

International Journal of Mathematics and Computational Science

Vol. 4, No. 4, 2018, pp. 128-138

http://www.aiscience.org/journal/ijmcs

ISSN: 2381-7011 (Print); ISSN: 2381-702X (Online)

* Corresponding author

E-mail address:

A Hybrid Technique Between BOSOM and LSTM
for Data Analysis

Kernan Mzelikahle1, *, John Trimble2, Dumisani John Hlatywayo3

1
Computer Science Department, National University of Science and Technology, Bulawayo, Zimbabwe

2
Industrial Engineering Department, Tshwane University of Technology, Tshwane, South Africa

3
Applied Physics Department, National University of Science and Technology, Bulawayo, Zimbabwe

Abstract

In the field of machine learning, many applications require techniques that are able to respond in real time. However, such

abilities are usually achieved by trading off the accuracy rates in favour of good time complex performance. The Long Short

Term Memory (LSTM) is a typical example where the technique provides good time complex performance, yet it has fairly

low accuracy rates. The Bat Optimised Self Organising Map (BOSOM), on the other hand, is a relatively slow processing

technique for unsupervised classification problems; however, it has fairly high accuracy rates. In this paper, a hybrid technique

between the standard LSTM network and BOSOM, for use in time and space unconstrained applications, is proposed. The

objective of the paper is to demonstrate that higher accuracy rates and higher recall rates are better achieved by striking a

balance between turn-over time and exhaustive learning. To achieve generalisation of performance of the BOSOM-LSTM

model, datasets of varying sizes from multiple domains are used. The results in this paper show that the BOSOM-LSTM

hybrid model has considerably better accuracy and recall performance compared to other considered techniques. This

performance establishes good ground that the BOSOM-LSTM hybrid technique is a competitive technique that can be used in

application areas that require high accuracy and high reliability.

Keywords

Long Short Term Memory, Bat Optimised Self Organising Map, Artificial Neural Networks, Unsupervised Learning

Received: September 26, 2018 / Accepted: October 14, 2018 / Published online: December 21, 2018

@ 2018 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license.

http://creativecommons.org/licenses/by/4.0/

1. Introduction

Machine learning is a subject discipline that focuses on

techniques for artificially acquiring knowledge, and using such

knowledge in solving problems. There are many methods that

are used in learning, and they may be categorised into two

distinct branches; supervised learning and unsupervised

learning [3, 20]. Supervised learning uses a training set that has

a corresponding desired set of outputs. If there is a discrepancy

between the output of the learning technique and the desired

output, then relevant weight structures are adjusted in order to

correct the discrepancy. On the other hand, in unsupervised

learning, there is no known desired state, thus the learning

technique must adjust its structures (weights) according to the

underlying patterns in the training set. Normally, in Artificial

Neural Networks (ANNs), the fundamental building unit is a

neuron [4]. A neuron may be drafted into a neural network

through the use of structural connections. These connections

between neurons determine the nature of the neural network.

For example, if neurons are connected in successive layers

such that neurons in preceding layers strictly feed their outputs

to succeeding layers, then such a neural network is called a

Feed Forward Artificial Neural Network (FFANN) [8, 18].

Neural networks with feedback loops among neurons are

called Recurrent Neural Networks (RNN) [3, 20]. Many

129 Kernan Mzelikahle et al.: A Hybrid Technique Between BOSOM and LSTM for Data Analysis

variants of both types of networks have been proposed over the

years. In this paper, a hybridisation process of an unsupervised

learning network and a supervised learning network is

proposed.

The objective of hybridising such networks, despite their

varying methods of achieving learning, is to seek greater

accuracy rates. The Long Short Term Memory (LSTM) is a

recurrent neural network that uses a variant of supervised

learning proposed by Gers et al. [5]. In their work, Gers et al.

[5] were building on foundational precepts that were

developed by Hochreiter and Schmidhuber [9]. The LSTM has

been shown to be a solution to the vanishing gradient problem

during learning for the Backpropagation Through Time (BPTT)

algorithm [7]. The vanishing gradient problem occurs when

the propagation time window grows too long. In other words,

the problem becomes apparent and clearly evident when a task

contains long range contextual dependencies [17]. The range is

determined by the number of time steps that are spanned by a

sequence learning algorithm in order for it to label a task. Gers

et al. [5] proposed the LSTM with a forget gate, however, they

proceeded to extend the LSTM architecture in order to

achieve more objectives [6, 7, 17]. In this paper, the basic and

un-extended LSTM is adopted for use in the hybridisation

process. However, the peephole LSTM is used in the

subsequent comparative analysis in order to establish

performance evaluation of the BOSOM-LSTM hybrid

technique.

