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Abstract

In this paper, an extension of the Krylov-Bogoliubov-Mitropolskii (KBM) method (which is also regarded as one of the most
convenient and widely used methods for investigating the transient behavior of nonlinear systems) is used to figure out the
solutions of fifth order more critically damped nonlinear systems. To this end, the analytical approximate solutions of fifth
more critically damped nonlinear systems are considered in which the three eigenvalues are identical and another two are
different. In this article, we suggest that the perturbation solutions obtained by the extended KBM method adequately matches

up with the numerical solutions.
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1. Introduction

Physicists, engineers and applied mathematicians have long
been confronted with difficulties such as nonlinear governing
equations, variable coefficients, and nonlinear boundary
conditions at complex known or unknown boundaries, which
prevent them solving these difficulties accurately. As a result,
they are compelled to recourse to numerical solutions, or
approximation solutions, or a combination of both. Of these
approximation solutions, the systematic method of
perturbations is firmly established that actually formed the
basis of the widely recognized method named the Krylov-
Bogoliubov-Mitropolskii (KBM) [1, 2] method. Generally,
the KBM method is applied to study nonlinear oscillatory
and non-oscillatory differential systems with small
nonlinearities. It was first expounded by Krylov and
Bogoliubov [1] to find periodic solutions of second order
nonlinear differential systems with small nonlinearities.
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Consequently, this method was expanded by Popov [3] to
damped oscillatory processes where a strong linear damping
force was present. Later, it was amplified and justified by
Bogoliubov and Mitropolskii [2]. However, Popov’s results
were rediscovered by Mendelson [4] who took into account
the physical significance of the damped oscillatory systems.
Murty and Deekshatulu [5] then extended it to over—damped
nonlinear systems. Ultimately, a unified KBM method for
second order nonlinear systems was anticipated by Murty [6]
that covered all the undamped, over-damped and damped
oscillatory cases. In the meantime, Osiniskii [7] established it
for the first time to investigate third order nonlinear
differential systems. However, Osiniskii [7] imposed some
restrictions that rendered the solution over-simplified. Later,
Mulholland [8] came forward to lift those restrictions and
found the envisioned solutions for third order nonlinear
systems. Thereafter, solutions were offered by Bojadziv [9]
with respect to nonlinear systems through the conversion of
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the method to damped nonlinear oscillations for a 3-
dimensional differential system. Afterwards, the time
dependent third-order oscillating systems with damping were
developed by Alam and Sattar [10]. It was then generalized
by Akbar et al. [11] in order to make it less intricate than the
method propounded by Murty et al. [12]. Next, it was
extended further by Akbar ef al. [13] to fourth order damped
oscillatory systems in the case when the four eigenvalues
were complex conjugate. Following that, a technique for
fourth order more critically damped nonlinear systems was
devised by Rahaman [14]. In due course, Kawser et al. [15]
put forward analytical solutions of fourth order critically
undamped oscillatory nonlinear systems with pairwise equal
imaginary eigenvalues. Kawser et al. [16] also set forth a
new analytical solution of fourth order critically damped
nonlinear oscillatory systems in the case when the
eigenvalues were pairwise equal and complex. Lately, Alam
et al. [17] framed perturbation solutions of fourth order more
critically damped nonlinear systems in the case of four equal
eigenvalues. Further, Kawser et al. [18] spelt out asymptotic
solutions of fifth order more critically damped nonlinear
systems in the case of four repeated roots. Furthermore,
Alam et al. [19] stepped forward with an asymptotic solution
for the fifth order critically damped nonlinear systems in the
case for small equal eigenvalues. In addition, analytical
approximate solutions of fifth order more critically damped
nonlinear systems were proposed by Rahaman and Kawser
[20]. Besides, perturbation solutions of fifth order critically
undamped nonlinear oscillatory systems with pairwise equal
eigenvalues were suggested by Kawser et al. [21]. On top of
that, the Krylov-Bogoliubov-Mitropolskii method for fifth
order critically damped nonlinear systems in the case for
large equal eigenvalues was expounded by Bagchi et al. [22].

