curve, these differences become 

more apparent. Table 9 shows the average area under the 

Precision Recall curve for each technique. 

Table 9. Average area under Precision Recall curves. 

Technique Area under curve (no) 

BOSOM-LSTM 0.7528 

FFANN 0.5735 

p.LSTM 0.7083 

GRU 0.6751 

IndRNN 0.5962 

As shown in Table 9, the BOSOM-LSTM technique has the 

best performance on the Precision Recall curve. However, it 

is worth noting that all techniques are above the 0.5000 mark. 

This suggests that all techniques are performing above 

average. Figures 10 and 11 present the performances of the 

techniques on space complexity metric and time complexity 

metric, respectively. The time and space complexity metrics 

are important because they measure a technique’s inherent 

demand for computation power and storage space in respect 

to its ability to solve a problem at hand. In other words, time 

and space complexity measure how a technique consumes 

computing resources. In many application areas, the 

availability of resources is a critical factor in choosing an 



137 Kernan Mzelikahle et al.:  A Hybrid Technique Between BOSOM and LSTM for Data Analysis 

 

appropriate technique to solve a problem at hand.  

 

Figure 10. Space complexity behaviour. 

 

Figure 11. Time complexity behaviour. 

As shown in Figure 10, there is a significant difference on 

how much the various techniques demand for space resources. 

It is clear in Figure 10 that the BOSOM-LSTM hybrid 

technique is the least performer. The BOSOM-LSTM 

technique has high demand for space resources. It, thus, may 

be put forth that the BOSOM-LSTM is only applicable in 

environments where there are ample amounts of space 

resources. The GRU network has the least space requirements 

and appears to be best suited in space constrained applications. 

The peephole LSTM appears to have average demands for 

space requirements, and thus is applicable in space flexible 

environments. In Figure 11, there are significant differences in 

regard to time expended for a given input dataset size. It is 

apparent that the BOSOM-LSTM hybrid technique is the least 

performer on the time complexity metric. It is clear that the 

BOSOM-LSTM technique is a very slow technique compared 

to all other competing techniques. It may be put forth that the 

BOSOM-LSTM technique must be applied in application 

areas that are not highly time constrained. In contrast, the 

peephole LSTM has better time requirements. 

7. Conclusion 

This paper has successfully proposed a hybrid technique of 

BOSOM and the LSTM. It has been shown in this paper that 

the BOSOM-LSTM hybrid technique is a very capable 

technique, particularly on accuracy and reliability in data 

analysis. The paper has further noted that the BOSOM-

LSTM hybrid technique is a highly resource demanding 

technique, and this may limit its applicability in resource 

constrained application areas. This demand for resources may 

be attributed to the fact that the BOSOM-LSTM hybrid 

technique makes use of a buffering mechanism. It appears 

that this buffering mechanism increases time demands and 

space demands on the technique. Further research is needed 

in order to improve the buffering mechanism.  
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