The Bat Optimised Self Organising Map (BOSOM) was

proposed by Mzelikahle et al. [12] as a method to optimise a

Self Organising Map (SOM). In their study, the initial weight

vector was updated using the Bat Algorithm [12]. This implies

that the SOM section of BOSOM begins its unsupervised

learning process with non-random weights that have been

pushed to a near global optimum point. Similarly, in this paper,

the output of BOSOM is fed into an adopted LSTM for

training. Effectively, the BOSOM network is used to first

cluster the training set into inherent clusters before feeding the

result into the LSTM. In practice, this requires the use of a

temporary storage (buffer mechanism) during execution.

2. Long Short Term Memory

The LSTM uses a variant of Backpropagation Through Time

(BPTT) for adjusting its learning structures [5]. The technique

used in the LSTM is for truncating the gradient in order to

bridge minimal time lags. This technique allows the LSTM to

span long discrete time steps [7]. Through the use of input gates,

output gates and buffer gates, the LSTM is able to learn when to

open and when to close for constant error flow. In essence, the

LSTM solves the vanishing gradient problem by introducing

truncation of error into the gradient descent method [7]. Through

the use of this method, the LSTM network, therefore, is made up

of memory blocks that employ recurrent feedback loops. The

memory blocks may be organised into layers, with one or more

hidden layers. The structure of the LSTM is such that it has three

gates with special functions;

(1) The Input gate: This gate controls the activation of the

weighted sum input signals. This may be achieved by

learning the underlying trends in the training set.

(2) The Output gate: This gate controls the flow of

activations on output points of the LSTM memory block.

The activation of this gate is learned from the desired

output set of the training set.

(3) The Forget gate: This gate controls the duration for which

a memory cell is to recall the stored state. When activated,

the forget gate forces the memory cell to reset, thereby

forget its state.

Through the use of these gates, the LSTM is able to process

and manipulate continuous input streams, even if they are not

segmented into sub-sequences [17]. Figure 1 shows the basic

structure of a memory block that has a single memory cell.

Figure 1. LSTM memory block with one cell [5].

 International Journal of Mathematics and Computational Science Vol. 4, No. 4, 2018, pp. 128-138 130

The LSTM network receives, through input nodes, the input

vector x�� = 	 (x�, … , x
) and it can perform a non-linear

mapping of input to a sequence output y , where y�� =
	(y�, … , y
). This is achieved by calculating unit activations

in the LSTM network as;

y
 = 	ϕ(W��m
 	+ 	b�)	 (1)

where W�� is a vector matrix of weights from some node m

to an output node y, with a bias vector b� , and ϕ is the

output activation function [6]. This calculation can be

conducted recursively for all active nodes. By applying this

to a memory block in a network, it is possible to maintain a

network state across multiple batches for training. This

implies that both discrete and continuous samples can be

processed across time lags.

3. Bat Optimised SOM

BOSOM is a hybrid technique that combines the Bat

Algorithm and a Self Organising Map [12]. In BOSOM, the

connections to neurons in a SOM are initialised to random

weights, and the bat algorithm is used to adjust these weights

in order to determine a near global optimum set of weights.

When this set of weights has been determined, the SOM is

set to begin the unsupervised learning process at this near

global optimum point. The Self Organising Map uses neurons

in one layer, and they are allowed to compete among

themselves. This process has been shown to be effective for

discovering underlying structures in the data. The BOSOM

model uses an objective function that determines an

acceptable solution in a solution space [12]. The objective

function makes use of a learning rate for the purpose of

controlling possible oscillations during learning; therefore,

there are few occurrences of twisted map incidents. It is

observed that for BOSOM, the lower the learning rate the

lower the tendency to oscillate. However, if the learning rate

is too low, BOSOM may take unreasonably long periods of

time to complete the process. BOSOM operates optimally if

the output layer has been configured into a lattice structure.

In order to adjust the weights during learning, BOSOM uses

a weight changing rule calculated as;

Δw�� 	= 	γx�(y� 	− 	y��w��) (2)

where Δw�� is the change in weight of a connection that links

the input node i to a neuron j on the BOSOM surface, y� is

the output from neuron j, and w�� is the current weight of a

connection between i and j . Figure 2 shows the BOSOM

structure that uses a lattice grid for competing neurons on the

surface.

Figure 2. BOSOM Lattice Surface [12].

