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1. Introduction 

Frequently, the properties of statistical and econometric 

models cannot easily be developed through statistical and 

econometric theories alone, due to complexity or gaps in 

understanding, necessitating the use of empirical methods. 

How do we empirically study a theoretical model? Well we 

have to find an actual instance of it that is conducive to study. 

But this is usually an impossible proposition. So, Monte 

Carlo simulation (MCS) techniques have been used to 

generate data indistinguishable from data collected from 

actual phenomena that adhered to the specifications of our 

model. MCS techniques are thus uniquely suited to 

empirically studying the properties of theoretical models and 

this is how they're most often used (See [14]). 

Historically, MCS method proved to be successful and was 

an important instrument in the Manhattan Project of World 

War II. After the war, the method was continually in use and 

became a prominent tool in the development of the hydrogen 

bomb. The Rand Corporation and the U.S. Air Force were 

two of the top organizations that were funding and 

circulating information on the use of MCS method (See [25]). 

Now it is used routinely in many different fields such as 

business, engineering, science and finance. This paper 

focuses on the usage of MCS techniques in statistics and 

econometrics.
1
 

We can summarize the general advantages or goals of MCS 

techniques in the following four points: First, evaluate the 

performance of an inference method. Second, evaluate the 

robustness of parametric inference to assumption violations. 

Third, compare the statistical properties of different 

estimators. Finally, make inferences when weak statistical 

theory exists for an estimator. 

Mooney [19] presented the general methodology of MCS, 

which mentions in most statistical literature, in the following 

five steps: 

Step 1: Specify the pseudo-population in symbolic terms in 

                                                             

1 For more details about MCS methods that used in statistics and econometrics, 

see, e.g., [9], [7], [25], [13], [22], and [3]. 
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such a way that it can be used to generate samples by writing 

a code to generate data in a specific method. 

Step 2: Sample from the pseudo-population in ways that 

show the topic of interest. 

Step 3: Estimate the parameter using a pseudo-sample and 

store it in a vector. 

Step 4: Repeat steps 2 and 3 L-times where L is the number 

of trials. 

Step 5: Construct a relative frequency distribution of 

resulting values which is a Monte Carlo estimate of the 

sampling distribution of under the conditions specified by the 

pseudo-population and the sampling procedures. 

The above algorithm is commonly used in most books and 

paper that discuss the methodology of MCS because it 

summarizes the basic steps to create MCS study. However, 

this algorithm has not provided to the researcher sufficient 

details about how to conduct each step in this algorithm. 

Moreover, it not contains important assumptions about the 

population, sample, model, and estimation method. While 

that these assumptions are very effective on the performance 

of MCS. Therefore, we will propose a comprehensive 

algorithm to create a professional MCS study using R-

language (one of the best programming languages). 

This paper is organized as follows. Section 2 provides the 

proposed algorithm. Section 3 presents two empirical 

examples in econometrics as applications on our algorithm. 

In Section 4, the graphical presentation methods for 

simulation results have been discussed. Finally, Section 5 

offers the concluding remarks. 

2. The Proposed Algorithm: 
The Full Steps to Create a 

MCS Study 

In this section, we provide a complete algorithm of MCS 

study. We explain our algorithm through an application in 

regression framework, especially; we will use Monte Carlo 

technique to prove that ordinary least squares (OLS) 

estimator of classical linear regression (CLR) model is 

unbiased and efficient. Our algorithm contents five main 

stages as follows: 

Stage one: Planning for the study 

In this stage, we should put the plan for our simulation study; 

this plane contains two important subjects: First, specify our 

goals of the study (in our example the goal is: prove that 

OLS estimators of CLR model is unbiased and efficient). 

Second, studying and understanding the model that will use 

in the study. (Study the theoretical framework of CLR model). 

The CLR model is given as: 

� = �� + �                                  (1) 

where �  is � × 1  dependent variable vector, �  is � × 
 

independent variables matrix, �  is 
 × 1  unknown 

parameters vector, and � is � × 1 error term vector. 

