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1. Introduction 

The use of logistic regression model dates back to 1845. It 

first appeared during the mathematical studies for the 

population growth at that time, see [10]. The term logistic 

regression analysis comes from logit transformation, which is 

applied to the dependent variable. This case, at the same 

time, causes certain differences both in estimation and 

interpretation. Logistic regression analysis is also called 

“binary logistic regression analysis”, “multinomial logistic 

regression analysis” and “ordinal logistic regression 

analysis”, this depending on the scale type and the number of 

categories of the dependent variable. Logistic regression is 

divided into two: “univariate logistic regression” and 

“multivariate logistic regression”, see [22]. 

Logistic regression is widely used in many fields such as 

medical, business, economics, and so on. For example, in 

medical field suppose a patient has a disease (like HIV) 

based on the observed characteristics of patient (age, sex, 

various blood tests and urine tests). Another example, if you 

want to predict the election result for some national party or 

want to predict that whether voter will vote for congress or 

democratic party, based on the age, sex, income, caste, and 

many more characteristics, see [17]. 

Data related to confronted and researched cases in applied 

social sciences are mostly categorical (nominal) data with 

discrete value or data obtained by an ordinal scale. For 

instance, a man either works or unemployed; he is either a 

member of a group or not; the party in power is either from 

the right wing or the left wing; a student is either a graduate 

or not. In educational research, many problems relate with 

prediction of categorical results. For example, a student is 

either academically successful or not; he is either a slow 

learner or not; a teenager either has a tendency towards risky 

behavior or not. In literature of statistics, logistic or logit 

models are defined as regression models with categorical 

dependent variable. 

Often, the dataset that used in our analysis is incomplete 

(includes missing values) in independent and/or dependent 

variables. In statistical literature, missing data procedure has 

been regarded as a probabilistic phenomenon. Little and 

Rubin [14] treated the missing values in the dataset as a set of 

random variables having a joint probability distribution. He 

developed a typology of missing data which became widely 



80 Mohamed Reda Abonazel and Mohamed Gamal Ibrahim:  On Estimation Methods for Binary Logistic  

Regression Model with Missing Values 

practiced by researchers since then. The mechanisms consist 

of missing completely at random, missing at random, and 

missing not at random. These mechanisms define 

relationships between interesting variables and the likelihood 

of missing data. Each type of missing data dictates the 

performance of imputation techniques, see [1] and [9]. 

The researches that studying and handling the missing values 

in logistic regression models are very little until now, so this 

point still needs to more researches. Some of these 

researches; FitzGerald and Knuiman [7] examined a number 

of methods of handling missing outcomes in regressive 

logistic regression modelling of familial binary data. 

Consentino and Claeskens [4] derived explicit formulae for 

estimation in logistic regression models when some of the 

covariates are missing. Their approach allows for modelling 

the distribution of the missing covariates either as a 

multivariate normal or as a multivariate t-distribution. Sabbe 

et al [20] proposed an improved method that builds to handle 

missing data in both categorical and continuous predictors. 

Peng and Zhu [25] and Meeyai [24] compared several 

popular missing data handling methods in logistic regression 

model to study the performance of these methods in different 

situations. Maity et al [23] proposed a new method to 

improve the estimation of regression coefficients for this 

model. Their method based on penalizing the likelihood by 

multiplying it by a non-informative Jeffreys prior as a 

penalty term. They showed that this method reduces bias and 

is able to handle the issue of separation compared to the 

existing methods. 

The aim of this paper is to review and study the performance 

of some estimation methods for the binary logistic regression 

model with missing data in dependent and/or independent 

variables, and then determinate the appropriate estimation 

method in this model. 

The paper is organized as follows. Section 2 presents the 

model and maximum likelihood (ML) estimator. Section 3 

discusses the different methods to handle missing data. In 

section 4, an empirical study has been presented for assessing 

the performance of different estimation methods under the 

existence of missing data. Finally, section 5 offers the 

concluding remarks. 

2. Logistic Regression Models 

Logistic regression measures the relationship between the 

categorical dependent variable and one or more independent 

variables by estimating probabilities using a logistic function, 

which is the cumulative logistic distribution. Logistic 

regression can be seen as a special case of the generalized 

linear model (GLM) and thus similar to linear regression. In 

particular, the key differences between these two models can 

be seen in the following two features of logistic regression. 

