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Abstract 

The present paper investigates the effect of localized wall heating/cooling on the unsteady, MHD laminar boundary layer 

decelerating forced flow of an incompressible electrically conducting fluid over a wedge. The set of non-linear partial 

differential equations governing the semi-similar flow has been solved numerically using an implicit finite difference scheme 

along with the quasilinearization technique. Numerical computations has been carried out and the results are presented 

graphically to show the effect of various physical parameters such as unsteady parameter, magnetic parameter, wall 

heating/cooling parameter on the flow field and heat transfer characteristics. It is found that the dual solutions exist for critical 

values of the unsteady parameter. Further, the magnetic field plays a significant role in controlling the boundary layer 

separation. 
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1. Introduction 

The study of laminar boundary layer flows is always 

important from the view point of engineering and technology. 

The two-dimensional incompressible laminar boundary layer 

flow passing over a wedge was first introduced by Falkner 

and Skan [1]. In the past few years several investigations [2-

10] have been reported in the literature focusing on this topic 

using various methods which is suitable for the flow and heat 

transfer phenomena. In recent years, the application of a 

transverse magnetic field on boundary layer flow control has 

made a great impact in the study of magnetohydrodynamic 

(MHD) flow and heat transfer problems having technological 

applications in modern metallurgical and metal-working 

processes. MHD effects on the Falkner-Skan wedge flow are 

studied by Kafoussias [11] and Devi [12].  

In forced convection laminar boundary layer flow over a 

wedge, the pressure gradient parameter tends to increase the 

skin friction as well as heat transfer. However, it is possible 

to reduce the skin friction and heat transfer by localized 

heating/cooling of the surface. The process of localized 

wallheating/cooling (in which a certain portion of the wall is 

being heated or cooled while the remaining portion is 

unchanged) s of vital importance for various scientific and 

technological potential applications including the controlling 

of the laminar boundary layer flow separation. The heated 

surface can also be cooled by removing the heat source from 

the localized slots on the surface. Indeed, localized wall 

heating/cooling promotes energizing of the inner portion of 

boundary layer in adverse pressure gradient and plays a key 

role in boundary layer control [13, 14]. In spite of its several 

applications, there are only few papers in the literature that 

deals with localized wall heating/cooling. Chamkha et. al [15] 
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have studied the mixed convection flow over a vertical flat 

plate with localized wall heating(cooling) including the 

effects of magnetic field, suction and injection. Kumari and 

Nath [16] have investigated the mixed convection flow over 

a thin vertical cylinder with localized suction/injection and 

wall heating/cooling. Recently, Poornima and Eswara [17] 

have considered steady, MHD Falkner-Skan flow over a 

wedge with localized wall heating (cooling). 

The main purpose of the present paper is to discuss the 

unsteady laminar boundary layer forced convection 

decelerating flow of an electrically conducting fluid over a 

sharp wedge in the presence of a transverse magnetic field 

with localized wall heating/cooling. The nonlinear parabolic 

partial differential equations governing the semi-similar flow 

have been solved numerically using an implicit finite 

difference scheme along with quasilinearization technique. 

The present analysis may be useful in industrial applications 

dealing with controlling as well as stabilization of the 

boundary layer. It may be mentioned here that the counter 

part of the present investigation pertaining to the accelerating 

flow has been studied more recently by Poornima and 

Eswara [18]. 

2. Mathematical Analysis 

Consider the unsteady, two-dimensional laminar boundary 

layer forced convection flow of an incompressible 

electrically conducting viscous fluid flowing towards a 

wedge [Fig.1], where x  is measured along the surface of the 

wedge and y  is normal to it. The unsteadiness in the flow 

field is introduced by the free stream velocity 
e

u . A 

transverse magnetic filed 
0

B  is applied in the direction 

normal to the wedge surface and, it is assumed that the 

magnetic Reynolds number is small, so that the induced 

magnetic field can be neglected. Hence, the applied magnetic 

field contributes only to the Lorentz force which acts in the 

x - direction. No electric field is assumed to exist and the 

Hall effect is negligible. The fluid properties are assumed to 

be constant. 

 

Fig. 1. Physical model and co-ordinate system. 

The surface of the heated wedge is maintained at a constant 

temperature 
o

T  ( )oT T∞>  except at certain portions of the 

wedge 
i j[x , x ]  where it varies slowly with the streamwise 

distance x . 