When adjusting connection weights in BOSOM, during

learning, there is need to determine the neurons that shall

have their weights adjusted. In this paper, soft competition is

used. That is, to determine the neurons for which to adjust

connection weights, and to calculate topological weight

adjustments, a neighbourhood calculation function is applied

as follows;

λ(j, k) 	= 	exp "− ||$%	&	$'||(
�)*(

+ (3)

where λ(∙) is the neighbourhood function, k is the winning

neuron and j is the neuron for which a determination is

required, and r� is the radius of neuron j from k, while σ/

is the allowable standard deviation on the neighbourhood

function λ(∙).
3.1. Experimentation Using BOSOM

Before the hybridisation process between the LSTM and

BOSOM can be addressed, it is imperative to assess the

performance of BOSOM against other competing techniques.

To achieve this objective, BOSOM was compared against the

standard SOM [10] and the K-Means clustering algorithm

[20]. Three well known datasets were used for this

experiment and these are the IRIS dataset, the SERVO

dataset and the LENSES dataset. All the three datasets were

obtained from the University of California, Irvine (UCI)

Machine Learning Repository. Table 1 summarises the

properties of the datasets used.

Table 1. Dataset summary on BOSOM experimentation.

Property Iris Servo Lenses

Input node 4 4 4

Data Size 150 167 24

Training Size 120 (80%) 134 (80%) 9 (37.5%)

Testing Size 30 (20%) 33 (20%) 15 (62.5%)

Classes/Range 3 0.13 – 7.10 3

131 Kernan Mzelikahle et al.: A Hybrid Technique Between BOSOM and LSTM for Data Analysis

3.2. Results on BOSOM Experimentation

Both BOSOM and SOM were configured in this

experimentation process using a 5 × 5 lattice structure. On

the other hand, the K-Means clustering algorithm was

configured using a default 2 dimensional value set. To

comparatively assess performance of these techniques, three

metrics were used. These are;

(1) The Clustering Accuracy (CA): This is a property metric

that indicates how well the classes are separated on a

cluster map.

(2) The Quantisation Error (QE): This is a property metric

that measures how accurately the network or technique

responds to input vectors. Its range is [0,1] and a network

seeks to minimise the error.

(3) The Convergence Error (CE): This is a property metric

that measures the rate of convergence to a solution by

calculating the error associated with oscillation. This

error is in range [0,1] and the network seeks to minimise

this error.

Table 2. Performance summary of BOSOM on metrics.

 BOSOM SOM K-Means

Clustering Accuracy (%) 94.7418 92.8724 93.1052

Quantisation Error 0.0563 0.1129 0.1375

Convergence Error 0.1056 0.1875 0.1692

Runs 30 30 30

Epochs 2000 2000 2000

Table 2 shows the average performance of techniques

measured over 30 repetitions (runs), with each run having

2000 epochs. As shown in Table 2, all the competing

techniques perform significantly well. These results appear to

be consistent with results reported by other researchers [16,

19, 21]. On a comparative assessment, BOSOM shows better

performance compared to both the standard SOM and K-

Means algorithm. For clustering accuracy, the K-Means

algorithm shows better performance compared to SOM,

however, BOSOM appears to have the best performance.

SOM performs better than K-Means on the quantisation error,

implying that SOM has very good response to input vectors.

This result corroborates results reported by Spanakis and

Weiss [19]. Based on these results, it may thus be put forth

that the BOSOM technique is a highly competitive technique

and may therefore be adopted for hybridisation with the

LSTM.

4. BOSOM-LSTM Hybridisation

BOSOM is connected to the LSTM network through the use

of a buffer mechanism. The LSTM memory blocks are

ordered in a p × q matrix of Constant Error Carousels

(CECs). Given that the LSTM has to be fed BOSOM’s

output, a parallel connection is used. In this parallel

connection, a buffering mechanism is used to synchronise

the read-write operations. In the buffering mechanism,

BOSOM first directs output to a temporary storage and

sends an activation signal to the LSTM network for it to

start accessing the buffer. In the buffer, BOSOM writes a

set of connection weight vectors corresponding to both the

connection weights and the topological weights. This

process preserves the topological structure of the BOSOM

surface. When data is read through the buffering

mechanism into the LSTM, the weights to the connections

are initialised from the topology connection weights,

depending on the clusters and strengths between nodes on

the BOSOM surface. During learning, the weights are

adjusted for each input vector, on connections between

BOSOM and the LSTM. The LSTM uses an input gate and

an output gate to regulate when data is to be written into,

and when data is to be read from the LSTM memory block,

respectively. For this reason, there is need for a method to

synchronise operations, such that no data may be

overwritten in the LSTM before being read. On a p × q

LSTM, p properties of data can be fed into the network and

q time steps can be accounted for before activating the

forget action. The reading and writing actions are thus

synchronised as shown in Table 3. In Table 3, the LSTM is

only activated for performing both read and write

operations when the input signal corresponds to the output

signal from the buffering mechanism. This means that the

activation values from firing neurons are able to flow

through the network, with connections undergoing weight

adjustments during learning, without disruption by untimely

overwriting.

