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Abstract 

In the present context, the effects of magnetic field and wall slip condition is considered on an unsteady, Newtonian, 

incompressible, viscous fluid flowing through a non-Darcy porous medium. The governing momentum and energy equations 

have been solved by using Crank Nicolson’s finite technique which is fast converging and unconditionally stable. Numerical 

results have been presented by showing the influence of physical parameters on velocity, temperature and concentration 

profiles. In all studied cases, velocity, temperature and concentration profiles are affected by all the considered parameters. 
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1. Introduction 

The study of heat and mass transfer with magnetic field and 

slip condition is very important to engineers and scientists 

due to its great importance in nature. Heat and mass transfer 

problem arises in many processes like thermal processing, 

energy utilization and thermal control. In our day to day 

activities, we are directly or indirectly exposed to heat and 

mass transfer problems. As a result of this emissions, proper 

control measure is needed for emission of thermal radiation 

from Newtonian fluid into the environment. The study of 

flows through non-Darcy porous media has become of great 

interest in many sciences and engineering applications, such 

as in the utilization of geothermal energy, high-performance 

building insulation; heat storage, crude oil extraction, 

petroleum industries, solid matrix exchangers, chemical 

catalytic reactor, underground disposal of nuclear waste 

material and so on. 

Several investigations have been carried out by early 

researchers on the transfer of heat and mass to or from 

Newtonian fluid. Adomian decomposition approach was 

used by Makinde [1] et al. to studied the boundary layer flow 

of a viscous fluid with thermal radiation past a moving 

vertical porous plate. The unsteady free convection flow of 

an incompressible viscous fluid near a vertical plate with 

ramped wall temperature and compared the results with 

those of the plate with constant temperature was investigated 

by Chandran et al. [2]. 

Many engineering problems are subjected to MHD analysis. 

The study of MHD flow problems has received outstanding 

interest as a result of its application in MHD generators, 

MHD pumps and MHD flow meters, just to mention a few. 

Makinde and Osalusi [3] considered the effect of slip 

condition on MHD steady flow in a channel with permeable 

boundaries. Mehmood and Ali [4] also considered the effect 

of slip condition on unsteady MHD oscillatory flow of a 

viscous fluid in a planer channel. Considering a closed form 

solution, Khaled and Vafai [5] studied a steady periodic 

MHD and transient velocity field under slip condition. 
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Samiulhaq et al. [6] analysed the influence of radiation and 

porosity on the unsteady magnetohydrodynamic flow past an 

infinite vertical oscillating plate with uniform heat flux in a 

porous medium. Mazumdar and Deka [7] analysed MHD 

flow past an impulsively started infinite vertical plate in 

presence of thermal radiation. A mathematical introduction 

to incompressible flow was carried out by Sibanda and 

Makinde [8]. Yurusoy and Pakdemirili [9] considered the 

Exact solutions of boundary layer equations of a special non-

Newtonian fluid over a stretching sheet. The effect of the 

fluid slippage at the wall for couette flow are considered by 

Marques et al. [10] under steady state conditions and only 

for gases. 

The study of heat and mass transfer with chemical reaction is 

of great practical importance to engineers and scientists 

because of its almost universal occurrence in many branches 

of science and engineering. In many chemical engineering 

processes, the chemical reaction mostly occur between a 

mass and fluid in which plate is moving. Possible 

applications of this type of flow can be found in many 

industries like power industry and chemical process 

industries. Numerous temperature process in the industrial 

designs, combustion and fire science involve thermal 

radiation heat transfer in combination with conduction 

convection and mass transfer. For example, radiative 

convective heat transfer flows arise in industrial furnace 

systems, astrophysical flows, forest fire dynamics, fire 

spread in buildings and so on. Some of the importance of 

mass transfer with chemical reaction was investigated by 

Astarita [11]. Problems involving the first order chemical 

reaction effect of axial diffusion with mass transfer was 

studied by Apelblat [12]. Chang and Kang [13] used a 

radiative flux diffusion approximation to model the 

interaction of convective and radiative heat transfer in two 

dimensional complex enclosures. Muthucumaraswamy and 

Ganesan [14] examined the effect of the chemical reaction 

and injection on flow characteristics in an unsteady upward 

motion of an isothermal plate. Mohammed [15] studied 

double-diffusive convection radiation interaction on 

unsteady MHD flow over a vertical moving porous plate 

with heat generation and soret effects. 