In this paper, we study the solutions of fifth order more
critically damped nonlinear systems when three of the
eigenvalues are equal and another two distinct. Lastly, we
propose that the obtained perturbation results satisfactorily
match up with the numerical results for different sets of
initial conditions as well as different sets of eigenvalues. In
this study, Mathematica 9.0 is used to compute all the
calculation and results.

2. Method

Consider a fifth order nonlinear system governed by the
ordinary differential equation

X0+ kx4 X ke o+ by ksx = =6 f (5,5 %,27) (1)

where ¥ and x®) stands for the fifth and fourth derivative

and over dots are used for the first, second and third
derivatives of X with respect to & ki, ky, k3, ky,ks are
characteristic parameters, € is a small parameter and

) is the given nonlinear function. As the

system (1) is of fifth order more critically damped, we
consider the equation (1) which has three equal eigenvalues
and another two are distinct. We assume that the eigenvalues
are =A, =A, =A, “Hand 7

Thus, when &£=0, the solution of the corresponding linear
equation of (1) is

x(1,0) = (ag +byt +cot*)e ™ +dge™ +hye™ 2)
where ay, by, ¢y, dy, hy are constants of integration.

However, if £€#0, following Alam [23], we choose an
asymptotic solution of (1) in the form

x(l,é‘) =(a+bt +clz)e_/“ +de " +he™ + gu,(a,b,c,d, h,t)... 3)

where a,b,c,d, h are functions of ¢ and they satisfy the

following first order differential equations

a(t)= €4 (a, b, c,d, h,t)+-
b(t)y=€B,(a, b, c,d, h 1)+
ét)y=¢€C(a, b,c,d, ht)+- )
d(t)y=€Dy(a, b, c,d, h, 1)+
h(t)=€H,(a, b, c,d, h, 1)+

Here, the first few terms in the series expansion of (3) and (4)
are considered. Thereafter, we compute the functions #; and

» B, C;, D;,H, for i=12,3,.. such that a,b,c,d,h
appearing in (3) and (4) satisfy the given differential equation
(1). Please note that, in order to ascertain these unknown
functions, it is usual in the KBM method that the correction
terms, #; for i =1,2,3,... must ignore the terms (known as
secular terms) which make them large. Theoretically, the
solution can be achieved up to the accuracy of any order of
approximation. But, owing to the fast growing algebraic
intricacy for the derivation of the formulae, the solution is
generally limited to a lower order, usually the first as
suggested by Murty [6].

Now differentiating the equation (3) five times with respect
to #, substituting the value of X and the derivatives
% % %, 2 x" in the original equation (1), using the

relations presented in (4),
coefficients of €: we obtain

and, finally, equating the
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ot ot o’ or’ ot o’
d e (9 a . Y(a )
Z+p-u|D +e | =—+A- —tu-n|H | =+ | | —+ || —+ =— O b,c,d, ht
(Son-s)prer(Samn] [ Seun it s Soa) (S| 2 onlu==rObicdm

where ) (a, b, ¢, d, 1 1) = £(x0, . . %o x§) and x, = (a+br+ ey +deH +he™

2 2 2 3
e [iﬂl /\](iﬂﬁ/\][a 4 OB 305, 200 +6taac1 +6C1]+e"‘”[ai+/l—/1]
¢ t

)

We have expanded the function f © in the Taylor’s series (see also Sattar [24], Alam [25], Alam and Sattar [26] for

particulars) about the origin in power of ¢.

Therefore, we obtain
f(O) = th z Fq,m (a,b,c, d,h) e—(i/]+_//,1+kl7)t (6)
q=0 i,j,k,m=0
Here, £} is function of a,b, ¢, d, h and the limit of 7, j, k,m are vary from 0 to ®. however, for a
particular problem they have some definite values. Thus, using equation (6), equation (5) becomes

2 2 3
ot ot or? or? at o ot

d [ @ (0 . .Y(o d
—+n—-u|D +e M| —+A- —+yu-n|H +| —+A| | —+ —+ 7
[a, . yj v (eaen] (S (a, J(Zs) e )