First, the conditional distribution y | x is a Bernoulli 

distribution rather than a Gaussian distribution, because the 

dependent variable is binary. Second, the predicted values are 

probabilities and are therefore restricted to (0,1) through the 

logistic distribution function because logistic regression 

predicts the probability of particular outcomes. 

Since the independent variables in the model are categorical, 

or a mix of continuous and categorical while the dependent 

variable is categorical, so logistic regression analysis is 

necessary. Also, since the dependent variable is dichotomous 

one cannot predict a numerical value for it using logistic 

regression, so the usual regression least squares deviations 

criteria for best fit approach of minimizing error around the 

line of best fit is inappropriate. Instead, logistic regression 

employs binomial probability theory in which there are only 

two values to predict: that probability is 1 rather than 0, i.e. 

the event/person belongs to one group rather than the other. 

Logistic regression forms a best fitting equation or function 

using the ML method, which maximizes the probability of 

classifying the observed data into the appropriate category 

given the regression coefficients, see [3]. 

2.1. The Binary Model 

Generally, logistic regression is generally thought of as a 

method for modeling in situations for which there is a binary 

response variable and the predictor variables can be 

numerical or categorical (including binary). Also, logistic 

regression can be used when there are more than two possible 

outcomes for the response. But here the focus will be in the 

typical binary response version. Figure 1 shows the 

difference between linear regression and the binary logistic 

regression. 

 

Figure 1. Linear versus logistic regression. 

Letting � be the binary response variable, it is assumed that 

��� � 1� is possibly dependent on ��, a vector of predictor 

values. The goal is: 

����� � ��� � 1|���.                             (1) 

If the model ����� as a linear function of predictor variables, 
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e.g., 
�  + 
� x� + ⋯ + 
�  x� then the fitted model can result 

in estimated probabilities which are outside of [0,1]. What 

tends to work better is to it's called multiple logistic 

regression 

����� = 1 �1 + ����� ��� ���⋯��� ����⁄ .            (2) 

The outcome of the regression is not a prediction of a � 

value, as in linear regression, but a probability of belonging 

to one of two conditions of �, which can take on any value 

between 0 and 1 rather than just 0 and 1. Unfortunately a 

further mathematical transformation (a log transformation) is 

needed to normalize the distribution. This log transformation 

of the p values to a log distribution enables us to create a link 

with the normal regression equation. The log distribution (or 

logistic transformation of �) is also called the logit of � or 

!"#$% ���. &"#$% ��� is the log to base � of the odds ratio or 

likelihood ratio that the dependent variable is 1. In symbols it 

is defined as: 

&"#$% �"''(�  =  !"# ) *�+��
��*�+��, = !- ) *

��*,.          (3) 

Where p can only range from 0 to 1, logit (p) scale ranges 

from negative infinity to positive infinity and is symmetrical 

around the logit of 0.5 (which is zero). The form of the 

logistic regression equation is: 

&"#$% �"''(� = !- ) *
��*, = 
�  + 
� x� + ⋯ + 
�  x�. (4) 

This looks just like a linear regression and although logistic 

regression finds a ‘best fitting’ equation, just as linear 

regression does, the principles on which it does so are rather 

different. Instead of using a least-squared deviations criterion 

for the best fit, it uses a ML method, which maximizes the 

probability of getting the observed results given the fitted 

regression coefficients. A consequence of this is that the 

goodness of fit and overall significance statistics used in 

logistic regression is different from those used in linear 

regression. � can be calculated with the following formula 

� = .��� ��� /��⋯��� /�0 .1 + ��� ��� ���⋯��� ��01 , (5) 

where �  is the probability that a case is in a particular 

category, � is the base of natural logarithms (approx. = 2.72), 


2 is the constant of the equation, and 
3�4 = 1, 2, … , 7� are 

the coefficients of the predictor variables. 

2.2. Logistic Regression Assumptions 

1. Logistic regression does not assume a linear relationship 

between the dependent and independent variables. 

2. The dependent variable must be a dichotomy (2 

categories). 

3. The independent variables need not be interval, no 

normally distributed, no linearly related, no of equal 

variance within each group. 

4. The categories (groups) must be mutually exclusive and 

exhaustive; a case can only be in one group and every case 

must be a member of one of the groups. 

