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Abstract 

In this paper, we apply different mesh-based and meshless methods for solving matrix system carried out from modelling the 

rockets stability during the firing. Sloped rocket launch and its stability during the firing is one of the most important kinds of 

defense instruments. The rockets stability during the firing path especially when they are unguided is very important for firing 

precision. Two mesh-based schemes as finite difference and B-spline methods and two meshless schemes as radial basis 

function (RBF) and radial basis functions based on finite difference (RBF-FD) are employed for solving underlying system. 

Numerical results are presented as tabular forms. They show that computational errors and CPU time for RBF-FD as a 

meshless method are better than other methods. 
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1. Introduction 

Numerical methods can be divided into two major categories: 

Mesh-based and Meshless methods. The traditional mesh-

based methods such as finite difference method (FDM) and 

B-spline method are widely used in many fields of science 

and engineering and some powerful packages have been 

developed for them. Some limitations in mesh generation, 

remeshing and constructing the approximation scheme tend 

the public interests to apply the meshless methods that 

remove the limitations of classical mesh-based methods. 

Meshless methods have been proved to treat scientific and 

engineering problems efficiently. They apply only a cloud of 

points without any information about nodal connections. One 

of the most popular meshless methods is constructed by 

radial kernels as basis called radial basis function (RBF) 

method. It is (conditionally) positive definite, rotationally 

and transnationally invariant. In other hand, system matrices 

with high condition numbers often result in this method is 

one of the most defense of it. These properties make its 

application straightforward specially for approximation 

problems with high dimensions. RBFs include two useful 

characteristics: a set of scattered centers with possibility of 

selecting their locations and existence of a free positive 

parameter known as the shape parameter. “Shape parameter” 

is a customary name for RBF free parameter in the literature, 

but it is also called scale parameter, width, or (reciprocal of 

the) standard deviation. A progress version of RBF method is 

radial basis function based on finite difference that is the 

local version of RBF method. This method is very useful for 

solving systems with initial perturbed or random conditions 

[1, 2]. 

Here, we intend to compare both mesh-based and meshless 

methods for solving a system of first order differential 

equations arising of launching devices oscillations during the 

firing. Due to, the finite difference and B-spline methods as 

mesh-based schemes and RBF and RBF-FD methods as 

meshless schemes are compared in accuracy and CPU time. 
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The rest of the paper is organized as follows: The system of 

first order differential equations arising of launching devices 

oscillations during the firingis explained in Section 2. In the 

Section 3, a brief review on the four mentioned methods is 

presented, then applied for underlying system. The numerical 

results are shown in the Section 4 and methods are compared 

and interpreted in tabular form. 

2. The Mathematical Model 

The study of launching device oscillations during the firing is 

necessary for the design of precise and efficient rocket-

launching device systems, especially in the case of unguided 

rockets. We suppose that the launching device and the 

moving rocket form a complex oscillating system that join 

together a sum of rigid bodies bound by elastic elements (the 

vehicle chassis, the tilting platform and the rockets in the 

containers) [3]. Some authors have been considered all forces 

and moments to a real analysis of problem [3, 4]. It results in 

a matrix form of the second order differential equations 

system that describes the matrix form of dynamic equations 

of the rocket-launching device system motion. 

Suppose the independent unknown dynamic variables of the 

rocket-launching device system motion can be presented in 

the form of the following column vector [4]: ��×� = [�			
	��
���
]� ,            (2.1) 

where the vehicle chassis translation ��, the vehicle chassis 

rotation �
 (the chassis pitch movement), the vehicle chassis 

rotation ��  (the chassis rolling movement), the tilting 

platform rotation 	�  (the gyration movement around the  

vertical axes), the tilting platform rotation 	
  (the pitch 

movement) and the rocket translation �, are components of �. 

