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Abstract 

In this paper a hybrid SARIMA-NARX neural network model was successfully developed, trained using 16 years data 

obtained from the Nigerian Meteorological Agency (NIMET) and tested by forecasting daily solar radiation time series in 

Makurdi. The intrinsic parameters of the model was optimized using the predetermined nonlinear dynamics of the 

meteorological data in order to get the right neural network configuration, save time and ensure accurate forecasts. The results 

of the model testing showed that, the model performed better and faster using the Levenberg-Marquardt training function with 

daily solar radiation successfully forecasted using minimum temperature and maximum temperature as exogenous variables. 

The daily solar radiation in Makurdi for the year 2016 was successfully predicted to validate the model using the hybrid model 

generating a RMSE value of 1.6475, correlation coefficient of 0.8782, MAE of 1.2042 and MAPE of 5.9695%. After validation, 

forecasts of daily solar radiation were then made for 2016 and 2017 with quite good accuracy recorded. It was also observed 

that the data trends were accurately predicted as a result of the SARIMA model adopted while the NARX model generated the 

nonlinear part of the time series with relatively fair but acceptable RMSE values which could be as a result of the poor 

correlation of the meteorological variables emanating from the presence of missing data and noise in the meteorological data 

used. 
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1. Introduction 

Weather forecasting is a complex exercise as a result of the 

chaotic nature of the weather [1] and climate change [2]. The 

fact that weather is a non-linear phenomenon, traditional 

regression methods used in forecasting are simply not 

suitable for the application due to the lack of nonlinear 

mapping ability. Chaos theory on the other hand when 

applied to artificial neural network (ANN) optimal structure 

brings out the dynamics of the system and thus improves the 

accuracy of the forecast as well as the performance of the 

network. Meteorologists today forecast the weather using a 

combination of numerical computer models, observations via 

satellite imaging, and a fore knowledge of previous trends 

and patterns to obtain reasonable and precise forecasts of up 

to several days in advance. These techniques are not readily 

available to all and sundry for application when required and 

so one has to rely on weather broadcasts on the mass media 

and from the internet. That notwithstanding, these forecast 

are restricted to only major towns and cities and are usually 

on a very short term. Hence the development of local 

numerical weather prediction techniques (models) that can 

give a short-term forecast of these meteorological variables 
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to an appreciable degree of accuracy will go a long way in 

solving this problem and enable Nigerians plan their future 

activities such as agriculture, transportation, renewable 

energy generation etc. better. 

Several hybrid models have been developed using neural 

networks to predict and forecast weather variables in the past. 

Masqood et al. [3] developed an ensemble of neural networks 

(MLP, ERN, RBF and HF) for weather forecasting in 

Southern Saskatchewan, Canada. In their proposed approach, 

weights are determined dynamically from the respective 

certainties of the network outputs. The more certain a 

network seems to be of its decision, the higher the weight. 

The data of temperature, wind speed and relative humidity 

were used to train and test the different models. Empirical 

results indicate that HFM was relatively less accurate and 

RBFN was relatively more reliable for the weather 

forecasting while the ensemble of neural networks produced 

the most accurate forecasts. Diaz-Robles et al. [4] created a 

novel hybrid model combining ARIMAX and ANN to 

improve forecast accuracy for an area with limited air quality 

in Temuco, Chile, where residential wood burning is a major 

pollution source during cold winters, using surface 

meteorological data and PM10 (particulate matter with 

aerodynamic diameter 10 µm) as input measurements. 

Results obtained indicated that the hybrid model was able to 

capture 100% and 80% of alert and pre-emergency episodes 

respectively, and their approach illustrated the potential of 

hybrid neural network modeling in air quality forecasting in 

other cities and countries but did not consider the chaos 

dynamics of the systems modelled hence it failed to properly 

optimize the model parameters. Unsihuay-Vila et al. [5] 

proposed a new hybrid approach based on nonlinear chaotic 

dynamics and evolutionary strategy to forecast electricity 

loads and prices. A hybrid approach combined nonlinear 

chaotic dynamics and evolutionary strategy techniques such 

as ARIMA, ANN to achieve short-term load and day-ahead 

electricity price forecasting in New England, Alberta, Spain. 