Table 3. Activation of LSTM for Read and Write operations.

Input Output Read Write

0 0 1 1

0 1 0 0

1 0 0 0

1 1 1 1

Figure 3 shows the structure of connections between

BOSOM and the LSTM by making use of a buffer. In this

figure, one CEC column is shown, however, more memory

blocks can be added in parallel to form an array of memory

cells.

 International Journal of Mathematics and Computational Science Vol. 4, No. 4, 2018, pp. 128-138 132

Figure 3. BOSOM-LSTM connection.

The learning process within the LSTM is adopted from the

standard LSTM proposed by Gers et al. [5] without

modifications. On the other hand, adjusting weights

connecting BOSOM to the buffer mechanism needs to be

accounted for. These weights are updated as follows;

∆456(7) 	= 	895(7):6(7 − 1), 4ℎ=>=

95(7) 	= 	− ?@(A)
?BC(A) (4)

In this case, ΔwD�(t) is the change in weight of a

connection between unit m on the BOSOM surface and an

input unit k in the buffer mechanism connecting to the

LSTM, at a time step t. The learning rate of the LSTM, α, is

maintained constant during a run, and δD(t) is an error

function defined for BOSOM. The previous output of unit m

is y�(t − 1).

5. Experiments Configuration

In order to assess the utility of the BOSOM-LSTM hybrid

technique, experiments were conducted in a highly controlled

environment. Three well known datasets were utilised to

assess the performance of the BOSOM-LSTM technique in a

comparative study against other known techniques. The

BOSOM surface was maintained as a 5 × 5	lattice and thus

the LSTM was configured to a 25 × 40 memory block array.

For all the three datasets used, the configuration of the

BOSOM-LSTM structure was maintained a constant. In the

BOSOM-LSTM connection, there are three (3) segments of

data that are represented within the buffer mechanism, and

these are:-

(1) Neighbourhood connection weights: These are weight

vectors for the connections between neurons (nodes) on

the BOSOM surface. Contours and clusters can be

extracted through analysis of these connection weights.

(2) Bridging weights: These are connection weight vectors of

links that connect the BOSOM surface to the buffer gates

in the buffering mechanism. It is possible to change the

BOSOM surface structure into some other organisation of

nodes; however, in this experiment the BOSOM structure

is maintained as a square lattice.

(3) Activation values: Each of the surface nodes (neurons)

has an activation value that is obtained from the

BOSOM learning process. These activation values have

their highest excitation at the centre of a learned cluster,

and they gradually decrease as the radius from the

winning neuron increases. As influence of the next

cluster is felt, the activation values increase in the

direction of the new focal point. Such an activation

value is a vector in nature because it has both magnitude

and direction in its quantity.

Table 4. Segment properties of data from BOSOM training.

Property Segment Size

Nodes 25

Neighbourhood connections 40

Bridging vectors 38

Activations 25

Maximum Classes 15

Table 4 presents a summary of the segments of data obtained

from the BOSOM configuration employed in this paper. In

the experiment, these segments of data are ordered such that

they are fed in parallel into the LSTM structure (see Figure

3). The LSTM structure is configured such that it perfectly

aligns with the nodes (neurons) in the buffering mechanism.

For example, in this experiment, there are 25 BOSOM

surface nodes, implying 25 input parameters into the buffer,

and therefore 25 input nodes for the LSTM structure.

However, the length of the LSTM memory blocks rather

depends on the problem at hand. In general, the more

columns of memory blocks, the higher the LSTM’s ability to

process bigger dataset sizes. Both these configuration

parameters may be adjusted at the beginning of each

experiment or use. In this experimentation process, three (3)

datasets were used and Table 5 presents a summary of their

properties. In general, the dataset splitting rule used is 80%

training set, and 20% testing set. All datasets were acquired

for use from the UCI, Irvine repository. The three (3) well

133 Kernan Mzelikahle et al.: A Hybrid Technique Between BOSOM and LSTM for Data Analysis

known datasets used in this experiment are; the Stanford

Sentiment Treebank dataset [13], the Yahoo! Music User

Rating dataset, and the Skytrax User Reviews dataset [14]. In

these datasets, there were some few missing data-points. In

this paper, the missing data points were filled using the

window averaging data filling method.

Table 5. Summary of dataset properties on BOSOM-LSTM experimentation.