Under the aforesaid assumptions and neglecting the viscous 

dissipation, the non-linear boundary layer equations 

governing the unsteady, MHD forced convection flow past a 

wedge are 

Equation of Continuity: 

u v
0

x y

∂ ∂+ =
∂ ∂

                                          (1) 

Equation of Momentum: 

( )

e e
e

22

0

e2

u uu u u
u v u

t x y t x

Bu
u u

y

∂ ∂∂ ∂ ∂+ + = +
∂ ∂ ∂ ∂ ∂

σ∂+ν − −
ρ∂

                        (2) 

Equation of Energy: 

2

2

T T T T
u v

t x y y

∂ ∂ ∂ ∂+ + = α
∂ ∂ ∂ ∂

                          (3) 

The boundary conditions to be satisfied by the above 

equations are: 

w

2

w 0 i j j i

u(x,0) 0 ; v(x,0) 0 ; T(x,0) T (x) and

T (x) T (T T ) [1 (x x ) (x x) / (x x ) ]∞ ∞

= = = 
= + − + ε − − − 

i jfor x x x≤ ≤  

0

e

T(x,0) T ;

u(x, ) u ; T(x, ) T∞

= 
∞ = ∞ = 

i jfor 0 x x , x x≤ < >  

Where 

m * 1

e eu u (t) u (x / L) (1 t )−
∞= = − λ ; (0 m 1)≤ <         (4) 

Here u and v  are respectively, velocity components in x and 

y -directions of the flow; eu is the inviscid flow velocity at 

the edge of the boundary layer ; α   is the thermal diffusivity 

of the fluid; T is the temperature in the vicinity of the wedge; 

T0 is the constant temperature; t and t
*
 are dimensional and 

dimensionless time; , ,σ ρ ν , are respectively, electrical 

conductivity, density and kinematic viscosity; L is 

characteristic length; m  is the Falkner-Skan power-law 

parameter; The subscripts w  and ∞  denote conditions at the 

wall and in the free stream respectively; ε  is a dimensionless 

constant and, 0ε >  or < 0, according to whether the wall is 

being heated or cooled. For 0ε = , the entire wall is 



312 C. Poornima and A.T. Eswara:  Effect of Localized Wall Heating/Cooling on the Unsteady MHD Decelerating Flow over a Wedge   

 

maintained at constant temperature
o

T ( T )∞> . Also, when λ
value is zero, the problem reduces to steady case. For the 

nonzero value of λ , the flow is accelerating if 0λ > , 

provided 
*

t 1λ <  and, the flow is decelerating if

0λ < .Assuming the value zero to λ , the problem reduces to 

the steady case. It is appropriate to point out here that 

numerical results pertaining to decelerating flow are obtained 

and discussed in this paper, since results of accelerating flow 

are already been published in a reputed  journal. 

Introducing the following transformations: 

( )
( )

1
2

1
* 2

m (1 m)/2

2 u(1 m)/2 *x 1 t f ( , )m
(1 m)L

(1 m) u y
1 t

2 L x

x
u ; v ; m ;

y x L

m 1T T u x*
G( , ) ; t mT T Lw

t

−

−∞
−

ν+ ∞ψ = − λ η ξ
+

+  η= − λ ν  

∂ψ ∂ψ  = = − ξ =  ∂ ∂  

−− ∞ ∞η ξ = =
− ∞

      (5) 

to Eqns.(1)-(3), we see that continuity equation (1) is 

identically satisfied and Eqns.(2) and (3) reduce, respectively, 

to: 

[ ]

( )

2F f F M 1 F 1 F F f FF

2 1 F F 2 (FF F f )
2

ξ ξ

ξ ξ

′′ ′ ′ + + − + β − − ξ + ξ 

η ′ ′+λ − β − − = ξ − 
 

       (6) 

1 2
(1 ) Pr G f G G

2

2 (f G G f )

−

ξ ξ

 − β  ′′ ′ ′+ ξ + − λη   
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′ ′= ξ −
                (7) 

where 

f F′ = ; 
e

u
f

u
′= ; 
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02L B (1 t )
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*
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Pr ;
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α

 
∞

µν =
µ

; w

0

f Fd f

η

= η +∫                   (8) 

The transformed boundary conditions are: 