Assumptions: 

A1.1: ���
 = 0, �����
 = �����. 
A1.2: � is non-stochastic matrix and �����, �
 = 0. 
A1.3: � is full column rank matrix, i.e., ���
��
 = 
. 

The OLS estimator of � is given as: 

���� = ����
!"���                              (2) 

Specify the simulation controls (sample size (n), number of 

the independent variables (
 − 1), standard deviation of the 

error term (�� ), theoretical assumptions of CLR model (A1 to 

A3 above), and so on). 

Specify the criteria that will calculate in the simulation study 

(Bias and variance of OLS estimators, that are given as): 

$%�&'���� ( = ���� − �;                         (3) 

���'���� ( = �������
!".                      (4) 

We would like to point out here that the simulation criteria, 

in all MCS studies, are divided into two types; theoretical 

and empirical criteria. The theoretical criteria are defined as 

the measures that proved theoretically, for example, the 

formula of the variance of OLS estimator that given in 

equation (4). While the empirical criteria are defined as the 

measures that not proved theoretically and have been 

concluded from a simulated data and they based on the true 

parameters of population, for example, the formula of the 

bias of OLS estimator that given in equation (3), despite the 

fact that the OLS estimator is theoretically unbiased.
2
 

Stage two: Building the model 

We can build our model by generate all simulation controls. 

In this stage, we must follow the following steps by order: 

Step 1: Suppose any values as true values of the parameters 

vector �. 

Step 2: Choose the sample size n. 

Step 3: Generate the random values of the error vector � 

under the model assumptions. 

Step 4: Generate the fixed values of the independent 

variables matrix X under A1.2 and A1.3. 

                                                             

2  The empirical criteria are commonly used in recent studies that discuss 

advanced models, see, e.g., [1], [4], [29], and [28]. 
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Step 5: Calculate the values of dependent variable � using 

the regression equation, since �, �, and � are known. 

Stage three: The treatment 

Once we obtain Y vector plus X matrix, thus we successes to 

build our model under the specified assumptions. Now, we 

ready to make the treatment that is specified in planning 

stage. The treatment is exactly correlated with goals of our 

study. In our example, the treatment is estimating the 

parameters by OLS method, and proving that OLS estimator 

is unbiased and efficient. We can summarize this stage in the 

following steps: 

Step 1: Regress Y on X using equation (2), then obtain OLS 

estimations ���� " . 

Step 2: Calculate the criteria that are specified in planning 

stage. Then we calculate $%�&'���� " (  and ���'���� " (  using 

equations (3) and (4), respectively. 

Stage four: The Replications 

Once you have completed the treatment stage, we obtain the 

values of bias and variance for only one experiment (one 

sample). However, we cannot rely upon these values only. So, 

we must make the following: 

Step 1: Repeat this experiment (L-1) times. In each 

experiment, the same values of the parameters and 

independent variables are used, if � and 
 are not changed. 

Of course, the values of � are varying from experiment to 

experiment even though n and k are not changed. In the end, 

we have L-values of bias and variance.
3
 

Step 2: Take the averages of these values and call them 

Monte Carlo estimates: 

-.��. $%�&'���� ( = "/ ∑ ���� � − �/�1" ; 

-.��. ���'���� ( = "/ ∑ ���'���� � (/�1" . 

Stage five: Evaluating and presenting the results 

After ending the treatment stage, we must check and evaluate 

the simulation result before put or discuss (display) it in our 

paper (research). The evaluation process aims to answer an 

important question: Are the simulation results consistent with 

the theoretical framework or not? If the answer is yes, thus 

these results can be relied upon. But in a case of the results 

are inconsistent with the theoretical framework, we must 

review and/or repeat the four stages with more accuracy to 

catch the mistake and correct it. The reviewing process 

contains two branches. First, review the theoretical 

framework of the model from different books or papers. 

                                                             

3 In practice, many such experiments are conducted sometimes 1000 to 2000. See 

[12]. 