Property Stanford Yahoo! Skytrax

Inputs 19 7 21

Size (Instances) 11855 10000000 41396

Training Size 9645 8000000 33117

Testing Size 2210 2000000 8279

Classes 5 13 9

In this experimentation procedure, the training vectors for the

input gate and output gate of the LSTM were obtained from

the random Gaussian normal distribution, with K = 0 and

L� = 1. Due to the need to synchronise the activation of the

input gate and that of the output gate, the Gaussian normal

distribution was observed to exhibit the best behaviour. In

order to assess the performance of the BOSOM-LSTM model,

a comparative study was done, where four (4) other

techniques were used as control models. These four (4)

competing techniques are; the FFANN, the peephole LSTM

(p.LSTM) [7], the Gated Recurrent Unit (GRU) network [2],

and the Independent Recurrent Neural Network (IndRNN)

[11]. These competing techniques were carefully chosen

because of their high performance and wide usage in industry.

In this experimentation process, the FFANN was configured

to have 3 hidden layers with specification: 25 input nodes, 3

hidden layers at 25-30-25 nodes, and 15 output nodes. The

peephole LSTM was configured with specifications: 25 input

nodes, 40 CEC nodes, and 15 output nodes. The Gated

Recurrent Unit network was configured with specifications:

25 input nodes, 40 GRU units, and 15 output nodes. The

Independent Recurrent Neural Network was configured with

specifications: 25 input nodes, 40 IndRNN units, and 15

output nodes.

The experiments were carried out on a high performance

computer system, and the allocated resources on login are:

Intel Xeon E5-2670 CPU, @ 2.5 GHz, 16 cores, 10 nodes,

128 GB memory (RAM), 1 TB storage space, 850 GB Temp

in /tmp. Operating system: Red Hat Enterprise Linux Sever

(HPC), v7.5. The basic tools used were clang v4.0.0 –posix

(cc), R v3.5.0 and python v2.7_3.

6. Results

All the five (5) techniques were independently run across the

datasets, with each technique run 30 times and results

recorded. This approach, of independently running the

techniques, allows for performance metrics to be measured in

a controlled environment. The performance metrics were

measured during and after execution of an experimental

instance. In this set of experiments, five metrics were used to

assess performance of the competing techniques. Further, the

time complexity and space complexity are measured on all

the competing techniques, for all experimental instances. The

five (5) performance metrics measured are as discussed

below.

The Mean Square Error (MSE). This metric is a measure of

the averaged value of errors that a technique suffers

compared to the desired output of a testing set. This measure

calculates the average of squares of the determined errors for

every epoch in a run. Since the differences of these errors are

squared, then the MSE is a non-negative quantity. By this

definition, the values closer to zero reflect better performance

of the measured technique (or quantity), and the values

farther away from zero reflect poor performance. In this

paper, we calculate the MSE as;

MSE(y) 	= 	E[(δ(Y) 	− 	y)�] (5)

where δ(Y) is an estimator of the mean of the random

variable y.

The Average Convergence Error (ACE). The ACE measures

the rate of convergence of a technique towards its determined

solution. The ACE, in a way, measures a technique’s

tendency to oscillate away from settling on a solution. For a

given technique; the lower the average convergence error, the

better the performance. The ACE is an iterative measure,

therefore it is measured during execution of an experimental

instance, where each epoch is a contributor. In this paper, the

average convergence error is a quantity in the range [0, 1]

and is calculated as;

ACE = limD→W
|X'YZ[\|
|X'&\| (6)

where ε is the epoch error margin, x is the epoch on step k,

and N is the total number of epochs.

The Precision Recall Graph. This is a graph that shows the

relationship between positive predictive values of a technique

against its sensitivity for all epochs in a run. The precision

recall graph runs in range [0, 1] for both axes, and thus the

area under the curve for a perfect measure is 1. By

calculating the area under the graph, the performance of a

technique is thus determined.

The Pearson Correlation Coefficient (PCC). The PCC is a

bivariate correlation measure of a linear correlation between

two variables, say X and Y. The PCC varies between +1 and

−1 , wherein values closer to +1 indicate a strong linear

relationship, values closer to zero indicate that there is no

 International Journal of Mathematics and Computational Science Vol. 4, No. 4, 2018, pp. 128-138 134

linear correlation between the variables, and values closer to

−1 indicate existence of a negative linear correlation. In this

paper, the PCC (ρ`,a) between two variables is calculated as;

ρ`,a = bcd(`,a)
)e)f

 (7)

where cov(X, Y) is the covariance of variables X and Y, σ`

is the standard deviation of variable X , and σa is the

standard deviation of variable Y.

The Cross Entropy loss (CE). The CE loss between two

variable distributions, p and q drawn from the same

underlying set, measures the fraction average number of data

points required to identify an event drawn from the set. The

CE loss runs in the range [0, log(N)], with values closer to

zero reflecting less loss rate than values closer to log(N).