F( ,0) 0.0 ; F( , ) 1.0

G( ,0) 1.0 ; G( , ) 0.0 

ξ = ξ ∞ = 
ξ = ξ ∞ = 

 for
i j,ξ < ξ ξ > ξ  

}2

i j j iG( ,0) 1 ( ) ( ) / ( ) ξ = + ε ξ − ξ ξ − ξ ξ − ξ    

for i jξ ≤ ξ ≤ ξ                                    (9) 

Here, ψ  and f are dimensional and dimensionless stream 

functions respectively; F and G are the dimensionless 

velocity and temperature; M is dimensionless magnetic 

parameter; LRe is the local Reynolds number, Pr is the 

Prandtl number; ξ and η  are the transformed coordinates; β  

is the pressure gradient parameter. Here prime ( ' ) denotes 

derivate with respect to η  while, subscript ξ  represents 

partial derivatives with respect to ξ . We also note that in 

Eqn.(5), the parameter m  is connected with the apex angle 

πβ  by the relation 2m / (1 m)β= + . It is noted that the 

dimensionless wall temperature G ( ξ ,0) given in the 

boundary condition (9) is a continuous function of the 

dimensionless streamwise distance ξ  with a small change in 

the interval 
i j[ , ]ξ ξ over the constant value 1. The increase or 

reduction in the wall temperature in the interval by the 

constant value introduces a finite discontinuity at the leading 

and trailing edges of the slot and this causes difficulties in the 

solution of the equation. In order to avoid these difficulties in 

obtaining stable numerical solutions, a non-uniform 

distribution of wall temperature in the interval 
i j[ , ]ξ ξ has 

been taken, which varies slowly with ξ and is continuous in 

the slot
i j[ , ]ξ ξ .  

The quantities of engineering interest are the local skin 

friction and heat transfer coefficient in the form of Nusselt 

number, and these are expressed, respectively, as: 

1/2

f L

1/2

L

0

0

C 1/ (2 ) Re

Nu 1/ (2 ) (Re ) (G )

2 ( ) (F )−
η=

η=

= −β

′= − −β

′
        (10) 

It is worth mentioning here that when 0λ = , the Eqns. (6) 

and (7) become 

[ ] 2F f F M 1 F 1 F F f FF

2 (FF F f )

ξ ξ

ξ ξ

′′ ′ ′ + + − + β − − ξ + ξ 
′= ξ −

          (11) 

( )1(1 ) Pr G f G 2 (f G G f )−
ξ ξ′′ ′ ′ ′+ ξ + = ξ −    (12) 

which have been considered recently by Poornima and 

Eswara [17], representing the steady counterpart ( )0λ = of 

the present investigation. 
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3. Results and Discussion 

 

Fig. 2. Comparison of (a) skin friction coefficient and (b) heat transfer 

coefficient when M 1.0=  and 0.0λ =  with those of Poornima and Eswara 

[17]. 

The system of non-linear partial differential equations (6) and 

(7) along with the boundary conditions (9) has been solved 

numerically employing an implicit finite difference scheme 

along with quasilinearization technique [19]. It may be noted 

that for computation purpose, two slots have been located at 

the intervals [0.5, 1.5] and [3.5, 4.5] and the surface is heated 

or cooled in these intervals only. In the remaining portion of 

the wedge surface, the surface is non-permeable and is 

maintained at constant temperature
o

T ( T )∞> . In fact, 

analysis has been carried out for the wedge angle 45
o
 i.e.

0.25β = , as the Falkner-Skan one-parameter family of 

solutions of the boundary layer equations has proved to be 

very useful in the interpretation of fluid flows at large 

Reynolds number.  The results are illustrated graphically and 

are presented in Figs. 3-6.  

In order to assess the accuracy of our numerical method used, 

we have compared the steady state results with those of 

White [20] [See Table 1], and Poornima and Eswara [17] 

[See Fig.2]. The results are found to be in excellent 

agreement. 

Table 1. Comparison of numerical results for the case of 0.0β =  when 

M 0.0,= 0.0ξ =  , 0.0ε = , and 0.0λ = with White[20]. 