Second, review the program code, there may be 

programmatic mistakes. 

After this evaluation, we can repeat calculate the simulation 

criteria again in different situations (depending on simulation 

factors), this step is very important because it gives us 

general image and more analysis of the studied model. In the 

end, the simulation results should be displayed using a 

properly method. The tables and graphs are the main methods 

to present any simulation results. The researcher chooses 

between them based on the contribution made by each 

method. 

3. Applications on Econometric 

Models 

In this section, we apply the proposed algorithm to conduct 

two simulation studies in two different econometric models. 

All details of these studies (applications) are given in Table 1. 

Table 1. The details of applications. 

Item Application I Application II 

The model Linear regression model 
Seemingly unrelated 

regressions model 

Model type Single-equation model Multi-equation model 

Econometric 

problem 
Autocorrelation Multicollinearity 

Study 

objective 

Compere between OLS 

and generalized least 

squares (GLS) estimators 

Compere between the 

performance of Zelner’s and 

ridge estimators, and provide 

new efficient estimators 

Application I: Linear Regression Model with Autocorrelation 

Problem 

In this application, we apply above algorithm of Monte Carlo 

technique to compere between OLS and GLS estimators in 

linear regression model when the errors are correlated with 

first-order autoregressive (AR(1)). In each stage, we provide 

an R-code that achieves it.
4
 

Stage one: Planning for the study 

Now we apply the first stage, so we specify four factors as 

follows: 

1. Specify our goal of the study: The goal is compere between 

the performance of OLS and GLS estimators in linear 

regression model when the errors are correlated with first-

order. 

2. Study theoretical framework of the model: this model is 

given in equation (1), where A1.2 and A1.3 are still valid, but 

A1.1 will be replaced to the following assumption: 

A1.4: �2 = 3�2!" + 42 ; |3| < 1 , where  3  is a first-order 

                                                             

4 In this paper, we suppose that the reader is familiar with the basics of R-

programing. If not, it can review the following references: [21], [10], and [2]. 
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autocorrelation coefficient, 42 is an error term; with ��42
 =0, ��42�2!"
 � 0, and 

��424 
 � 7�8� %9 % � &;0 %9 % : &;  % � & � 1, … , �. 
The OLS and GLS estimators of � under A1.2 to A1.4 are: ���� � ����
!"���; ��<� � ���Ω!"�
!"��Ω!"� 

where 

Ω � �����
 � �8�1 # 3� > 1 3 3� ? 3�!"3 1 3 ? 3�!�@ @ @ A @3�!" 3�!� 3�!B ? 1 C. 
Since the elements of Ω are usually unknowns, we develop a 

feasible Aitken estimator of � based on consistent estimators 

of it: 

3D � ∑ �D2�D2!"�21�∑ �D2!"��21� , 
where �D2 are the residuals from apply OLS, and 

�D8� � ∑ 42̂��21"� # 
 , 

where 4"̂ � �D"F1 # 3D � , and 42̂ � �D2 # 3D �D2!";  for % �2, … , �. 

3. Specify the simulation controls: Table 2 displays the full 

details about the simulation factors. 

Table 2. The simulation factors of application I. 

No. Simulation Factor Levels 

1 The true values of the parameters (�) � � �1,1
� (where 
 = 2) 

2 Sample size (�) � = 5, 15, 30, and 50 

3 The AR (1) coefficient (3) 3 � 0.50 and 0.90 

4 The variance of the error term (�8�) �8� � 1 and 5 

4. Specify the study criteria: The criteria are the bias and 

variance of OLS and GLS estimators that are given in this 

model as: 

$%�&'���� ( � ���� # �;  $%�&'��<� ( � ��<� # �. 

���'���� ( � ����
!"��Ω �����
!"; 
���'��<� ( � ���Ω!"�
!". 

Stage two: Building the model 

We can build our model by generate all simulation controls 

(factors) as given in Table 2. The R-code is: 

 

Stage three: The treatment 

In this stage, we will conduct the required treatments on the simulated model (� and �) that generated in previous stage. 