Therefore, a technique with loss levels closer to zero

performs better than a technique with loss levels closer to

log(N). In this paper, the CE loss is calculated as;

H(p, q) = −∑ p(x)log(q(x))X (8)

where H(p, q) is the cross entropy between variable

distributions p and q, and x is the data point position on

either distribution. Table 6 presents the performance of the

competing techniques on the Mean Square Error (MSE)

metric. As shown in Table 6, all the competing techniques

perform considerably well; however, there are some

noticeable performance differences. On average, the

BOSOM-LSTM technique outperforms all the other four (4)

competing techniques, at 1.7895 error rate. However, when a

direct comparison is made against the peephole LSTM, it can

be observed that the performance difference is quite narrow.

This performance indicates that the BOSOM-LSTM hybrid

technique is a very competitive technique on the MSE metric,

but the peephole LSTM is not significantly inferior.

Table 6. Performance of Techniques on the MSE metric.

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN

Stanford 1.4371 13.5784 2.8742 3.7546 4.6217

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN

Yahoo! 2.9681 9.6322 3.2566 5.3321 3.1436

Skytrax 0.9634 7.6131 1.5631 3.1625 2.8731

Average 1.7895 10.2746 2.5646 4.0831 3.5461

Epoch 10000 10000 10000 10000 10000

Runs 30 30 30 30 30

All the other techniques have considerably inferior

performances, with the least performer being the FFANN, on

the MSE metric. Table 7 presents comparative performances

of the competing techniques on the Average Convergence

Error (ACE) metric. As shown in Table 7, the BOSOM-

LSTM technique appears to have the best performance

because it has the lowest average ACE value, at 0.1453. This

means that the BOSOM-LSTM has quick convergence, by

epochs count, to a solution and has minimal oscillatory

tendencies, in this experiment.

Table 7. Performance of techniques on the ACE metric.

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN

Stanford 0.1436 0.3897 0.2639 0.2978 0.3219

Yahoo! 0.0856 0.1172 0.0974 0.1477 0.2420

Skytrax 0.2068 0.1923 0.1438 0.0736 0.1351

Average 0.1453 0.2331 0.1684 0.1730 0.2330

Epoch 10000 10000 10000 10000 10000

Runs 30 30 30 30 30

The peephole LSTM has equally very good performance on

the ACE metric, averaging 0.1684. The oscillatory tendencies

for the peephole LSTM are considerably significant; however,

compared to the other competing techniques, the peephole

LSTM has sufficient competitive performance. Both the

IndRNN and the FFANN have poor performances on the

ACE metric. The IndRNN and FFANN have their

performances averaging 0.2330 and 0.2331 respectively. This

shows that both the IndRNN and FFANN have high

oscillatory tendencies. In fact, the FFANN has been observed,

in literature, to suffer from overshooting and over-fitting

during learning [21, 1]. Table 8 presents comparative

performances of competing techniques on the Pearson

Correlation Coefficient (PCC) metric.

Table 8. Performance of techniques on the PCC metric.

Dataset Bosom-Lstm FFANN p.LSTM GRU IndRNN

Stanford 0.7287 0.5963 0.8145 0.6731 0.7086

Yahoo! 0.8861 0.6257 0.9256 0.7354 0.5648

Skytrax 0.9053 0.7283 0.8769 0.5786 0.7365

Average 0.8400 0.6492 0.8723 0.6624 0.6700

Epoch 10000 10000 10000 10000 10000

Runs 30 30 30 30 30

In this set of experiments, the PCC is used to assess the

extent to which a technique is able to predict the target

output during the testing phase. In Table 8, the best PCC

value in any of the 30 runs per technique is recorded. On

average the peephole LSTM has the best predictive power

compared to all other competing techniques, at 0.8723.

This performance implies that the peephole LSTM has

approximately 87.23% correct prediction rate, compared

to the BOSOM-LSTM at 84.00% prediction rate. The

FFANN is the least performer on this metric, at 0.6492.

135 Kernan Mzelikahle et al.: A Hybrid Technique Between BOSOM and LSTM for Data Analysis

The performances of the IndRNN and the GRU network

are considerably good despite the fact that they are lower

than both the peephole LSTM and the BOSOM-LSTM

technique.

Figure 4. Cross Entropy performance on Stanford dataset.

Figure 5. Cross Entropy performance on Yahoo! Dataset.

Figure 6. Cross Entropy performance on Skytrax dataset.