So, one can obtain the matrix form of the second order 

differential equations system that describes the rocket-

launching system components motion: 

���×� = ��×�. ���×� + ��×�. ��×� + ��×��. ���×� + ��×�. ��×�.(2.2) 

Where ��×� =  !",#$%,&'�,…,� is the matrix of the velocities 

coefficients, ���×� ; ��×� =  )",#$%,&'�,…,�  is the matrix of the 

unknown variables coefficients �. ��×�� =  *",#$ "'�,�#'�,��is the 

matrix of the coefficients for the nonlinear combinations of 

the unknown variables: 

���×� =
[���+��
+�����
	�
+	��+ 	……		�
	�����	�
���	����
	�
 ……		��
	�����������
��	�
 ……	��	��			,-�.
+ + �.�+ ]�

	
                       (2.3) 

For more information about the components of matrices (1.3), 

that can be specified randomly, one can see [3, 4]. And, the ��×� = (0",#)"'�,�#'�,� is the matrix of the external forces that acts 

on the system: 2�×� = [3	4	�#56]� .		                               (2.4) 

The vector (2.4) is used to express the influence of the 

external forces on the motion system. In this vector, the first 

term corresponds to the weight force, the second term 

corresponds to the rocket thrust and the last term to the 

rocket jet force [4].  

The mathematical model can be used to study any launching 

device like the underlying problem [3, 4]. For solving the 

underlying system, at the first, one can be reduce the system 

of second order differential equations (2.2) to a system of 

first order differential equations [4], we must introduce the 

following variables: 7� = ��                                               (2.5) 7�� = ��
		                                            (2.6) 89: = 	�
                                            (2.7) 89; = 	��                                            (2.8) 8<= = ���                                            (2.9) 8<: = ��
                                          (2.10) 

Using those new variables (2.5)-(2.10), the unknown 

variables vector can be presented as following [4]:  ��+×� = [7�89:89;7�>8<=8<:�	
	��
���
]�     (2.11) 

Using the notations (2.5)-(2.10) and the vector (2.11), as well 

as the equation (2.2), we obtain the new matrix form of the 

first order differential equations, which describes the motion 

of the rocket-launching device system: 

���+×� = ?�+×�+. ��+×� + @�+×��. ���×� + A�+×�. ��×�   (2.12) 

where, 

?�+×�+ = B��×�C�×� ��×�0�×�	 	 E 

@�+×�� = F��×��0�×��G                          (2.13) 

A�+×� = F��×�0�×�G 

Which 0�×� , 0�×��  and 0�×�  are zeros matrices and as 

mentioned before other blocks are the random matrices that 

their elements are random values that impose the launching 
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device during the firing. Here, we solve the matrix system 

(2.12) by applying radial basis functions. The 6 scalar 

equations are necessary to calculate the 6 unknown variables 

that describe the movement of the rocket-launching device 

system during firing ( �, 	
 , 	�, �
, ��, �
 ) while the other 

scalar equations allow to compute the evolutions of the 

differentials of 6 main unknown variables defined with (2.5)-

(2.10) [4]. 

3. A Brief Review on  
Mesh-Based and Meshless 

Methods 

In this section we proposed a summary of the applied mesh-

based schemes: FDM and B-spline schemes, and meshless 

methods: RBF and RBF-FD schemes. So, these methods 

apply to solve the system matrix (2.12). 

3.1. Mesh-Based Methods: FDM 

Our goal is to approximate solutions to differential equations, 

i.e., to find a function (or some discrete approximation to this 

function) which satisfies a given relationship between 

various of its derivatives on some given region of space 

and/or time, long with some boundary conditions along the 

edges of this domain. In general this is a difficult problem 

and only rarely can an analytic formula be found for the 

solution. A finite difference method proceeds by replacing the 

derivatives in the differential equations by finite difference 

approximations. This gives a large algebraic system of 

equations to be solved in place of the differential equation, 

something that is easily solved on a computer[5]. 

Let I(J)  represent a function of one variable that, unless 

otherwise stated, will always be assumedto be smooth, 

meaning that we can differentiate the function several times 

and each derivative is a well-defined bounded function over 

an interval containing a particular point of interest J̅. 