Implementing it on our application, we will create an R-function to calculate bias and variance values of OLS and GLS 

estimators using the following R-code: 
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Stage four: The Replications 

From previous stage, we get the values of bias and variance 

for only one experiment (one sample). Therefore, we repeat 

this experiment (K # 1) times, and then we take the average 

of these K estimates as in the following code: 

 

Table 3. Simulation results when n = 5, � � �1, 1
�, �8� � 1, and 3 � 0.50. 

 
Bias OLS Bias GLS Var OLS Var GLS 

Beta 0 0.00051 0.00071 16.76125 16.22938 

Beta 1 0.00598 0.00819 4.61890 3.46068 

Stage five: Evaluating and presenting the results 

In this stage, we check and evaluate the simulation result. 

The evaluation process aims to answer an important question: 

Are the results consistent with the theoretical framework or 

not? Table 3 indicates that the variance of GLS estimates is 

less than the variance of OLS estimates. While the bias of 

OLS and GLS estimates are very close to zero. This result is 

consistent with the theoretical framework, and then we can 

rely on these results. After this evaluation, we can repeat 

calculate the simulation criteria again in different situations. 

In other words, we repeat calculate the values of bias and 

variance under different simulation factors that were given in 

Table 2. Therefrom, the complete program and the final table 

of this study are: 
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Table 4. The results of the Monte Carlo study when the replications equal to 10000. 

 LM  LN  LM  LN  LM  LN  LM  LN  O 5 5 15 15 30 30 50 50 

 �8� � 1, 3 � 0.50 

Bias OLS -0.019 -0.007 0.006 0.000 -0.004 -0.003 -0.002 0.001 

Bias GLS -0.017 -0.005 0.006 0.001 -0.005 0.000 -0.002 0.001 

Var OLS 4.899 2.560 0.375 0.120 0.156 0.123 0.088 0.084 

Var GLS 4.855 2.287 0.355 0.094 0.151 0.081 0.086 0.050 

 �8� � 5, 3 � 0.50 

Bias OLS -0.010 -0.044 0.006 -0.010 0.007 0.000 -0.003 -0.011 

Bias GLS -0.008 -0.036 0.005 -0.008 0.005 0.001 -0.003 -0.004 

Var OLS 23.958 11.527 1.960 1.172 0.781 0.429 0.444 0.418 

Var GLS 23.482 10.059 1.867 0.906 0.755 0.283 0.433 0.262 

 �8� � 1, 3 � 0.90 

Bias OLS 0.014 0.000 -0.009 0.007 -0.002 0.001 0.003 0.004 

Bias GLS 0.017 0.002 -0.009 0.001 -0.003 0.003 0.002 0.003 

Var OLS 24.811 1.169 15.031 0.401 5.703 0.188 2.622 0.174 
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 LM  LN  LM  LN  LM  LN  LM  LN  O 5 5 15 15 30 30 50 50 

Var GLS 24.660 1.089 14.734 0.199 5.390 0.074 2.415 0.035 

 �8� � 5, 3 = 0.90 

Bias OLS -0.023 -0.040 -0.039 0.015 0.029 -0.019 -0.002 -0.008 

Bias GLS -0.017 -0.037 -0.018 0.002 0.031 -0.010 -0.006 -0.010 

Var OLS 97.974 22.108 62.250 3.054 24.718 0.918 14.549 2.362 

Var GLS 96.886 15.198 60.711 0.527 23.194 0.266 13.517 0.200 

 

In general, Table 4 indicates that the variance of GLS 

estimates is less than the variance of OLS estimates in all 

simulation situations. Moreover, the variances of OLS and 

GLS estimates are increasing when RST  and U are increased. 

But when O  is increasing, the variances of estimates are 

decreased. While the values of bias for all estimates are very 

close to zero in all simulation situations. 