2.3. Logistic Transformation 

To achieve this, a regression is first performed with a 

transformed value of Y, called the “Logit function”: 

&"#$%�8� =  !- �"''(� =  
�  + 
� x� + ⋯ + 
� x�, (6) 

where “odds” refers to the odds of 8 being equal to 1. In 

other words, “odds” is defined as the probability of 

belonging to one group divided by the probability of 

belonging to the other: "''( =  �/ �1 − ��  → [0, ∞[. 
This means that the values of "''( are always positive. But 

the log �"''(�  are continuous: log �"''(� = ln ) B
��B, →

�−∞, ∞� . This equation can be rewritten in terms of 

probability p as: � =  "''(/�1 + "''(�. 

Table 1. "Logit" transformation of the probability. 

Measure Min Max Name 

P(Y = 1) 0 1 probability 
P�Y =  1�

1 − P�Y =  1� 0 ∞ odds 

Log E F�G H ��
��F�G H ��I −∞ ∞ log-odds or logit 

2.4. Maximum Likelihood Estimation 

Although you will probably use a statistical package to 

compute the estimates, here is a brief description of the 

underlying procedure. Because logistic regression predicts 

probabilities, rather than just classes, one can fit it using 

likelihood. For each training data-point, we have a vector of 

features, JK, and an observed class, �K. The probability of that 

class was either if �K =  1, or �1 −  �� if �K =  0.  The 

likelihood function for simple logistic regression is 

&�
2, 
�� = & = ∏ �� JK�PQRKH�  [1 −  ��JK�]��PQ . (7) 

The log-likelihood turns products into sums: 

log�&� = S �K

R

KH�
log ��JK� + �1 − �K� log[1 − ��JK�] 

= ∑ −log �1� + ���U�/Q��� +RKH� ∑ �KRKH� �
2 + JK
��. (8) 

Typically, to find the ML estimates we’d differentiate the log 

likelihood with respect to the parameters and set the 

derivatives equal to zero to get the estimates. Since this 

equation is nonlinear in 
, some special methods should be 

used in order to obtain the estimated parameters. The 

iteratively re-weighted least squares (IRLS) method can be 
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applied to get the solutions. The ML estimator of 
 can be 

obtained by using IRLS algorithm as follows: 


VWXY =  ��Z[\ �����Z[\ ]V,                       (9) 

where  [\ = '$^#_ àK.1 −  àK0b  and ĉK = log. àK0 + PQ� eaQ
eaQ��� eaQ� 

is the $fg element of the vector ]V . The hats in the equations 

show the iterative process. 

3. Incomplete Data 

To decide how to handle missing data, it is helpful to 

know why they are missing. There are three general 

missingness mechanisms, moving from the simplest to the 

most general. 

3.1. Missingness Mechanisms 

3.1.1. Missingness Completely at Random 

(MCAR) 

A variable is missing completely at random if the probability 

of missingness is the same for all units, for example, if each 

survey respondent decides whether to answer the “earnings” 

question by rolling a dice and refusing to answer if a “6” 

shows up. If data are missing completely at random, then 

throwing out cases with missing data does not bias your 

inferences, see [9]. 

3.1.2. Missingness at Random (MAR) 

Most missingness is not completely at random, as can be 

seen from the data themselves. For example, the different 

nonresponse rates for whites and blacks indicate that the 

“earnings” question in the Social Indicators Survey is not 

missing completely at random. A more general assumption, 

missing at random, is that the probability a variable is 

missing depends only on available information. Thus, if sex, 

race, education, and age are recorded for all the people in the 

survey, then “earnings” is missing at random if the 

probability of nonresponse to this question depends only on 

these other, fully recorded variables, see [9]. 

3.1.3. Missingness Not at Random (MNAR) 

Missingness is no longer “at random” if it depends on 

information that has not been recorded and this information 

also predicts the missing values. For example, suppose that 

“surly” people are less likely to respond to the earnings 

question, surliness is predictive of earnings, and “surliness” 

is unobserved. Or, suppose that people with college degrees 

are less likely to reveal their earnings, having a college 

degree is predictive of earnings, and there is also some 

nonresponse to the education question. Then, once again, 

earnings are not missing at random, see [9]. 

3.2. Estimation Methods for Incomplete 

Data 

3.2.1. Deletion-Based Methods: Listwise 

and Pairwise Deletion 

Listwise and pairwise deletion techniques are the most 

common techniques to handling missing data in regression 

models, see [19]. An important assumption to using either of 

these techniques is the data is MCAR. In other words, the 

researcher needs to support that the probability of missing data 

on their dependent variable is unrelated to other independent 

variables as well as the dependent variable itself. 