Suppose we want to approximate I′(J̅) by a finite difference 

approximation based only on values ofu at a finite number of 

points near J̅. One obvious choice would be to use 

MNI(J̅) ≡ P(�̅NQ)RP(�̅)Q                          (3.1.1) 

for some small value of ℎ. This is motivated by the standard 

definition of the derivative as the limitingvalue of this 

expression asℎ → 0. Note that MNI(J̅) is the slope of the line 

interpolating I at thepoints J̅and J̅ + ℎ. 

The expression (3.1.1) is a one-sided approximation to I′ 
since I  is evaluated only at values ofJ ≥ J̅ .Another one-

sided approximation would be 

MRI(J̅) ≡ P(�̅)RP(�̅RQ)Q                        (3.1.2) 

Each of these formulas gives a first order accurate 

approximation to I′(J̅), meaning that the size of the error is 

roughly proportional to ℎ itself. 

Another possibility is to use the centered approximation 

MVI(J̅) ≡ P(�̅NQ)RP(�̅RQ)+Q = �+  MNI(J̅) + MRI(J̅)$.   (3.1.3) 

This is the slope of the line interpolating I at J̅ − ℎand J̅ + ℎ, 

and is simply the average of the two one-sided 

approximations defined above. It should be clear that we 

would expectMVI(J̅)  to give a better approximation than 

either of the one-sided approximations. In fact this gives 

asecond order accurate approximation, the error is 

proportional to ℎ+ and hence is much smaller than the error 

in a first order approximation when ℎ is small.Simplicity of 

applying it is one of the important advantage and the mesh 

generation and remeshing spatially for complex domains is 

one of its important disadvantages.  

For solving the matrix system (2.12) by the FDM, at the first, 

we discretize the interval [X, !]  for Ywith*  nodes with the 

step size ℎ = (! − X) (* − 1)⁄ so, by collocating (2.12) and 

approximating the components of ���+×� with the (3.1.3), so 

that for the nodal points \ = 2,… , * − 1: 

��"(Y^) ≅ `(6abc)R`(6adc)+Q ,						e = 1,2, … ,12.          (3.1.4) 

Where at the first node Y� and the end node Yf the values of � 

is determined randomly and zero respectively. This scheme 

leads to 12 multi-diagonal matrix system. By solving the 

resulting systems one can obtain the solution in nodal points. 

3.2. Mesh-Based Methods: B-Spline Method 

In this section we describe the B-spline collocation method to 

use the matrix system (2.12). Le t∆= {X = YV < Y� < ⋯ <Yk = !} be the partition in [X, !] . We define the cubic B-

spline for m = −1,0, … , � + 1	by the following relation, 

��,# = �Qn
opp
qp
pr(Y − Y#R+)�,																																																																																Y ∈ tY#R+, Y#R�u,ℎ� + 3ℎ+ Y − Y#R�$ + 3ℎ(Y − Y#R�)+ − 3 Y − Y#R�$�,					Y ∈ tY#R+, Y#R�u,ℎ� + 3ℎ+ Y#N� − Y$ + 3ℎ(Y#N� − Y)+ − 3 Y#N� − Y$�,				Y ∈ tY#, Y#N�u,				(Y#N+ − Y)�,																																																																																Y ∈ tY#N�, Y#N+u,0,																																																																																											wYℎxyze�x.

                    (3.2.1) 
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Our numerical treatment for solving (2.12) using the 

collocation method with cubic B-splines is to find an 

approximate solution {|(J)  to exact solution I(J, Y)  in the 

form, 

{|(Y) = ∑ )̂#�#(Y)kN�#'R�                            (3.2.2) 

Where )̂# are unknown time dependent parameters to be 

determined from the boundary conditions and collocationof 

the differential equation. The values of �#(Y) and its two 

derivatives may be tabulated as in Table1. 

Table 1. Values of �# and its first derivative at the nodal points. 