The performance of competing techniques for the considered

datasets, on the cross entropy loss metric is shown in Figures

4, 5, and 6. It is evident that all techniques exhibit consistent

behaviour, that is, at the beginning of a run there are high

rates of CE loss and the rate of loss decreases as a technique

learns in the process. The major difference lies in a

technique’s ability to reduce the CE loss significantly

towards zero. Further, it appears, there are datasets wherein

generally all techniques are able to reduce the CE loss

significantly (for example, the Stanford dataset) to near zero

values while in other datasets all techniques have generally

higher loss levels (for example, the Skytrax dataset). Despite

this behaviour, it is clear that the BOSOM-LSTM technique

has the least loss on the CE loss metric. This performance

suggests that the BOSOM-LSTM is a reliable technique for

application areas that require high precision and high

reliability. Similarly, the peephole LSTM has significantly

good performance on the CE loss metric for all datasets. The

performance put up by the peephole LSTM corroborates

results reported in several studies [17, 15, 1]. In a way, the

performance of the peephole LSTM, in these experiments,

acts as a control measure for the newly proposed BOSOM-

LSTM technique.

The GRU network and the IndRNN are average performers

on the CE loss metric. These two techniques are relatively

competitive; however, they have high loss levels. These

results have not yet been reported in literature. The major

metric on which the GRU and IndRNN have been tested is

the MSE metric. On the MSE metric, results in this paper

corroborate results reported by several researchers [2, 11],

 International Journal of Mathematics and Computational Science Vol. 4, No. 4, 2018, pp. 128-138 136

however, there are several deviations that have been reported

by other researchers [18]. The FFANN is the least performer

on the CE loss metric. In fact, the FFANN has been the least

performer on all the metrics used in this experimentation

process. It may thus be put forth that non-recurrent Artificial

Neural Networks do not perform well on data analysis

problems that require review of long sequences in input

vectors. Figures 7, 8, and 9 present the performances of the

techniques on Precision Recall Graphs.

Figure 7. Precision Recall performance on Stanford dataset.

Figure 8. Precision Recall performance on Yahoo! Dataset.

Figure 9. Precision Recall performance on Skytrax dataset.

By observing the curves in Figures 7, 8, and 9, it can be

concluded that all the competing techniques have very good

recall performance. It can be observed that all the techniques

involved are able to reach 100% recall rate, meaning that all

the techniques can be relied upon. Significant performance

differences can be observed on the Precision axis, where the

precision rates appear to decrease across runs. By calculating

the average area under each curve, these differences become

more apparent. Table 9 shows the average area under the

Precision Recall curve for each technique.

Table 9. Average area under Precision Recall curves.

Technique Area under curve (no)

BOSOM-LSTM 0.7528

FFANN 0.5735

p.LSTM 0.7083

GRU 0.6751

IndRNN 0.5962

As shown in Table 9, the BOSOM-LSTM technique has the

best performance on the Precision Recall curve. However, it

is worth noting that all techniques are above the 0.5000 mark.

This suggests that all techniques are performing above

average. Figures 10 and 11 present the performances of the

techniques on space complexity metric and time complexity

metric, respectively. The time and space complexity metrics

are important because they measure a technique’s inherent

demand for computation power and storage space in respect

to its ability to solve a problem at hand. In other words, time

and space complexity measure how a technique consumes

computing resources. In many application areas, the

availability of resources is a critical factor in choosing an

137 Kernan Mzelikahle et al.: A Hybrid Technique Between BOSOM and LSTM for Data Analysis

appropriate technique to solve a problem at hand.

Figure 10. Space complexity behaviour.

Figure 11. Time complexity behaviour.

As shown in Figure 10, there is a significant difference on

how much the various techniques demand for space resources.

It is clear in Figure 10 that the BOSOM-LSTM hybrid

technique is the least performer. The BOSOM-LSTM

technique has high demand for space resources. It, thus, may

be put forth that the BOSOM-LSTM is only applicable in

environments where there are ample amounts of space

resources. The GRU network has the least space requirements

and appears to be best suited in space constrained applications.

The peephole LSTM appears to have average demands for

space requirements, and thus is applicable in space flexible

environments. In Figure 11, there are significant differences in

regard to time expended for a given input dataset size. It is

apparent that the BOSOM-LSTM hybrid technique is the least

performer on the time complexity metric. It is clear that the

BOSOM-LSTM technique is a very slow technique compared

to all other competing techniques. It may be put forth that the

BOSOM-LSTM technique must be applied in application

areas that are not highly time constrained. In contrast, the

peephole LSTM has better time requirements.