—(iA+) u+k
=Dt D F(abe,d ke A

q=0 i,j,k,m=0

Following the KBM method, Murty et al. [12], Sattar [24], Alam and Sattar [25] impose the condition that t# does not contain

the fundamental terms of f . Thus, equation (7) can be separated for unknown functions 4,B,,C;,D;,H; and u in the

following way:

2 3
o (gw AJ(L” /]j 0A1+ OBI+ aB1+t20C1+6taC1+6C1 o ﬂ,(iﬂ #j
ot ot or o1 ot ot

or’
a —(iA+ju+
(5“7 ,UleJre ”’(—+ j (—w qul = th Z m(@b,e,d e ATTHRD!

=0 i,j,k,m=0

®)

d ) —(iA+ ) p+kn)t
[E+Aj [E+#j[_+”jul ZStq z mlab,c,d,h)e™"™/ 9)

i,j,k,m=0

Now, comparing the coefficients of /°, ¢' and 2 from both sides of equation (8), we obtain

MR ) e L L R L]
—+n=-A|| —+u-A2 + +A- —+n-u|D + Zia-
¢ (Ot T e THT e T\ T ) e TR P e T g T

o (10)
0 —(iA+j u+
[E+y—/7]Hl == E ) Fym(a,b,c,d,h)e (iA+j pkint
i,j,k,m=0
(0 0 0°B, . 9C, > ided gk
—+p-All =+ A it B P F ,bye,d,h J ki)
¢ (at d o M > ot ,.jkz:‘n:o Ln(@b.e.d.hye (
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e_/]t [i-'-,?—/]j(i‘l'ﬂ_/}j("ZCI T i F2 (a:b:c:dah)e_(i/‘-'—j/ﬁ—k”)t (12)
ot ot atz i,j,k,m=0 "
Here, there are three equations (10) to (12) for ascertain the  then solve them for unknown functions 4,,D; and H,.

unknown functions 4, B,,C},D,,H,. Therefore, in order to

Since a, B, ¢, d,h are proportional to small parameter &,
find the unknown functions 4;,B,,C,D;,H, some well- prop P

they are gradually varying functions of time ¢ and, for first
approximate solution, we may regard them as constants in the
right hand side. Murty and Deekshatulu [5], and Murty ef al.
separate the unknown functions C; and Bj; and solve for  [12] fist made this assumption. The solutions of the equation

B,. In equation (10), applying some well-known operator (4), therefore, become

known operator method must be applied. We can assess the

value of C| from equation (12). From equation (11) we can

method to separate the unknown functions 4,,D, and H|,

t t
a=a, +5J'0 A (a. b, c.d, h{)di:b=b, +(9J'OB1 (a, b, c. d. h, 1)dt;
c=co+e [ Cabcd hr)did=dy+e [ D (a b d b o) (13)
h=h +gJ';H1 (a b, c, d, h,¢)dt

Please further note that equation (9) is an inhomogeneous linear ordinary differential equation. Thus, it can be solved by the
well-known operator method. We obtain the complete solution of (1) substituting the values of a, b, ¢, d, & and u in the

equation (3), Thus, the determination of the first approximate solution is complete.

3. Example

As an example of the above procedure, we consider the Duffing type equation of fifth order nonlinear differential system
X ke x ™) X+ I+ kX hsx = —€x° (14)
Comparing equation (1) with equation (14), we obtain f(x,x, X, ')'c',x(iv)) =x.
Therefore,
1O = SGa3 +a’bt+ab’t* +a’ct® +b°6 +2abet’ +b*ct* +ac’tt +bc*t + c3je'“’ +3 (azd +2abdt

+2acdt® +b2bi? + 2beds +c2dt4)e‘<“+ﬂ>’ +3(a2h +2abht + b*hi* +2acht® + 2bcht® +c2ht4)e'<“+’7>’