In this application, we have studied the estimation properties 

of single-equation regression model. However there are many 

studies are used the MCS techniques in multi-equation 

regression models (such as, panel data models, and 

simultaneous equation models), see, e.g., [27] and [20]. In 

multi-equation regression models, the creating of MCS study 

is difficult in most statistical and econometric studies. So, we 

will present an application on a multi-equation regression 

model. 

Application II: Ridge Estimation of SUR Model 

The seemingly unrelated regressions (SUR) model has been 

proposed by Zellner [30] on the assumption that the 

explanatory variables in the model are independent. But this 

assumption is very hard in economic models, because in most 

of the empirical works the researchers are often concerned 

about problem with the data, namely multicollinearity 

problem. This problem arises in situations when the 

explanatory variables are highly inter-correlated. Then it 

becomes difficult to disentangle the separate effects of each 

of the explanatory variables on the dependent variable. As a 

result, the estimated parameters may be statistically 

insignificant and/or have, unexpectedly, different signs. Thus, 

conducting a meaningful statistical inference would be 

difficult for the researcher. Srivastava and Giles [24] 

proposed the general ridge estimator for this model when the 

independent variables are affected by multicollinearity. 

Several ridge estimators are proposed and compared by [6]. 

In general, the studies on ridge regression estimators are 

pioneered by [16-17], and later followed by [26], [8], [24], 

[15], [23], [11], [18], and [5]. In most of these studies, the 

authors are used the simulation techniques to study the 

properties of some new proposed estimators and compared 

their properties with other popular existing estimators. 

Stage one: Planning for the study 

Now we apply the first stage, so we specify four factors as 

follows: 

1. Specify our goal of the study: The goal here is compere 

between the performance of Zelner’s (GLS) and ridge 

estimators of SUR model when the independent variables are 

affected by multicollinearity. 

2. Study theoretical framework of the model: Consider the 

SUR model as m-system equations given by: �-� × 1 = �-� × V WV × 1 + X-� × 1                  (5) 

where � is the vector of endogenous variable, and � =Y%�Z[�2\ ; with �2  ( % = 1, 2, … , - ) is the matrix of the 

exogenous variables of equation number %  with 

dimension  � × 
2 , and W is the parameters vector with V = ∑ 
2]21" , while X is the errors vector. 

Assumptions: 

A2.1: ��X
 = 0,  

��XX�
 = ^ �"" �"� ⋯ �"]��" ��� ⋯ ��]⋮ ⋮ ⋱ ⋮�]" �]� ⋯ �]]
_ ⨂�� = Σ⨂�� = Ψ. 

A2.2: � is non-stochastic matrix and �����, X
 = 0. 
A2.3: � is full column rank matrix, i.e., ���
��
 = V. 

Under these assumptions, Zellner’s estimator of W in (5) and 

mean square error (MSE) of it are given by: 

Wcd = ���Ψ!"�
!"��Ψ!"�, ef�'Wcd( = ���Ψ!"�
!".                        (6) 

While, the ridge estimation of this model and MSE of it are 

given by: 

Wcg = ���Ψ!"� + h
!"��Ψ!"�, 
 ef�'Wcg( = i���Ψ!"� + h
!"× ���Ψ!"� + hWW�h�
× ���Ψ!"� + h
!" j,                (7) 

where h is a V × V matrix with nonnegative elements. Note 

that if h  is a diagonal matrix then the estimator Wcg  is 

regarded as an extension of the general ridge regression 

estimator. Further, if h = ��k  with � is nonstochastic scalar 

then the estimator Wcg  is like the ordinary ridge regression 

estimator (see [24]). 
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The canonical version of model (5) is given by: �l � mn � Xl,                                 (8) 

where �l � �Σ!.o`��
�, Xl � �Σ!.o`��
X, m � �lΦ with  �l � �Σ!.o`��
�  and Φ  eigenvectors of ��l��l
,  then m�m � Φ��l��lΦ � Λ, where Λ the eigenvalues of ��l��l
. 