Listwise deletion technique (complete-case analysis) removes 

all data for a case that has one or more missing values. This 

technique is commonly used if the researcher is conducting a 

treatment study and wants to compare a completers analysis 

(listwise deletion) vs. an intent-to-treat analysis (includes cases 

with missing data imputed or taken into account via a 

algorithmic method) in a treatment design. In most other cases, 

it is often disadvantageous to use listwise deletion technique 

because the assumptions of MCAR are typically rare to 

support. Because of this, listwise deletion technique produces 

bias parameters and the estimates. 

Pairwise deletion technique (available-case analysis) attempts 

to minimize the loss that occurs in listwise deletion technique. 

An easy way to think of how pairwise deletion works is to 

think of a correlation matrix. A correlation measures the 

strength of the relationship between two variables. For each 

pair of variables for which data is available, the correlation 

coefficient will take that data into account. So, pairwise 

deletion technique maximizes all data available by an analysis 

by analysis basis. Strength to this technique is that it increases 

power in your analyses. Though this technique is typically 

preferred over listwise deletion, it also assumes that the 

missing data are MCAR. A disadvantage with the use of 

pairwise deletion is that the standard of errors computed by 

most software packages uses the average sample size across 

analyses. This tends to produced standard of errors that are 

underestimated or overestimated. Researchers have also 

associated pairwise deletion as a source for non-positive 

definite matrices in multivariate and contemporary statistical 

analyses, such as Structural Equation Modeling
1
, see [13]. 

3.2.2. Expectation-Maximization (EM) 

Algorithm 

A general approach to getting ML estimates with missing 

data (Two-step procedure): 

Step (1): Expectation (E): Finding the expected value of the 

log-likelihood for the observed data, based on current 

                                                             

1  For details about contemporary statistical analysis and structural equation 

modeling, see for example [2], [5], and [6].  
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parameter values. 

Step (2): Maximization (M): Maximizing the expected 

likelihood to get new parameter estimates. 

The EM algorithm has been a popular technique for 

obtaining ML estimators in GLMs with missing covariate 

data. A good book on the theory and applications of EM is 

[16]. Fuchs [8] used the EM algorithm to get ML estimators 

for log-linear models with incomplete data. Little and 

Schluchter [15] used the EM algorithm to obtain estimates in 

a regression model with ignorable missing categorical and 

continuous covariates. Schluchter and Jackson [21] used EM 

to find parameter estimates in log-linear models with 

ignorable missing covariate data. 

A general method for estimation in the presence of missing 

covariates has been proposed by Ibrahim [11], who used EM 

by the method of weights to find the ML estimators. Ibrahim’s 

method applies to any parametric regression model, including 

GLMs, nonlinear models, random-effects models, frailty 

models, and parametric and semi parametric survival models. 

3.2.3. Regression Imputation 

Regression imputation is useful for imputing continuous 

variables. If Y represents the continuous variable with missing 

values to be imputed and X represents a vector of predictor 

variables, then a linear regression model is fit (usually) by the 

method of ordinary least squares (OLS). All of the usual 

assumptions concerning OLS regression apply. The idea is to 

estimate the regression coefficients and the error variance for a 

regression model. The errors are assumed to be normally 

distributed so that the regression coefficients and the error 

variance have known statistical distributions. Imputations are 

generated on the basis of predictions generated by random 

draws from the statistical distributions for the coefficients and 

the sampling variance. One common issue with OLS 

regression is that “impossible” predictions are possible. 

For example, a regression for total hospital charges might 

produce imputations with negative values for some 

observations. This might not be of great concern if the 

objective is simply to estimate average charges over a large 

sample. The mean might still be unbiased. However, in the 

event that negative imputations are problematic, the analyst 

might choose to fit a log-linear model to ensure positive 

predictions. Other solutions replace negative values with 

“minimum” positive values. However, that procedure will 

most likely bias the estimates. For more details about these 

procedures, see [16]. 

4. Application 

In this section, a case study on a pharmaceutical firm that 

developed a particular drug for women has been presented. 

The aim is to understand the characteristics that cause some 

of them to have an adverse reaction to a particular drug. The 

data collected from 15 women who had such a reaction, and 

15 who did not. The independent variables that have been 

measured are: Systolic Blood Pressure (BP), Cholesterol 

Level, Age of the women (Age), Whether or not the woman 

was pregnant (1 = yes). While the dependent variable 

indicates if there was an adverse reaction (1 = yes). This data 

studied by [18]. 