(15)
+3(ad? +ba% +b2he? +cd® ) 46 (adh+bdhe +cdhe® e AH +3qpteT D 4 g2
+3(an? +bh%+ e )T I 307 e U 4 e
For equation (14), the equations (9) to (12) respectively becomes
3
S (L +U 2 +1 |uy, = —{ (b3 +6abc +3b*ct +3ac’t +3bc*t + ¢ t3)t3e_3/h
ot ot ot (16)
+3(2bed + 2t )™ HH 43 (2bch + e t3e_(2/1+'7)[}
3 3
(0 ) 4, . _,(0 ) (0 )
e =+n-A|| —+u-1 +e M| —+A- —+n-p|D+e" | —+A- —+u-n|H
[at”j(ar”jaﬁ o TH) e TR R a T g THTT
- _a36—3/lt _d36—3ut _3ad26—(/l+2,u)t _Sazde—(Z/Hu)t _3a2he—(2/l+l7)t _3d2he—(2,u+17)t (17)

—6bdhe” ATHDE 32 o= AY2DE _3gp2 o= (HF2DE _ )3 =301
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2
e—At (i+’7_/1j£i+/'/—/‘j 0 lj] +£ =_3(a2be—3/lt +bd26—(/1+2,u)t +2abde—(2A+,u)t
ot ot (18)

+2abhe" QAN 4 pp2e=AF2DE 4 o p n (A +p+/7)z)

2
e—At(i+,7—,]j(i+’u_/]Ja G — —{3(ab2 +a2c)e_3’“ +3(2acd+bzd)e—(u+mt +3¢cd2e” A2t
? 19)
+3(2ach +b2h)e-(2/1+r/)t +3chle”AT2mr 4 6the—(/1+;1+l7)t}

Solving equations (19), we achieve
C = (llab2 +12a2c)e_”' + (l3acd +l4b2d)e_u+”)’ +(15ach +16b2h)e_“+'7)' +Led?e ™+ lgeh?e ™ + Iyedhe™ M (20)
where

-3 -3
= N l: b :l_3
CA-mGA-p) L=k, MA+pP @A+ u-m) 4T

h

-3 I -3

15: 2 > ] ==X 17: 2 5
AA+M QA+n—p@) 6 o> 4 A+ Qu+A-n)

-3 -3
= , [ =
P A+mA+2-p) A+ A+ )

I

Substituting the value of C; from equation (20) in equation (18), we obtain

B = (mlazb +myab® + m3a20) e+ (m4abh +msb*h+ mﬁach) eI 4 (m7bd2 +mgcd? ) e

(21)
+(mybdh +mygcdh) e #*7" +(m11abd +my,b*d +myyacd) e +(m14bh2 +mlsch2)e_2'7t
where
B 3 o 31147 =39A% =3un +11Au)
m = 5 - 5
AN CA-pGA-n) T ARCA-wGA-n  my=m,,
_ 3 = =37 +11An +16A% — un = 7A1)
my = , =
A @Asn-w’ T 28+ @A+n - )
. 3 . _3(3An =327 +5un —13Au—124%)
- mg =
mg =2ms, | AP (A+ (A +2u-1) 4P A+ 1) A+2p-n)
_ 6 _ 6
my = 2 > My = D )
(U+m(A+ )" (A+n) AA+ )" A+ =)
_ 31647 +LLAu+ 7 =Tun =7An)
" 2RQA+ U= A+ my =2my,
3 _3(Au-3A% =120 =13An+5un)
My ms =

AP A+mA+2-p) 472 (A +1)(A +217 = )

Thus, we obtain imposing the condition A << 4/ <</] and separating the equation (2.2.4) for 4;, D; and H, using the operator
method
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A4 = (plazb + pyab® + pya’ + p4a20)e_“’ (22)

where

_3G9A -1 +3un 110wy _ 1 |
SAGA- w2 GA-n) 2 4R (u-3MGEA-n) P =P

b

3

= AN(=261A% +146Au=2112)+n* (3842 =214+ 3112
4/14(;1—3/1)3(3/1—/7)3{,7( H=21u7)+n7( H+3u7)

Py
+ A% (45917 = 261Au +384%)}
Dy = qde ™ +(qyad® + g3bd® + gyed® )" + (qsabd + ggb*d + gra*d + ggacd ) e (23)
where