� ��R� ��R� �� ��N� ��N� �# 0 1 4 1 0 B#� 0 3 ℎ⁄  −12 ℎ+⁄  6 ℎ+⁄  0 

Using approximate function (3.2.2) and cubic B-spline 

(3.2.1), the approximate values at the knots of {|(Y)  and 

itsderivatives are determined in terms of the time dependent 

parameters )̂#(Y) as, 

{|(Y) = )̂#R� + 4)̂# + )̂#N�                      (3.2.3) ℎ{|′(Y) = 3()̂#R� − )̂#N�)                        (3.2.4) 

Now for solving the matrix system (2.12) suppose that for 

each components of ��+×�the {��(Y) satisfies the (2.12) plus 

the boundary conditions for Y = X (that its value determined 

randomly) and Y = !  (that its value can specified zero 

because of it is the end of process). This scheme leads us to 

the 12 tri-diagonal matrix system which by solving them one 

can obtain the solution of (2.12). 

3.3. Meshless Methods: RBF 

One of the most popular meshless methods is constructed by 

radial kernels as basis called radial basis function (A�� ) 

method. It is (conditionally) positive definite, rotationally 

and translationally invariant. These properties make its 

application straightforward specially for approximation 

problems with high dimensions. Some of the well-known 

RBFs are as follows, 

�I�Ye�IX�ye) (�@) :	√1 + �+y+ C*7xy�x\I�Ye�IX�ye) (C�@): 	(√1 + �+y+)R� �XI��eX* (��):		exp	(−�+y+)  
wherey  is the Euclidean distance between any two points J, � ∈ ℝ� , e. x. y = ‖J − �‖+, [1, 2]. The A��� include two 

useful characteristics: a set of scattered centers �� ={J�� , … , Jk� } ⊆ ℝ� with possibility of selecting their locations 

and existence of a free positive parameter, �, known as the 

shape parameter. 

Assume the �#  be the shape parameter corresponding to m6Q center J#� , we use following notation for translation of A��� at m6Q center, 

�# J, �#$ = � ��J − J#��+, �#� ,							m = 1, … , �. 
Let data values 0#� = 0(J#�) are given, the function 0(J) will 

be approximated using a linear combination of translates of a 

single A�� so that, 

0(J) ≃ {(J) = ∑ �#�# J, �#$k#'� ,            (3.3.1) 

where the unknown coefficients {�#}#'�k  will be determined 

by collocating (3.3.1) at the same set of centers, ��. 

The shape parameter plays an important role in A���, the 

choice of it controls the shape of the basis functions and 

interchanges the error and stability of interpolation process. 

This behavior is manifested as a classical tradeoff between 

accuracy and stability or Uncertainty Principle [6] which 

refers to the fact that an RBF approximant can not be 

accurate and well-conditioned at the same time. 

Two scenarios are available for choosing shape parameters: 

constant shape parameter (�{?) strategies that all of shape 

parameters take the same value and variable shape parameter 

( �{? ) strategies that assign different values to shape 

parameters corresponding to each center. Many scientists and 

mathematicians use �{?�  in A��  approximations [7, 8, 9] 

because of their simple analysis as well as solid theoretical 

background rather than �{?�, but there are numerous results 

from a large collection of applications [10, 11, 12, 13] 

indicating the advantages of using �{?�. 

For solving the matrix system (2.12), we approximate the 

components of ��+×� with the A��interpolant (3.3.1) so that: 

�" ≅ ∑ �"#�# Y, �#$k#'� ,					e = 1,2, … ,12           (3.3.2) 

Where �# = 1, m = 1,… , N  is constant. By differentiating 

from (3.10) the components of ���+×� obtained as follows: 

��" ≅ ∑ �"#��# Y, �#$k#'� ,					e = 1,2, … ,12          (3.3.3) 

Substituting the equations (3.3.2), (3.3.3) in (2.12) and 

collocating it in same * + 1 centers, we obtain 12 system of 

equations with unknown parameters �"# , e = 1,2, … ,12, m =1,… , � . Therefore, one can be approximate the unknown 

variables �" , e = 1,2, … ,12 from equations (3.3.2). 