Their ideology was to develop a new training or 

identification module to a nonlinear chaotic dynamic based 

predictor-PREDICT2-ES, in such a way that the time series 

modeling and forecasting are greatly improved. Their results 

show that the proposed PREDICT2-ES is capable of 

effectively capturing the complex dynamics of chaotic time 

series, since in real time series, this dynamic complex is 

unknown and due to its running on-line manner, the search 

for the optimal parameters and prediction is executed 

automatically thus providing a more accurate and effective 

forecasting than ARIMA and ANN methods. 

Caiado [6] examined the daily water demand forecasting 

performance of combined double seasonal univariate time 

series models (Holt-Winters, ARIMA and GARCH) based on 

multi-step ahead forecast mean squared errors. The empirical 

results obtained from the optimal combination of forecasts 

can be quite useful especially for short-term forecasting. 

However, the forecasting performance of this approach is not 

consistent over the seven days of the week. Di Piazza et al. 

[7] in their work, applied Artificial Neural Networks (ANNs) 

to the field of wind power generation. Two dynamic recurrent 

ANNs; the focused time-delay neural network (FTDNN) and 

the nonlinear autoregressive network with exogenous inputs 

(NARX), were used to develop a model for the estimate and 

forecast of daily wind speed. The daily wind speed and the 

daily maximum and minimum temperature in the period 

between 2010 and 2012 registered on Palermo weather 

station, in the northeast of Sicily, were used as dataset to train 

the ANNs. The ANNs-based models were experimentally 

validated and they both showed good performance since 

reliable and precise representations of daily wind speed were 

obtained. Cadenas et al. [8] compared two multistep ahead 

wind speed forecasting models. Firstly, a univariate model 

was developed using ARIMA and secondly, a multivariate 

model developed using a nonlinear autoregressive exogenous 

artificial neural network (NARX) was developed. The NARX 

model used the variables: barometric pressure, air 

temperature, wind direction, solar radiation, relative 

humidity, as well as delayed wind speed. It was observed that 

the NARX model produced more accurate results with 

adequate improvements on the ARIMA model of between 

5.5% and 10.6% for the hourly database and of between 

2.3% and 12.8% for the ten minute database in terms of the 

mean absolute error and mean squared errors respectively. 

Hence, this research is aimed at developing a hybrid model 

for carrying out multistep ahead forecasting of 

meteorological variables using autoregressive integrated 

moving average (ARIMA) and artificial neural network 

(ANN) optimized by chaos theory. 

2. Theoretical Concepts 

2.1. Nonlinear Autoregressive Neural 
Network with Exogenous Inputs (NARX) 

Artificial neural network (ANN) is a type of artificial 

intelligence technique that mimics the behavior of the human 

brain and resembles the brain in two respects: ANN models 

can recognize trends, patterns, and learn from their 

interactions with the environment [9]. The nonlinear 

autoregressive network with exogenous inputs (NARX) is a 

recurrent dynamic network, which has feedback connections 

covering several layers of the network. The model equation 

for the NARX model is [10]: 
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Where �	

  and �	

  are real valued and denote 

respectively, the input and output regressors of the model at 

time step 
 , while ��  ≥  1 and ��  ≥  1, ��  ≤  ��,  are the 

input and output delays, respectively. Equation (47) can be 

simplified as: 

�(
 +  1)  =  � [�(
);  �(
)]                       (2) 

The nonlinear mapping �[∙] is generally unknown and can be 

approximated, using a feed forward multilayer perceptron 

(MLP) network, with the next value of the dependent output 

signal �(
 + 1) is regressed from the preceding values of the 

output signal and preceding values of an independent 

(exogenous) input signal [11]. NARX network can be used to 

predict the next value of the input signal, as a nonlinear filter, 

in which the target output is a noise-free version of the input 

signal and in the modeling of chaotic systems like weather 

parameters [12]. However, in terms of forecasting, NARX 

can only produce a one step ahead forecast, hence the desire 

to obtain multistep ahead forecast of time series data remains 

a great challenge [13]. 