1 6
q = > Gy = s
CGuemA-3py T T 16t A+ i -2 - A)

_ 3
Yol A+ (- 2p-AY
_ 3

8L (+ ) (-2~ A)
+4440 + 0P BA2 +9Au+8L7) —1(6A° +33A% L+ 60 +37 1)},

(247 =320 +3A% =5un +13)4},

q

a4 S B3+ 2407 u+ 2% 17 + 930

_ 3
(A (7 -2-A)
+2(TA+ ) =200(15A% +10Ap + 117)},

qs A+ )(324° + 3847+ 1300 + 41

_ 3
22 (A (-2u-A)
+02 BIA? +8Au+ 17) = 20(69A° + 557 u+ 11012 + 1)},

{1564 +210A° u+91A% 1% +147018° + 1

‘L3

3
q7 = s
T A -2u-2) g5 =g

And

Hy =siPe™" +s,dh>e™ * D" + 53d* he ™M +(s,cdh + ssadh + sgbdh) e+

- , 24
+ (S7Ch2 +sgah® + sybh? ) et 4 (smabh +5,,b°h+s,a h+ snach) e

where

1 _ 3 _ 3

=, E T ——————————, 53 = ,
W=3mGn-Ay>"" " men+u-A" 7 (urm@g+2u-2y

Sy

12
S4 :
A+ U+ A+ py’
+67 (A + 1)+ 27> OA +18AU+8L7) +61(3A° +8A7 U+ 61 + 1)},

Nt +61* +18A°3 u+182% 17 + 618 + 11
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o 6 o = U 43X 45+ +57(A + )}
R A+ (u+ A+ p)*

1

S+ =

TP A+ en+A -y
+3A08A* =11Au+312) +n? (72A% =60Au +814%)},

44n* +n° (931 =371) +3A* (A - p)*

_ 1 i {1207 3 A=A +n(5u—13A)}
SS - s 9 —
87 (20 +A - 1) 167" (A +m)(2n +A - p)*
S19 = ) ! 3 {/73 +/72(13/1 —2,u)+/7(38/\2 —20/1y+y2)
AA+n) (n+2A - p)
+A(32A7 =30Au+74%)},
1 4 3 2 2 2
sy, = + 203 (TA = ) +n* (1A% =22 u+
11 /]2(/]+/7)5(/7+2/]—/j)3 {,7 ( )u) n ( Y4 /,[)
+2A0(105A% =55\ +41%) + A2 (156 A2 =138 +311%)},
_ 1
S12 = 3 >
A+n)’(n+2A-p)
513 1 n*+20° (1A= ) +n* (9147 =22+ 1i%)

A+n)’(+2A - )
+2A0(105A% =55 1+ 417) + A (156A% =138Au+31172)},

And the solution of the equation (16) is
u, ={(b3 + 6abc)(r1t3 +ryt® +rt+ r4) +(bPc+ acz)(r5t4 +rl Attt r9) +bc? (r10t5 +r,0*
+ 1ot +rist? Hrigt 1 ) +c? (rlétﬁ + 198+ gt 1ol + gt 1yt + 1y )} e +{bed (r23t3
25
o4t + 1yt +’”26) ""32“’(”27t4 + gt + gt +’”3of+’”31)} e ArH +{bch(r32’3 gt +ryt s >
+c2h(r36t4 gt + gt + gt 19 ) € A
where

1 3

= , I = 39A2_11/] +3 —11A ,
81 GA-mGBA-1) 16/14(3A—/7)2(3/1_ﬂ)2( 1+ 3p =114

i

_ 3
8A°(3A =)’ (3A -y’
+ A% (4594% =261 1 +38%)},

(AN(=261A% +146 A+ 2147 )+ (36 A% = 21Au +314%)

3

_ 3
T 164°3A-n)* 34 - py*
+AN* (21274 179542 u+ 519017 =5112) +n° (2114° +177A% 1
=51AL2 +5187) + AP (=7263A° + 617742 1=1795 1% +177 1)},

(A3(8451A° = 72632+ 2127 0% = 21145)

7y

rs =3n, 1, =0.25r,, r, =1.51;, rp =0.75r,,
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3