The aim of this work is to investigate the effects of magnetic 

field and wall slip condition which has not received much 

attention by early researchers. 

2. Problem Formulation 

Consider an unsteady, Newtonian, viscous incompressible 

and electrically conducting fluid bounded by two fixed 

parallel plates and separated apart by distance �  in a non-

Darcy porous medium. Magnetic field of uniform strength 

Bo is applied perpendicular to the plates. It is assumed that 

the interaction of the induced magnetic with the flow is 

considered to be negligible compared to the interaction of 

the applied magnetic field with the flow. The fluid properties 

are assumed to be constant except for the body forces terms 

in the momentum equation which is approximated by 

Boussinesq relations. Thermal radiation is assumed to be 

present in the form of a unidirectional flux in the � ∗ 

direction. The governing equations for the unsteady flow of 

the Newtonian fluid under the usual Boussinesq 

approximation for incompressible fluid model is given for 

momentum, energy and concentration equations respectively 

as follows: 
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With the following initial and boundary conditions 

(∗ − ) ��∗
��∗ = 0, �∗ = ��∗, �∗ = ��∗ at �∗ = 0 

(∗ = 0, �∗ = �,∗ , �∗ = �,∗  at �∗ = �                                                                    (4) 

Where (∗ is the velocity of the fluid in the x-direction, -∗ is 

the time, . is the density of the fluid, g is the acceleration 

due to gravity,  �∗ is the fluid temperature,  �∗  is the fluid 

concentration, D is the mass diffusivity, P
*
 is the fluid 

pressure, �/ is the specific heat at constant pressure, � is the 

coefficient of thermal expansion, �∗is the coefficient of mass 

expansion, k is the porosity parameter, b is the Forchheimer 

parameter, �,∗  is the temperature of the fluid at  �∗ = �, ��∗ is 

the temperature of the fluid at  �∗ = 0, 01  is the radiative 

heat flux, 2 is the electrical conductivity, 3 is the kinematic 

viscosity, 4� is the magnetic field, l is the distance between 

two plates. 

The radiation parameter, according to Mazumdar and Deka 

[2] is given as 
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Where 7), signifies the absorption coefficient and > ? is the plank function. 

Defining the non-dimensional quantities as below 
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Introducing the non-dimensional quantities into equations (1), (2) and (3) gives equations (7), (8) and (9) below 
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with the dimensionless boundary conditions 

( = A ��
��, � = 0, � = 0, at � = 0 

( = 0, � = 1, � = 1 at � = 1                    (10) 

Where Re is the Reynold number, Da is the Darcy number, 

Fs is the Forchheimer number, M1  is the thermal Grashof 

number, MY  is the modified Grashof number, M is the 

Magnetic field parameter, A  is the slip parameter, T is the 

dimensionless temperature, C is the dimensionless 

concentration, N is the thermal radiation parameter and Pr is 

the Prandtl number. 

3. Numerical Solution 

These nonlinear partial differential equations on equations 

(7), (8) and (9) under the boundary conditions in (10) are 

solved by employing Crank Nicolson finite difference 

scheme. This method has been extensively developed in 

recent years and remains one of the best reliable methods for 

solving partial differential equation. The partial differential 

equations are converted to difference equation. The Crank-

Nicolson method converges fast and is unconditionally 

stable. The equations discretized as follows: 
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With the following boundary conditions 

(i�d
 = 0, (i� = 0, �i�d
 = 0, �i� = 0, �i�d
 = 0, �i� = 0 ∀ l, - = 0 

(iQ
�d
 = −2∆n(i�d
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�d
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�d
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(iQ
� = −2∆n(i�) + (id
� , �iQ
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(i�d
 = 0, �i�d
 = 1, �i�d
 = 1, (i� = 0, �i� = 1, �i� = 1 l = p, - > 0                                       (14) 

Where a/ (pressure gradient) is constant, (�,��,and �� are the velocity, temperature and concentration at n = 0 respectively, 

(q, �q and �q are the velocity, temperature and concentration at n = 1 respectively and the interval ∆n = 

q. 