2.2. Autoregressive Integrated Moving 

Average (ARIMA) Models 

ARIMA is a data fitting tool developed as a systematic way 

of predicting and forecasting business and economic time 

series [14]. The acronym AR-I-MA encompasses: lags of the 

stationarized series called “autoregressive” (AR: p) terms, a 

series which needs to be differenced to be made stationary, 

i.e. an “integrated” (I: D) series, and lags of the forecast 

errors called “moving average” (MA: q) terms [15]. In most 

cases, forecasting models for time series requires that the 

data be ‘stationarized’ using transformations such as 

differencing, logging, and deflating techniques. A time series 

is stationary if all of its statistical properties—mean, 

variance, autocorrelations, etc. are constant in time. Thus, it 

has no trend, no heteroscedasticity (sub-populations with 

different variabilities from others) and a constant degree of 

wiggliness i.e. small variations [15]. The ARIMA (p,d,q) is 

expressed mathematically in a linear equation as [4]: 

�! = ∑ #$�!%$ + & + ∑ '()!%$ + *!+
(,-

.
$,-                                                                     (3) 

where #$ is the i-th autoregressive parameter, θj is the j-th moving average parameter, & is the mean of the series and /! is the 

error term at time t. Equation (3) is usually generalized in the form: 

0! = '1 + #-0!%- + #20!%2 +∙∙∙ +#.0!%. +  & − '-)!%- − '2)!%2 −∙∙∙ −'+)!%+ + *!                       (4) 

Where 3  is the number of autoregressive terms, 0!  is the 

forecasted output, 0!%.  is the observation at time  4. , 

and #-, #2, … , #. is a finite set of parameters determined by 

linear regression. Also 5  is the number of the moving 

average terms, '-, '2, … , '+  are the finite weights or 

parameters set and '1 is the intercept or ‘constant term’ while 

*!  is the error associated with the regression (residuals or 

white noise process). 

In this work a multiplicative seasonal ARIMA model 

(SARIMA) was adopted. This method predicts both the trend 

and seasonality of the input data. The SARIMA model is 

denoted by: 6789:7(3, �, 5) × (<, =, >)? and can be 

expressed as [16]: 

#.(@)Φ.(@?)∇C∇?D0! = '+(@)ΘF(@?)*!            (5) 

Where; 

AR: #.(@) = 1 − #-@ − #2@2 − ⋯ −#.@.           (6) 

SAR: ΦH(@?) = 1 − Φ-,?@? − Φ2,?@2? − ⋯ − Φ.,?@H?  (7) 

Difference operator: 

∇C= (1 − @)C                                 (8) 

Seasonal difference operator: 

∇?D= (1 − @?)D                                 (9) 

MA: 

'(@) = 1 − '-@ − '2@2 − ⋯ − '+@+                 (10) 

SMA: 

Θ(@?) = 1 − Θ-,?@? − Θ2,?@2? − ⋯ − ΘF,?@F?        (11) 

The parameter 6 is the seasonality of the time series. It was 

evaluated by taking the inverse of the dominant (peak) 

frequency of the fast Fourier transform (power spectrum) of 

the time series [17]. 

3. Methodology 

3.1. The Study Area and Data Source 

Makurdi is located in Benue State in the north-central region 

of Nigeria with geographical coordinates 

7°43M50PQ 8°32M10PT. It is blessed with a beautiful humid 

Guinea Savannah vegetation type with abundant sunshine 

which if properly harnessed could help alleviate the power 
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needs of the people in the state [18]. Hence there is the need 

for an appropriate planning and estimation of the potentials 

of this great free renewable energy resource so as to create 

awareness on the possibility of harnessing it to help solve 

Nigeria’s power challenges. On this basis the application of a 

suitable neural network model to the field of solar power 

generation is presented. The secondary weather data for 

Makurdi covering sixteen years (2000-2015) was collected 

from the Nigerian Meteorological Agency (NIMET), Abuja. 

The data set includes: rainfall (mm), solar radiation (MJm
-

2
day

-1
), minimum temperature (°C) and maximum 

temperature (°C). The data was divided into three sets, the 

training set corresponding to 70% of the data, the target set, 

corresponding to 15% of the data and the testing/validation 

set, corresponding to 15% of the data. 

3.2. NARX Model Design 

Designing NARX models requires that one must follow a 

number of systemic procedures. The six basics steps 

followed in predicting with NARX in this work include: 

i. Pre-processing of data: This involves sorting of missing 

data and smoothening using cubic spline interpolation 

[19] and designation of input/target variables using 

correlation analysis. 