BT 3A-n) G- )
+ A% (34054% =38634° L +1686A 1> —333718 +25u*) —nA3 (386914* — 4432513 1
—3863A1° +291*) + A%n? (68355A% = 778801° 1 +34082A% 11 — 674418 +507 1
+19470A% %) + A* (268191A* =309528° 1 +136710A% 1> = 27240717 +2059*)},

74205944 =23281° 1 +1014A% 17 = 200718 +154%)

5

o =31, 17y =5ny, 12 2r3, tiz =307y, ia =§r9,
_ 45
32836 -0)°GA- p)
—9933304% 1 +150669A1*) +2A°n% (1654965A4° —23807251% 11+ 63105A1* —38491°
+13994821° 1 —417778A% 1°) + An* (1506694° —2155011% 11 +126210A% 1
=37578A% 1 +5665 1" =34515) =0 (92214° = 2290A% 1 +345 4" = 2140
—131612% u+76981° 17 ) = 217 A* (496665A° = 712197 A% 1+ 417778A° 1> = 114548
—124530A% 18 +18789Au*) + 1*1(55916731° —80768614° 11+ 47614504° 12
—14243942% 17 +215501A4" =131612°)},

Ks —{A°(38498494° ~5591673A% 11+33099304° 1* =922147°

e =N, 7 =21y, lig =501, Ko =201y, 1y =151, 1y =275,
_ 45
T164°GA-n) GA- )]
-5329527 A% 1" + 6530181 =335731°) + An> (=3773491° +653018A° 11 — 4809994 1/ =273 1°
+191868A° 1 —43555A 1* +532270°) +n® (194271° =335734° 11+ 247082 1* —98501° 1
+2235% 11* = 273018 +141°) + A2 n* (30746521° = 5329527 4% 11+ 223515 +39297114% 1
—15686941° 1° +356298A% 11* —435551°) = 217> A (6735285A° +4952° =116979661°
+8636911* 17 —34508684° 17) + 1°(25711830A° —450995854° 11 +335335951% 1/ +19427 14
—13470570A° 1 +3074652A% 1* —=377349A18°) + A*1* (3353359516 —583854751° i
+43178562A% 1 =17273824% 17 +3929711A% 1 — 480999418 +24708 1)},

y {A°1(=450995851° +78771690A° 11 — 583854754 17 +233959321° 1

_ 9
TP A+’ @A+ u-n)
+0? BIA? +8Au+ 17) +217(69A° +55A% u+ 11712 + 1)},

Fys S {1564% + 2104 +914% 1> + 14018 + 1

3 9
= , Py =

AA+ 1} @A+ p=-n)" 22N+ )t @A+ -y
_ 9

224 A+ w)° @A+ u-n)
+ 10+ AVIAP 43942+ 9217 + 1) + 7% (28A* +6451° 11 +189A% 1 +35M18°
+31M) +0(16082° +2296 A% L +1173A% 17 + 28522 187 + 431" +3 1)},

23 (16A% +11Au~7An - un),

Fag {1200A° +2376A° 1 +1808A% 1* +6714° 1 +135A% 14

7 =0.5153, 13 =0.67r, 1y =hs, Py =y,
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_ 1
AP A+ @A+ 1)’
+4651A% 1t +11104° 187 +188A2 18 + 18 +7* (B514* +1504°  + 4847 12 +10748 + )
=21 (1515A° +14522% 11+ 5404° 12 +146A% 18 + 251" + 248 ) +2n7° (4940A° +3 1
+7385% 1+ 42632% 1 +13704° 1% + 31442 1" +4500°) = 2n(722407 +147282%
+120491° 1 +52720% 17 +1460A° 11* +386A% 1 +35Au° +247)},

(801643 +2078417 11+ 223601° 1> +13062A° 1* + 201"

31

3 9
I3 = , I3 =
POAA+n’@Arn-wy) T 222+t @A+n - p)

7 (6A +11A77 +17* =7 Apt = pap),

_ 9
223(A+n) 2A+n - p)’
+2A0(105A% =55 Au+41%) + A (156 A% =138 A +311°)},

134 0t +27° TA = ) +0* 914% =22+ %)