The corresponding GLS (Wcd) estimator of (8) is: 

nD � �m�m
!"m��l 

Srivastava and Giles [24] and Firinguetti [11] proved that the 

optimum values of h �  Y%�Z[h", … , h]\ with h2 � Y%�Z[�2", … , �2rs\ are: 

�2t � "uvswx ;  % � 1, … , -;  y � 1, … , 
2 ,                 (9) 

if and only if the following conditions are holds: n�Λn 6 1 

and n�h n 6 2. Note that if h � ��k  then these conditions 

are reduced to one condition: 0 6 � 6 �2/n�n
. 

In this paper, we propose new ridge estimators of SUR model. 

These estimators are based on ridge parameters (�2t ). The 

following remark presents some ridge parameters: 

Remark 1: 

1. h{|. The ij-th component of the matrix is given by (9). 

2. h{k . The median of �2t  that proposed by [18] for single 

equation version and Alkhamisi and Shukur [6] developed it 

for SUR model: 

�2t�fV
 � -.Y%�� } "uvswx ~ 
. 

3. h�{ . The max of �2t  that proposed by Alkhamisi and 

Shukur [6]: 

�2t � -�� } "uvswx ~ 
. 

4. h���". The Vl � V/- root of �2t  as a following: 

�2t��.�1
 � } "uvswx ~"/kl 
. 

5. h����. The Vl root of sum �2t  as a following: 

�2t��.�2
 � �&�- } "uvswx ~�"/kl
. 

6. h���B. The Vl root of max �2t  as a following: 

�2t��.�3
 � �-�� } "uvswx ~�"/kl
. 

3. Specify the simulation controls: Table 5 displays the full 

details about the simulation factors.  

Table 5. The simulation factors of application II. 

No. Simulation Factor Levels 

1 

The true values of the parameters (W) 

Where W � ��", … , �]
�, without 

intercept 

�2 � �1,1,1,1
� � % �1, … , -; where 
2 � 4 

2 Number of equations (-) 
- = 3 (in table and 2D 

plots) and 6 (in 3D plots) 

3 Sample size for each equation (�) � = 10, 25, 50, and 100 

4 

The covariance matrix of � (Σ�) 

It is defined as diag (Σ�) = 1 and off-

diag (Σ�) = 3� 

 3� �.70, .80, .90, and .98 

5 

The covariance matrix of X (Ψ � �`��) 

It is defined as diag (�) = 1 and off-

diag (�) = 3� 

 3� �.75 

4. Specify the study criteria: The criterion is the trace mean 

squared error (TMSE) of Zellner’s and several ridge 

estimators that are defined in Remark 1. To calculate TMSE 

of Zellner’s and ridge estimators, we will use equations (6) 

and (7), respectively. 

Stage two: Building the model 

We can build our model by generate all simulation factors as 

given in Table 5. The R-code is: 

 

Stage three: The treatment 

In this stage, we will create R-functions to calculate TMSE 

values of Zellner’s and several ridge estimators using the 

following R-code: 
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Stage four: The Replications 

In this stage, we repeat this experiment (K # 1) times, and then we take the average of these K estimates as in the following 

code: 

 

Table 6. Simulation results when - � 3, � � 10, and 3� � .90. 

 
Zelner SF SK AS new 1 new 2 new 3 

TMSE 103.918 41.485 6.112 1.839 2.549 0.569 0.442 

 

Stage five: Evaluating and presenting the results 

In this stage, we check and evaluate the results by answer the 

following question: Are the results consistent with the 

theoretical framework or not? Table 6 indicates that TMSE 

values of all ridge estimators are less than TMSE values of 

Zelner’s estimator, and the results are consistent with the 

theoretical framework, then we can rely on these results. 

Therefrom, the complete program and the final table of this 

study are: 
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Table 7. TMSE values for the different estimators when - � 3. 