ii. Building the network: In building the network, some key 

parameters required to build a suitable network were 

specified. These include choosing: the network name, the 

number of hidden layers, neurons in each layer, the 

number of time delay lines, transfer function in each 

layer, training function, weight and bias learning function, 

data division function and performance function. A 

feedforward network was created using‘narxnet’ which 

uses the tan-sigmoid transfer function as default and 

linear transfer function in the output layer. The narxnet 

created has two inputs: the external input U	4
 and the 

feedback connection from the network output. Each of 

these inputs has a tapped delay line to store previous 

values. The number of time delay lines in the NARX 

network was chosen as the time delay of the data set 

which was obtained by applying the method of average 

mutual information, AMI [20]. The hyperbolic tangent 

sigmoid (tan-sig) was used as the transfer function to 

carry data across the hidden layers via the neurons. In this 

work two hidden layers were used in addition to the input 

and output layers. This is in accordance with Takens’ 

embedding theorem [21]. In determining the number of 

neurons in each hidden layer, chaos theory was used to 

optimize the number of hidden neurons in the 1
st
 and 2

nd
 

hidden layers ( QV,-W
� QV,2 ) by using the expression 

[11]: 

QV,- = 2X + 1, QV,2 = YZ�
�([QV,-)             (12) 

X  is the embedding dimension of the target data obtained 

using the method of false nearest neighbors, FNN [22]. 

Similarly, the Levenberg-Marquardt and Bayesian 

regularization training functions were both separately 

deployed to optimize the network training. 

iii. Preparing the data for training: in training the network 

with tapped delay lines, it is crucial to fill delays with 

initial values of the inputs and outputs of the network. In 

MATLAB, the ‘preparets’ function was used to facilitate 

this process. Preparets has three input arguments: the 

network, input series and target series, and returns the 

initial conditions needed to fill the tapped delay lines in 

the network and the modified input and target series. The 

function was implemented in MATLAB as follows: 

[inputs, inputStates, layerStates, targets] = preparets (net, inputSeries,{}, targetseries)                       (13) 

iv. Training the network: during the training process, the 

weights were adjusted systematically until the predicted 

output generated is close to the target (measured) output 

of the network. The comparison of the output signal with 

the desired response or target output consequently 

produced an error signal. In each step of iterative process, 

the error signal activates a control mechanism which 

applies a sequence of corrective adjustments of the 

weights and biases of the neuron via the weight/bias 

learning functions with the learngdm function applied. 

These corrective adjustments continued until the training 

data attained the desired mapping to obtain the target 

output as closely as possible. After a series of iterations 

(also called training epochs) the neural network was 

successfully trained and the weights were saved. 

v. Testing and validation of the model performance: 

Performance evaluation functions are statistical tools used 

to test the accuracy of the network training by testing the 

variation between the actual and predicted output data 

sets. The functions used in the NARX training in this 

research are listed in Table 1 [7, 23]: 

Table 1. Neural Network Performance Functions. 

Function Name Algorithm 

MSE Mean squared error 
-
\ ∑ ��](^) − �.(^)�2\$,-   

RMSE Root mean squared error _-
\ ∑ ��](^) − �.(^)�2\$,-   

MAE Mean absolute error 
-
\ ∑ `�](^) − �.(^)`\$,-   

MAPE 
Mean absolute percentage 
error 

-
\ ∑ a�b($)%�c($)

�b($) a × 100%\$,-   

Where ya is the observed output and yp is the predicted output. 
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The root mean square error was employed in this research as 

it is the most preferred performance function in neural 

network training because it evaluates the performance of the 

network according to the mean squared deviations between 

the target and the predicted output. Other measures of 

accuracy used to evaluate the performance of the hybrid 

SARIMA-NARX model in this work are listed in Table 2 [4, 

24]: 

Table 2. Additional Evaluation Parameters. 

Parameter Mathematical formulation Description 

Pearson’s correlation 

coefficient, e 

\ ∑ f�%	∑ f
	∑ �

_\	∑ fg
%	∑ f
g _\(∑ �g)%(∑ �)g  Measures relationship between two data sets. 

Schwarz-Bayesian 

information criterion, 

hijk 


 log(66T) + X log 
  

66T =sum squared errors, 
 =number of data 

points, X = number of parameters in the model 

Measures the goodness-of-fit of the model and also penalizes the 

number of model parameters. 

Ljung-Box (Chi- squared) 

Q-test, Q 

o(o + 2) ∑ p(q)g
(r%q)

sq,-   

T=sample size, L=no. of autocorrelation lags, 

t(u)=sample autocorrelation at lag k 

Assesses the null hypothesis that a series of residuals exhibits no 
autocorrelation for a fixed number of lags L, against the alternative 

that some autocorrelation coefficient ρ (k), k = 1, 2,..., L, is nonzero. 