_ 9
4+t @A+n -’
(1200A° =1608A% 1+ 728 A1 =111187) + A2 (2376 A% = 2296 A% i+ 645 18> =3910°)
+An* (1808A° —1173A% L +189A1% =947 ) + 1 (671A° = 28527 1 +35 1% = 11°)},

Fys n® +n°A7A=3u)+n* (13502 =43 u+31%) + A°

e =0.5r5,, 137 =0.67r33, 135 =134, 139 =213,

_ 9
XA+ @A+ - p)p
—286A% p+ 4502 =248 )+t (46514% =29204% 1+ 62827 17 = 5018 + i)

+ 240 (6531A% =5272A° u+1370A% 1* =146 18 + 5% ) +2A%7% (11180A*
—12049A3 11+ 426327 11 = 540A18° +241*) +24°0(103924% —14728A3 p+7514*
+7385A% 17 —1452A187 ) + A* (80161* —14448° 11+ 988042 11> —3030A18 +35114%)},

o % +4n" (54 = 1) +2n°(942% =35\ +31%) +2n° (555A°

Substituting the values of 4;, B|, C;, D, and H; from equations (22), (21), (2), (23) and (24), into the equation (4), we obtain

a= E(plazb + pyab® + pya’ +p4a2c)e_2m
b= 8{(mlazb +myab® + m3azc) e+ (m4abh +msb*h + mﬁach)e_(ﬂ !
+(mybd? + myed? )& + (mobdh+ mygedh) e " +(my abd +my,b%d

+m13acd) e AT 4 (11114bh2 +mysch? ) e_zm}

é= 8{(llab2 +ha'c)e™ +(Lacd +1,b%d )™ +(Lsach + Igb*h) e H
(26)
+Led*e M +gch*e ™M +l9cdhe_(”+'7)t}

d :£{q1d3e"2”’ +(q2ad2 + g3bd? +q4cd2)e_“+”)’ +(q5abd+q6b2d+q7a2d+q8acd)e'“’}

h= £{ sihPe™M +s,dh*e M + 5, d? he M + (s4cdh +ssadh + sﬁbdh) e Armr

+ (S7Ch2 +sgah® + sybh* ) el 4 (sloabh +s,b°h+s,,a° h+s,5ach) e_z’"}

Here, all of the equations of (26) have no exact solutions. However, since a, B, ¢, d,h are proportional to the small parameter
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£, they are gradually varying functions of time ¢. Thus, it is feasible to substitute @, b, ¢, d,h by their respective values

obtained in linear case (i.e., the values of a, b, ¢, d,h obtained when & = 0) in the right hand side of equation (26). This type of

substitution was first introduced by Murty ef al. [12], and Murty and Deekshatulu [5] in order to solve similar type of nonlinear
equations. The solution of (26), thus, become
1 - e—2/]t

- 2 2 3 2
a=da "’5(171“0 by + paaghy” * p3ay” + paag Co) ¥

21t
- 2 2 2 - 2
b=by+ £{(mlao by + myayby” +mya, co) Yy + (m4a0b0h0 +msby hy + méaocoho)

—(A+n)t | = (H*mt

Hn

1_ —2/7[
+ (m14b0h02 +myscohy’ ) z }

l1-e 1—e 2H

2 2
A+ +(’"7[90"10 +mgcyd )

+ (mobodoho + mlocodoho)
1 —e A+

A+u

2
+ (ml 1a0body +myyby"dy + m13a0c0d0)

27

=21t

5 1- e‘(/‘ +L)t
+ (lﬂocodo +14by°d, )W + (lsaocoho

c=cy +£{(llaob02 +lza02(:0)