ηηηη  
f(ηf(ηf(ηf(η))))  F(ηF(ηF(ηF(η))))  

Present White[20] Present White[20] 

0.0 0.0000 0.0000 0.0000 0.0000 

0.2 0.0094 0.00939 0.0940 0.09391 

0.4 0.0376 0.03755 0.1876 0.18761 

0.6 0.0846 0.08439 0.2806 0.28058 

0.8 0.1500 0.14967 0.3720 0.37196 

1.0 0.2335 0.23299 0.4606 0.46063 

2.0 0.8882 0.88680 0.8170 0.81669 

3.0 1.7978 1.79557 0.9690 0.96905 

4.0 2.7864 2.78388 0.9978 0.99777 

5.0 3.7833 3.78323 1.0000 0.99994 

 

Fig. 3. The effect of magnetic field on (a) skin friction coefficient and (b) 

heat transfer coefficient in the presence  of wall heating ( ε  = 0.2). 
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Fig. 3, shows the effect of increase in the magnetic field on 

skin friction and heat transfer coefficients for 0.2ε = (wall 

heating), 0.25β= (45
0
), 0.5ξ =  and 1.0ξ = . It is clear that, 

as M increases both 1/2

f LC (Re )  and 1/ 2

LNu (Re ) − increases. 

Meanwhile, the existence of the dual solution for the 

localized wall heating ( ε  = 0.2) are noticed for
c

λ < λ < 0 

where 
c

λ is a critical value of .λ  Indeed, dual solutions exist 

up to a critical value λ =
c

0λ < , beyond which the 

boundary layer separates from the wedge surface and the 

solution based upon the boundary layer approximations are 

not possible. Moreover, the critical values of λ  for 
1/2

f LC (Re )  are 
c

0.44, 1.5λ ≈ − −  and for 1/ 2

LNu (Re ) −

c
0.44, 1.2λ ≈ − −  when M increases from 0.0 to 1.0. It is 

significant to observe the role of magnetic field in the process 

of stabilization of the boundary layer decelerating flow 

during this short time. Similar trend is obtained for localized 

wall cooling ( ε  = -0.2) and it is not presented here for the 

sake of brevity. 

 

Fig. 4. The effect of magnetic field on (a) velocity and (b) temperature 

profiles in the presence of wall heating ( ε  = 0.2) /cooling ( ε  = -0.2). 

The variation of the velocity profile (F) and temperature 

profile (G) with the effect of magnetic field are plotted in 

Fig.4. These profiles satisfy the far field boundary conditions 

asymptotically, which support the obtained numerical results. 

In fact, the laminar boundary layer is thicker for the second 

solution in comparison with that of the first solution in both 

of these velocity and thermal profiles. It is remarked that the 

upper branch solutions (first solution) are stable and 

physically realistic, while the lower branch solutions (second 

solution) are not. Although such (second) solutions are not 

physically plausible, they are nevertheless of mathematical 

curiosity [14]. 

 

Fig. 5. The effect of unsteadiness and wall heating ( ε  = 0.2) /cooling ( ε  = 

-0.2) on (a) skin friction coefficient and (b) heat transfer coefficient. 

The variation of the skin friction [ 1/2

f LC (Re ) ] and heat 

transfer [ 1/ 2

LNu (Re ) − ] coefficients with the unsteady 

parameter ( )0 0.5λ ≤ λ ≤ −  (decelerating flow) together with 

their velocity and temperature profiles are shown in Fig. 5 

and 6 for M 1.0=  0.2 0.2− ≤ ε ≤ , 0.25β=  respectively. It is 

clear from Fig.4 that, as λ  increases, 1/2

f LC (Re )  increases 

[Fig. 5(a)] and 1/ 2

LNu (Re ) −  decreases [Fig.5 (b)] whenever 

there is localized wall heating/cooling or not. It is evident 
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from these figures that velocity increases [Fig. 6(a)] and 

temperature decreases [Fig. 6(b)] at any point of the region 

inside laminar boundary layer, with the increase of the 

unsteady decelerating parameter λ . 

 

Fig. 6. The effect of unsteady parameter and wall heating ( ε  = 0.2) and 

cooling ( ε  = -0.2) on (a) velocity and (b) temperature profiles. 

4. Conclusions 

In this paper, the problem of unsteady MHD forced 

convection decelerating flow over a wedge by considering 

the effect of localized wall heating /cooling has been studied. 

Semi-similar equations are obtained and solved by using the 

finite difference method along with quasilinearization 

technique. The analysis reveals that dual solutions are 

obtained for the decelerating flow in the presence of 

localized wall heating/cooling. Further it is found that the 

application of magnetic field stabilizes the laminar boundary 

layer flow and consequently delays the boundary layer 

separation. 
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