 

In order to improve the accuracy of training and avoid over 

fitting, multiple networks were trained to fit the given data 

set. This method lead to the constitution of an ensemble-

based NARX framework which involves generating multiple 

possible realizations of models which fit the training data by 

training different configurations in the neighborhood of a 

given configuration of hidden layer nodes a given number of 

times and using a weighted averaging method to combine all 

component models in the ensemble in order to conduct an 

out-of-sample multi-step-ahead forecasting of the output. The 

weighted average output was obtained from the equation [6, 

25]: 

�(4) =  -
v ∑ w$�$v$,- (t)                       (14) 

Where N is the number of NARX networks trained, w$  is the 

error weight (MSE or SSE) of each model in the ensemble 

and �$(4) is the output prediction of each model trained in the 

ensemble. 

3.3. SARIMA Models Design 

The Box-Jenkins ARIMA method basically involves a three-

step algorithm which involves [5]: 

i. Model identification: ARIMA model identification 

methods used in this work involves determining suitable 

values for parameters p and q and determining the degree 

of differencing, d, to obtain stationarity. In this work, the 

unit root test and the Schwarz-Bayesian information 

criterion (SBIC) method was used to determine the 

optimal values of the model parameters; p, d, q. The 

model with the least SBIC value was adopted and used. 

After this a 6789:7(3, �, 5) × (<, =, >)?  model is 

defined with the seasonality set at 365 days for daily data. 

ii. Parameter estimation: After identifying the most suitable 

model to adopt, its parameters were estimated using the 

maximum likelihood and conditional least squares 

methods. 

iii. Diagnostic checking and forecasting: After identifying the 

model and estimating its parameters, the forecast was 

carried out and diagnostic checks were used to reveal its 

inadequacies and suitable improvements are indicated. 

Residuals and their autocorrelations were also inspected. 

If the model is a good fit to the data, then the residuals 

would correspond to white noise, have very little 

autocorrelation and will all fall within the 95% 

confidence interval. 

3.4. The Hybrid SARIMA-NARX Model 

The hybrid model in this study is based on the hybrid model 

designed by Diaz-Robles et al. [4] to capture different 

patterns in the air quality data and Caiado [6] to forecast 

water demand. The methodology of their model consisted of 

an ARIMA model to forecast the Max PM10 ma and an ANN 

model was developed to describe the residuals from the 

ARIMA model. But in this work, a multiplicative seasonal 

ARIMA model was used in capturing the linear pattern 

(trend) and seasonality of the forecasted solar radiation time 

series while a NARX model was designed to captures the 

non-linear patterns of the time series such as noise and 

extreme values with the network training parameters 

optimized using chaos theory to save time and computational 

costs. That is to say in this hybrid model, the output of the 

ARIMA forecast is inputted into the NARX network created 

from the historical data with exogenous input so as to 

generate the nonlinear part of the final output and obtain a 

more accurate output and longer forecast than that obtained 

by previous designers. A flow chart showing details of the 

Hybrid model is illustrated in Figure 1: 
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Figure 1. Flow chart of the SARIMA-NARX-Chaos model. 

4. Results and Discussion 

4.1. NARX Model Selection 

Table 3. Correlation analysis of the meteorological variables for Makurdi from 2000 to 2015. 

Parameters Solar radiation Rainfall Minimum temperature Maximum temperature 

Solar radiation 1.0000 -0.2628 -0.5743 0.2942 

Rainfall -0.2628 1.0000 0.1154 -0.1108 

Minimum temperature -0.5743 0.1154 1.0000 0.5919 

Maximum temperature 0.2942 -0.1108 0.5919 1.0000 

Based on the correlation analysis of the different variables displayed in Table 3, the model in Figure 2 was developed for the 

prediction and forecasting of solar radiation in Makurdi using the hybrid model with minimum and maximum temperature 

selected as exogenous input parameters. 

 

Figure 2. NARX model (series-parallel architecture) design for solar radiation prediction. 

In order to optimize the number of time delay lines, hidden 

neurons and hidden layer sizes, the tenets of chaos theory 

was utilized. Under this technique, the takens embedding 

theory was applied as explained in equation (12). The time 

delay and embedding dimension for the daily solar radiation 

time series training data from 2000 to 2015 were estimated 

using the methods of AMI and FNN and the result is 

displayed in Figure 3. 
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(a) 

 

(b) 

Figure 3. Estimation of NARX network Parameters for daily solar radiation prediction; (a.) time delay, τ = 14 days, (b.) embedding dimension, m = 7. This 

result indicates the number of neurons in the first and second hidden layers are in the neighborhood of 15 and 4 respectively. 