O Zellner SF SK AS 
new 

1 

new 

2 

new 

3 3� �.70 

10 33.758 3.670 1.939 3.104 1.613 0.593 0.681 

25 1.011 0.690 0.618 2.382 0.714 0.390 0.335 

50 0.291 0.211 0.204 2.747 0.258 0.199 0.203 

100 0.136 0.096 0.098 2.839 0.127 0.108 0.134 3� �.80 

10 75.078 10.887 2.990 2.189 2.025 0.508 0.432 

25 1.205 0.808 0.742 2.651 0.858 0.445 0.334 

50 0.466 0.318 0.309 2.760 0.395 0.267 0.226 

100 0.186 0.127 0.140 1.970 0.171 0.144 0.119 3� �.90 

10 195.774 18.456 4.597 1.777 2.389 0.654 0.514 

25 3.726 2.444 1.968 2.003 1.788 0.586 0.362 

50 0.921 0.612 0.625 1.802 0.711 0.424 0.240 

100 0.430 0.283 0.286 2.405 0.368 0.242 0.142 3� �.98 

10 899.949 91.424 16.424 1.272 3.400 0.514 0.421 

25 19.969 13.050 8.136 1.452 3.621 0.471 0.204 

50 5.326 3.472 3.244 1.967 2.411 0.454 0.161 

100 2.043 1.341 1.351 1.596 1.335 0.455 0.153 

In general, Table 7 indicates that TMSE values of all ridge 

estimators are always less than TMSE values of Zelner’s 

estimator. Moreover, TMSE values of all estimators are 

decreasing when � is increased. And new 3 estimator is the 

best estimator because it has minimum TMSE in all 

simulation situations. 

4. Graphical Presentation for 
Simulation Results 

The standard presentation for the simulation results is the 

tables (as in above). However, in many studies the tables are 

not readable, so should be present the results by the graphs. 

Generally, the graphs that used in most studies can be 

summarized to two types; 2-dimansional (2D) and 3D graphs. 

In this section, we represent the results of the two 

applications (in above) using 2D and 3D graphs. 

For the first application, we present the standard errors (SE) 

of OLS and GLS estimates for different � and 3 in bar graphs 

using the following R-code: 
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Figure 1. The standard errors of OLS and GLS estimates for different � and 3 when �8� � 5. 

Figure 1 confirms our conclusions from Table 4 and adds an important note: that the gain from applying GLS method is 

increasing in �" than ��. In other words, SE of GLS estimates is always less than SE of OLS estimates for each of �� and �", 

but it is more noted in �" than ��. 
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For the second application, we present the relative efficiency ��ef��Wcg
/�ef��Wcd
�  of different ridge estimators for 

different � and 3� in line graphs using the following R-code: 

 

 

Figure 2. Relative efficiency ratios of different ridge estimators when - � 3. 

Figure 2 confirms that new 3 estimator is the best estimator for this model, especially when 3�  increases. Moreover, the 

efficiency of new 3 estimator is increasing (or the relative efficiency ratio is close to zero) in moderate samples. Alternatively, 

we can use 3D graphs as another way to present the relative efficiency ratios of different ridge estimators. The R-code is: 
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Figure 3. Relative efficiency ratios of different ridge estimators when - � 6. 
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Figure 3 displays the relative efficiency of four ridge 

estimators under the effect of �  and 3�  together, and it 

indicates that the efficiency of SF and SK is not improving 

when � and/or 3� are increasing. While the efficiency of new 

2 and new 3 is very improving when 3� is increasing, but this 

efficiency is worsened when �  is increasing. These 

conclusions are not clear in Figure 2. 

5. Conclusion 

In this paper, we proposed a complete algorithm to make 

professional MCS studies using R. This algorithm is a 

suitable for creating any simulation study in statistical and 

econometric models. This algorithm is considered as a 

practical guide for researchers to conduct their simulation 

studies in statistics and econometrics. Practically, empirical 

examples have been presented as applications on our 

algorithm. These applications proved that this algorithm is 

very easy and general for different studies even if the 

objectives of each study are different. Moreover, the 

graphical presentation methods for simulation results have 

been discussed. In future work, we publish this algorithm in 

an R-package so that more researchers will benefit, 

especially who are not proficient in programming. 
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