4.1. Complete Data Analysis 

Some basic descriptive statistics and ML estimates of the 

model are given in the following tables: 

Table 2. Some descriptive statistics for the data. 

Variable Mean Std. Deviation Min Max 

Dependent     

Drug Reaction (y) .50 .509 0 1 

Independents     

BP 127.33 22.846 95 180 

Cholesterol 185.07 28.463 130 250 

Age 37.77 18.796 16 81 

Pregnant .50 .509 0 1 

Table 3. ML estimates of the model in case of complete data. 

Parameter Estimates 
Std. 

Error 
Exp (B) Wald 

P-

Value 

Intercept 17.874 10.1585 .000 3.096 .078 

BP .018 .0268 .982 .463 .496 

Cholesterol -.027 .0246 . 1.027 1.182 .277 

Age -.265 .1142 4918.147 5.404 .020 

Pregnant -8.501 3.8842 1.304 4.790 .029 

Table 3 shows that “Age” and “Pregnant” are statistically 

significant because the P-values for their variables less than 

0.05, while “BP” and “Cholesterol” are not significant. 

Moreover, the deviance R-Squared value is 37.87%. And the 

estimated equation of the model is: 

&"# �"''( "h 'ij# i�^k%$"-�
=  17.874 + .018 o` 
−  0.027 pℎ"!�(%�i"! 

− 0.265 t#� −  8.501 `i�#-^-%.     (10) 
To check the goodness-of-fit of the model, the following 

hypothesis must be testing: 

u2: The data are consistent with a specified distribution. 

Table 4. Goodness of Fit test. 

Goodness of Fit Value D. f Chi-Square P-Value 

Deviance 21.841 25 21.84 0.645 

Pearson chi sq. 20.010 25 20.01  

Table 4 shows that the P-value is large than 0.05, then the 

model is very suitable for data. 
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After doing the regression analysis on the complete data, the 

results indicated that the parameters of blood pressure and 

cholesterol are not significant, so it has no effect on Drug 

Reaction, because both blood pressure and cholesterol are 

increasing naturally in pregnant women according to the 

medical diagnosis, and thus it has no effect on drug reaction. 

But the other parameters of both age and pregnant are 

statistically significant, which means that it has a significant 

on drug reaction by the value of the estimated parameter. 

4.2. Incomplete Data Analysis 

Assuming that some of our data are missing by 

approximately 10% and then estimate these data and doing 

the same analysis. To estimate these missing values, EM and 

regression imputation methods have been used. To compare 

between these two methods, two criterions have been used; 

R-square and Akaki information criterion (AIC). The missing 

values in all variables have been generated as follows: 

A. Dependent variable. 

B. Independent variables. 

C. Dependent and independent variables together. 

After the missing values have been generated in the data by 

random, little’s [12] test has been used to check that missing 

data biased to MCAR. The null hypothesis for this test is: 

u2: Data is missing completely at random 

Table 5. Little's MCAR test. 

 
Dependent 

variable 

Independent 

variables 

Dependent and 

independent variables 

Chi-square 2.209 9.069 12.278 

P-value .530 .170 .056 

Note from Table 5 that all P-values more than 0.05 (Accept 

u2) for the three cases. This means that the missing data that 

generated is completely at random. 

4.3. Comparison Between Estimation 

Methods 

Table 6. Goodness of fit measures for estimation methods. 

Complete / Incomplete Estimation Method R-Square AIC 

I. Complete Data ML .643 31.84 

II. Incomplete Data    

a. Dependent variable 
EM .357 42.23 

Regression .683 29.98 

b. Independent variables 
EM .596 33.75 

Regression .690 29.72 

c. Dependent and 

independent variables 

EM .400 40.87 

Regression .566 34.98 

Table 6 shows that the regression imputation method has 

lower AIC and higher R-square than EM method. Moreover, 

the AIC and R-square values of regression imputation 

method are very close to ML method. So, we can conclude 

that, in our study, the regression imputation is the best 

method for estimating the missing values in this model. 

5. Conclusion 

This paper reviewed some estimation methods for the binary 

logistic regression model with missing data in dependent 

and/or independent variables. Moreover, we presented an 

empirical study for assessing the performance of different 

estimation methods under the existence of missing data. 

According to the results, it was found that the regression 

imputation is a very appropriate method for estimating the 

missing values in this model.  

In future work, the Monte Carlo simulation
 
study

2
 can be 

performed to compare the different estimation methods for 

missing values in different situations (a different samples sizes, 

a different number of independent variables, and so on). 
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