4.2. SARIMA Model Selection 

For the different input and target parameters, the SBIC 

method was used to evaluate and optimize the seasonal (AR: 

p and MA: q) and non-seasonal model parameters (SAR:P 

and SMA:Q). In this case, the model fit statistic considers the 

goodness-of-fit and parsimony; i.e. the simplest model with 

the least assumptions/variables, minimum SBIC and greatest 

loglikelihood selected. The degree of differencing, d was 

determined using the unit root test. The seasonality of the 

model is set at S=365 for daily data since there are 365 days 

in a year. Table 4 shows a summary result of the ARIMA (p, 

d, q)×(P, D, Q)S models selected while Table 5 shows the 

SARIMA parameters estimated with their performance in 

forecasting of the different meteorological variables using 

fifteen years daily average data from 2000-2014. Figure 4 

shows the result of the residual analysis for daily solar 

radiation in Makurdi in the year 2015 using the selected 

SARIMA models. 

Table 4. ARIMA Model Parameters for 15 Year Data of the Meteorological Variables and their Performance. 

Parameter 
AR, SAR 

term (p, P) 

Degree of 

differencing 

(d, D) 

MA, SMA 

term (q, Q) 
Seasonal ARIMA model Constant MSE RMSE R 

Solar radiation 2 0 2 ARIMA (2,0,2)x(2,0,2)365 0 6.3010 2.5102 0.7266 

Minimum temperature 2 0 2 ARIMA (2,0,2)x(2,0,2)365 0 7.3042 2.7026 0.8091 

Maximum temperature 2 0 2 ARIMA (2,0,2)x(2,0,2)365 0 10.1882 3.1919 0.6849 
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Table 5. ARIMA (2,0,2)x(2,0,2)365 Model Parameters Seasonally Integrated with Seasonal AR(2) and MA(2); Conditional Probability Distribution: Gaussian. 

Parameter Value Standard error t-Statistic 

Constant 0 Fixed Fixed 

AR{2} 0.969531 0.0107061 90.5587 

SAR{2} 0.481775 0.0549366 8.76965 

MA{2} -0.938522 0.017753 -52.8655 

SMA{2} -0.251626 0.0538433 -4.67331 

Variance 7.79296 0.113311 68.7753 

:6T = 6.30102 

8:6T = 2.51018 

8 = 0.72657 

= = 0.52791 

 

(a) 

 

(b) 

Figure 4. (a.) Quartile-Quartile plot of sample data versus standard normal for daily solar radiation SARIMA forecast, (b.) Error autocorrelation and partial 

autocorrelation of SARIMA forecasted daily solar radiation for 2015. 
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The Ljung-Box Q-test result in Figure 4 (b) shows the sample 

ACF and PACF results; with the null hypothesis that all 

autocorrelations are jointly equal to zero up to the tested lag 

is rejected (h = 1) for the three lags as the residuals are 

uncorrelated and cut off from the 5% level of significance. 

4.3. Hybrid ARIMA-NARX Model Results 

The results of the performance of the SARIMA-NARX 

hybrid model training for daily solar radiation forecast for 

Makurdi in 2015 using the Levenberg-Marquardt and 

Bayesian regularization training functions and evaluated in 

terms of the root-mean-square error and correlation 

coefficient of the target and output are displayed in Tables 6 

and 7. Similarly, Figure 5 and 8 show the ARIMA output, 

NARX network predictions and observed data plotted on the 

same axis while Figure 6 and 8 show the error 

autocorrelations and the output regressions of the best 

performing configurations of the different hybrid models 

using the two different training functions respectively. 

 

Figure 5. Forecast plot of daily solar radiation in Makurdi for 2015 using Levenberg-Marquardt training function with an ensemble of 10 NARX networks in 

the neighborhood of the optimized 15-4-1 neuron configuration and 13 TDL. 
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(b) 

Figure 6. Performance evaluation of the daily solar radiation forecast for Makurdi in 2015 using Levenberg-Marquardt training function; (a.) Autocorrelation 

of errors (residuals), (b.) Correlation and regression of target and forecast series. 