7. Conclusion

This paper has successfully proposed a hybrid technique of

BOSOM and the LSTM. It has been shown in this paper that

the BOSOM-LSTM hybrid technique is a very capable

technique, particularly on accuracy and reliability in data

analysis. The paper has further noted that the BOSOM-

LSTM hybrid technique is a highly resource demanding

technique, and this may limit its applicability in resource

constrained application areas. This demand for resources may

be attributed to the fact that the BOSOM-LSTM hybrid

technique makes use of a buffering mechanism. It appears

that this buffering mechanism increases time demands and

space demands on the technique. Further research is needed

in order to improve the buffering mechanism.

References

[1] Chaudhary, R. and Patel, H. (2015). A Survey on the Back-
Propagation Algorithm for Neural Networks. International
Journal for Technological Research in Engineering, 2, pp.
729-733.

[2] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H and Bengio, Y. (2014). Learning
Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. [Online] arXiv preprint
arXiv:1406.1078.

[3] Demuth, H. B., Beale, M. H, De Jess, O. and Hagan, M. T.
(2014). Neural Network Design. 2nd ed., Martin Hagan,
Oklahoma, USA: Oklahoma State University.

[4] Fausett, L. V. (1994). Fundamentals of Neural Networks:
Architectures, Algorithms and Applications. Prentice-Hall
International Editions, New Jersey, USA: Prentice-Hall.

[5] Gers, F. A., Schmidhuber, J. and Cummins, F. (2000).
Learning to Forget: Continual Prediction with LSTM. Neural
Computation, 12 (10), pp. 2451-2471.

[6] Gers, F. A. and Schmidhuber, J. (2001). LSTM Recurrent
Networks Learn Simple Context Free and Context Sensitive
Languages. IEEE Transactions on Neural Networks, 12 (6), pp.
1333-1340.

 International Journal of Mathematics and Computational Science Vol. 4, No. 4, 2018, pp. 128-138 138

[7] Gers, F. A., Schraudolph, N. N. and Schmidhuber, J. (2002).
Learning Precise Timing with LSTM Recurrent Networks.
Journal of Machine Learning Research, 3, pp. 115-143.

[8] Gurney, K. (2004). An Introduction to Neural Networks.
London: Taylor and Francis e-Library, University College
London (UCL).

[9] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term
Memory. Neural Computation, 9 (8), pp. 1735-1780.

[10] Kröse, B. J. and van der Smagt P. (1996). An Introduction to
Neural Networks. 8th ed. Department of Computer Systems,
University of Amsterdam, Netherlands.

[11] Li, S., Li, W., Crook, C., Zhu, C. and Yanbo, G. (2018).
Independently Recurrent Neural Network (IndRNN): Building
A Longer and Deeper RNN. [Online] arXiv preprint
arXiv:1803.04831v3.

[12] Mzelikahle, K., Mapuma, D. J., Hlatywayo, D. J. and Trimble,
J. (2017). Optimisation of Self Organising Maps using the Bat
Algorithm. American Journal of Information Science and
Computer Engineering, 3 (6), pp. 77-83.

[13] Pang, B. and Lee, L. (2005). Seeing Stars: Exploiting Class
Relationships for Sentiment Categorisation with Respect to
Rating Scales. In: Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. Association for
Computational Linguistics, pp. 115-124.

[14] Pérezgonzález, J. D. and Gilbey, A. (2011). Predicting Skytrax

Airport Rankings from Customer Reviews. Journal of Airport
Management, 5 (4), pp. 335-339.

[15] Sak, H., Senior, A. and Beaufays, F. (2014). Long Short-Term
Memory Recurrent Neural Network Architectures for Large
Scale Acoustic Modeling. In: Fifteenth Annual Conference of
the International Speech Communication Association.

[16] Schleif, F. M. (2014). Discriminative Fast Soft Competitive
Learning. In: Proceedings of the International Conference on
Artificial Neural Networks, September 2014. pp. 81-88,
Springer, Cham.

[17] Schmidhuber, J. (2015). Deep Learning in Neural Networks:
An Overview. Neural Networks, Elsevier, 61, pp. 85-117.

[18] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding
Machine Learning: From Theory to Algorithms. United
Kingdom: Cambridge University Press.

[19] Spanakis, G. and Weiss, G. (2016). AMSOM: Adaptive
Moving Self-Organizing Map for Clustering and Visualization.
[Online] arXiv preprint arXiv:1605.06047.

[20] Taheri J. and Zomaya A. Y. (2006). Artificial Neural Networks.
In: Zomaya A. Y. (eds.) Handbook of Nature-Inspired and
Innovative Computing: Integrating Classical Models with
Emerging Technologies. New York, USA: Springer, pp. 147–
185.

[21] Yang, X. S. (2010). Nature-Inspired Metaheuristic Algorithms.
University of Cambridge: Luniver Press.