(27)
) 1_6_(/‘+/7)f ) 1_e‘2ﬂl 5 1- =2nt 1_6_(/1+/7)f
+lsby ho)v”ﬂodo 2—+lscoho +locodyhy Y
1—e2H 1= A*r
d=d,+&lqd,’ ———+(q,a,d,> +qbyd,> +qucod,’ | ————
0 {%o 2 (‘1200 43004 4400) A+ u
) ) 1-e 2At
+(‘15“0b0d0 +qeby"dy +g;a9°d, +‘18aocod0)T
3 1- =2nt 5 l_e—(,u+r])t 5 l_e—Z,ut
h=hy +&qshy 2 +s,dyhy Y +s3dy"hy +(S4codoho
1_6—(/1+ﬂ)t ) ) ) 1_8—(/\"'7)1
+ dohy +s:bydoh + hy” + hy” +sobyhy” | ———
Ssapdohy 56000) A+ u (S7coo S3aopy 5900) A+n
) ) 1_6_2/“
+(s10a0b0h0 +s11by" hy + 51200 hy +S13aocoho)T
Hence, we obtain the first approximate solution of the equation (14) as
x(t,é‘) =(a+bt+ctP)e ™ +de ™ +he™ + gy, (28)

where a, b, ¢, d,h are given by the equation (27) and #; is given by (25).

bring the efficiency of an approximate solution obtained by a

4. Results and Discussion certain perturbation method. Here, x(¢, £) is computed by

An approximate solution of fifth order more critically time  equation (28), where a,b,c,d,h are calculated from
dependent damped nonlinear system with constant has been  equation (27); and (25) is used to obtain % when &=0.01,
obtained based on the KBM method. The solution can
theoretically be obtained up to the accuracy of any order of
approximation. However, it is mathematically difficult to find
out a more accurate solution due to some algebraic intricacy
for the derivation. We compare the approximate solution to
the numerical solution (considered to be exact) with a view to

along with the different sets of initial conditions. The results
are represented in Figure 1 to Figure 5. It is apparent that, for
both sets of initial conditions, our perturbation results display
good coincidence with the numerical results.
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Figure 1. Comparison between perturbation and numerical results for A =0.3, #£=2.1, 7=9 and £ =0.01 with the initial conditions @, =0.35, b, =0.15,

¢, =0.1, d, =042, h =045
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Figure 2. Comparison between perturbation and numerical results for A=0.3, #=2.4, 7=84 and £=0.01 with the initial conditions a, =0.3, b, =0.2,

¢, =0.05, d, =045, h, =035.
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Figure 3. Comparison between perturbation and numerical results for A =0.5, #£=2.5, 7=9 and £=0.01 with the initial condition a, =0.25, b, =0.15,

¢, =0.05, d, =0.5, h, =0.45.
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Figure 4. Comparison between perturbation and numerical results for A =0.7, ¢£=2.9, 7=9.5 and £ =0.01 with the initial conditions @, =0.3, b, =0.15,
¢, =0.1, d, =0.42, h, =045,
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Figure 5. Comparison between perturbation and numerical results for A =0.45, £ =2.4, 7=11 and £=0.01 with the initial conditions &, =0.35,

b, =020, ¢, =0.1, d, =0.40, h, =035.

5. Conclusion

In this paper, we modify and successfully apply the Krylov-
Bogoliubov-Mitropolskii (KBM) method, which is also
known as the most widely used perturbation method for
studying the transient behavior of nonlinear systems, to the
fifth order more critically damped nonlinear systems. All the
solutions here are obtained in such circumstances, where the
three eigenvalues are equal and other two are distinct with
respect to the fifth order more critically damped nonlinear
systems. It should be mentioned here that, generally,
inaccuracy occurs in the KBM method due to rapid changes
of x with respect to time ¢ However, in relation to the
different sets of initial conditions, all the above figures in the
time period t=0 to #=15 suggest that the perturbation

solutions obtained by the modified KBM method correspond
exactly to the numerical solutions. Further, it should be
mentioned here that, all the calculations and results in this
article have been computed through Mathematica 9.0.
Finally, the modified KBM method reveals highly accurate
results that may be applied for different kinds of nonlinear
differential systems where the small nonlinearity is present.
The method is, thus, not contingent on whether or not the
system has eigenvalues real, or complex conjugate, or pure
imaginary. It is, therefore, concluded that the method is not
dependent on the order of the system.
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