Table 6. Hybrid Arima-Narx Model Selection for Daily Solar Radiation Prediction for Makurdi using the Levenberg-Marquardt (‘Trainlm’) Training Function. 

|  }~,{  }~,�  

No. of time delay lines (TDL) 

13 14 15 

e�h�  e  e�h�  e  RMSE e  

6 13 4 1.6575 0.8797 1.6554 0.8761 1.6714 0.8773 

7 15 4 1.6475 0.8782 1.6641 0.8787 1.6541 0.8784 
8 17 4 1.6583 0.8791 1.6656 0.8807 1.6784 0.8797 

Table 7. Hybrid SARIMA-NARX model selection for daily solar radiation prediction for Makurdi using the Bayesian regularization (‘trainbr’) training 

function. 

|  }~,{  }~,�  

No. of time delay lines (TDL) 

13 14 15 

e�h�  e  e�h�  e  RMSE  e  

6 13 4 1.6651 0.8690 1.6628 0.8692 1.6563 0.8645 
7 15 4 1.6676 0.8686 1.6644 0.8682 1.6598 0.8680 

8 17 4 1.6602 0.8676 1.6618 0.8695 1.6668 0.8683 

 

Figure 7. Forecast Plot of Daily Solar Radiation in Makurdi for 2015 using Bayesian Regularization Training Function with 15-4-1 Neuron Configuration and 

15 TDL. 
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(a) 

 

(b) 

Figure 8. Evaluation of daily solar radiation forecast for Makurdi in 2015 using Bayesian regularization training function; (a.) autocorrelation of error, (b) 

correlation and regression of target and forecast series. 

4.4. Summary of Forecast Results 

A summary of the results of the performance of the SARIMA-NARX-Chaos model for daily solar radiation forecast in 

Makurdi for 2015 is displayed in Table 8. 

Table 8. Summary of SARIMA-NARX forecast results. 

Method (sampling rate) training 

function 

Evaluation parameters 

MSE RMSE R MAE MAPE (%) 

ARIMA (daily) 6.3010 2.5102 0.7266 1.7921 8.0024 

NARX (daily) �| 2.7143 1.6475 0.8782 1.2042 5.9695 

NARX (daily) �� 2.7549 1.6598 0.8680 1.2346 6.0470 
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Thus it is clear to see that the NARX hybridization of 

SARIMA forecast greatly improves the output by decreasing 

the :7<T by about 2%. This is as a result of the non-linear 

nature of the multivariate NARX model which incorporates 

chaos dynamics in its architecture. It is also worthy to note 

that the Levenberg-Marquardt ( �X ) training function 

outperforms the Bayesian-regularization ( �Y ) training 

function in this model in terms of processing speed and 

accuracy of results. Hence, it is highly recommended for 

modeling tasks of this sort. 

 

 

4.5. Daily Solar Radiation Forecasts for 
2016 and 2017 

The hybrid SARIMA-NARX-Chaos model was used to 

forecast the daily solar radiation for 2016 by inputting sixteen 

years training data (2000-2015) into the model and simulating 

the solar radiation values 365 days ahead to obtain the values 

for 2016. The forecasted 2016 data was added to the input data 

and then stored. The process was again repeated using training 

data from 2000-2016 and the solar radiation values for 2017 

obtained. Figure 9 is a plot of the input data (2000-2015) and 

the forecasted values (2016 and 2017). 

 

Figure 9. Daily solar radiation forecasts for 2016 and 2017 for Makurdi. 

5. Conclusion 

A hybrid SARIMA-NARX-Chaos neural network model was 

successfully developed, trained and tested for the prediction 

of daily solar radiation in Makurdi. The intrinsic parameters 

of these models were optimized using the predetermined 

chaos dynamics of the meteorological data. Results of the 

model validation shows that, the models perform better using 

the Levenberg-Marquardt training function predicting solar 

radiation successfully using minimum temperature and 

maximum temperature as exogenous variables within a 

8:6T of 1.6475, correlation coefficient of 0.8782, :7T of 

1.2042 and :7<T  of 5.9695% for the a 365 day ahead 

forecast in 2015. Even though the trends were accurately 

forecasted, the relatively fair but acceptable 8:6T  values 

obtained are as a result of the poor correlation of the 

meteorological variables as shown in Table 4 which could be 

as a result of large number of missing data and white noise in 

the meteorological data which may have arisen from faulty 

equipment or human error/neglect in measurement. 
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