For a tridiagonal matrix system, we have the following for equations (11), (12) and (13) respectively. 
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Subscripts l  and 7  stands for grid points along �  and - 

directions. From the initial condition when t=0, the values of 

u and T are known at all grid points. Calculations of u and T 

at their next time step (k+1) th is been done using the known 

values of u and T at (k) th time step following the procedure 

stated below: 

Equations (15), (16) and (17) are arranged such that the 

equations form tri-diagonal system of equations. Thomas 

algorithm is used to solve this tri-diagonal system of 

equations with the help of MATLAB programming package 

due to the large output involved. In equation (16) and (17), 

the values of C and T for (k+1) th time step at every nodal 

point are evaluated using the (k) th time step known values. 

With these known values, the values of C and T at a 

particular time at every nodal point. 

To calculate u in equation (15), the known values of C and T 

at every nodal point at a particular time are used in equation 

(15) to calculate u at a particular time at every nodal point. 

These steps were repeated several times until a steady state is 

reached. 

4. Discussion of Result 

In order to get a physical view of the problem, computation 

is carried out to account for the impact of the physical 

parameters on the velocity, temperature and concentration 

fields graphically. The following parameter values have been 

used except otherwise indicated on the profiles: 

Pr=0.76, N=1, Re=1, Da=0.1, Fs=0.1, M=1, Gr=2. 

Figures 1, 2 and 3 represent the influence of magnetic field 

on the on the dimensionless velocity, dimensionless 

temperature and dimensionless concentration profiles. Due 

to the presence of Lorentz force, magnetic field presents a 

damping effect on the velocity profile by creating drag force 

that opposes the fluid motion, thereby causing the velocity to 

decrease for increasing values of magnetic field parameter 

while temperature and concentration profiles increases as 

magnetic field parameter increases. 

Figures 4 and 5 illustrates the effects of thermal radiation on 

velocity and temperature profiles. Increase in the values of 

thermal radiation causes reduction in both the velocity and 

temperature of the fluid. This experience is evident because, 

radiation is known to cause emission of heat from the body. 

Figure 6 shows that an increase in the wall slip parameter 

causes an increase in the fluid velocity at the lower plate. 

Figures 7 is plotted for different values of thermal Grashof 

number. It is seen from this figure that increases in thermal 

Grash of number causes an increase on velocity profile. This 

result signifies that there is a rise in the velocity due to 

enhancement of thermal buoyancy force 

Figures 8 and 9 shows the influence of Prandtl number on 

velocity and temperature profiles. Prandtl number signifies 

the ratio of momentum diffusivity to thermal diffusivity. 

Increase in Prandtl number decreases both the velocity and 

temperature field to decrease. 

Figures 10 and 11 shows the influence of Schmidt number 

on velocity and concentration profiles. Increase in Schmidt 

number causes both the velocity and concentration field to 

decrease. 

This result causes the concentration buoyancy effects to 

decrease resulting to a reduction in the fluid velocity. The 

reductions experienced in the velocity and concentration 

profiles are accompanied by simultaneous reductions in the 

velocity and concentration boundary layers as seen on the 

profiles. 
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Figure 1. Velocity distribution for various values of magnetic field 

parameter M. 

 

Figure 2. Temperature distribution for various values of magnetic field 

parameter M. 

 

Figure 3. Concentration distribution for various values of magnetic field 

parameter M. 

 

Figure 4. Velocity distribution for various values of thermal radiation 

parameter N. 

 

Figure 5. Temperature distribution for various values of thermal radiation 

parameter N. 

 

Figure 6. Velocity distribution for various values of wall slip parameter A. 
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Figure 7. Velocity distribution for various values of thermal Grash of 

number Gr. 

 

Figure 8. Velocity distribution for various values of Prandtl number Pr. 

 

Figure 9. Temperature distribution for various values of Prandtl number Pr. 

 

Figure 10. Velocity distribution for various values of Schmidt number Sc. 

 

Figure 11. Temperature distribution for various values of Schmidt number 

Sc. 

5. Conclusion 

The effects of magnetic field and wall slip conditions is 

considered on a Newtonian, incompressible, viscous fluid 

flowing through a non-Darcy porous medium with 

appropriate boundary conditions. It was discovered that the 

wall can be strengthened by increasing the wall slip and 

thermal Grashof number while it is found to be weakened by 

the effects of increasing thermal radiation parameter, 

magnetic field, Schmidt number and Prandtl number 

respectively 
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