3.4. Meshless Methods: RBF-FD 

As mentioned before to calculate the derivatives of function I at node J" , first we approximate the function I by linear 
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combination of RBFs as (3.3.1), then apply the derivative 

operator ¡ on the above RBF interpolant and evaluate it at 

the desired node location: 

¡I(J") = ∑ �#¡�# J" , �#$k#'� ,                       (3.4.1) 

The above formula is a global derivation. That is, to calculate 

the discretized derivative operator at one node, all the nodes 

in the domain are used. In RBF-FD method for each stencil, 

only * nodes out of the � nodes in the domainare used and 

the differential operator ¡ is approximated at the node J"by a 

linearcombination of the function values I at the neighboring * − 1nodes locations: 

¡I(J") = ∑ z¢I(J¢)f¢'� ,                   (3.4.2) 

Unlike the conventional FD method, which uses the 

polynomials of degree * − 1  or lessfor computing the 

weights z¢ in above linear combination, RBF-FD method 

calculatesthese weights by imposing the requirement that the 

above linear combination must be exact for RBFs, {�¢(J, �£)}¢'�f , centered at each of the node locations {J¢}¢'�f . Combining these constraints, the solution for the 

RBF-FD weights can be determined from the following 

linear system: 

¤��(J�, ��) �+(J�, �+) … �f(J�, �f)��(J+, ��)⋮ �+(J+, �+)⋮ …⋱ �f(J+, �f)⋮��(Jf , ��) �+(Jf , �+) … �f(Jf , �f)§¨©©©©©©©©©©©©ª©©©©©©©©©©©©«¬z�z+⋮zf
­®̄ = ¤¡��(J" , ��)¡�+(J" , ��)⋮¡�f(J" , ��)§¨©©©ª©©©«°±																																																										

                                         (3.4.3) 

In our work, the operator ¡  is the first order derivative 

operator and among radial basis functions, we use 

Multiquadric (MQ) function. It can be shown that the system 

matrix � in (3.4.3) for this function is invertible. Now, we 

use the Maple software and explicitly present the weight 

coefficients for approximating the first order derivative. In 

general, assume that set {J�, … , Jk}be anon-uniform partition 

of the interval [X, !]. To approximate first order derivative of 

function I  at points of J" we apply a three point central 

scheme: * = 3  and [J" − ℎ�, J" + ℎ+ ]. After solving linear 

system (3.4.3) and suppose that ℎ� = ℎ+ = ℎ and c ≫ h the 

weight coefficients of RBF-FD method for approximating the 

first derivative of function I are given as: 

z�(�) = −z�(�) = − �+Q �1 + Q³+�³�,					z+(�) = 0,           (3.4.4) 

Which coincides with the standard central difference 

approximation to the first derivative with a correction term of 

order
Q�³ [14]. 

Now, we present a scheme for solving the matrix system 

(2.12). At the first, we approximate the values of components 

of ���+×�in node Y#by RBF-FD using * = 3 and [Y# − ℎ, Y# +ℎ], as well as the components of ��+×� approximate so that: 

�" Y#$ = 	`´ 6µRQ$N`´ 6µNQ$+   

After substituting the weights (3.4.4), one can obtain 12 tri-

diagonal matrix systems results in the solutions in nodal points Y#. 
4. Numerical Results 

In this Section, we compare both mesh-based and meshless 

methods based on four mentioned schemes. Our numerical 

results let us carry out some results about advantages and 

disadvantages of different methods and finally about mesh-

based and meshless methods. All numerical results carried 

out using Maple software. In all schemes, the matrices ?�+×�+, @�+×��, ?�+×�  are produced with Maple’s Random 

function that randomly assigns elements in interval [0,0.5] 
for the underlying matrices. The �@  function with the 

constant shape parameter �# = 1  for m = 1,… , N  is applied 

for basis function in both RBF and RBF-FD schemes. 

Support interval is specified as [0,5] , also the number of 

nodal points (in meshless schemes: number of centers) are 

selected so that* = 6. Based on theoretical and numerical 

experiments [8, 9, 10, 11] it is clear that increasing * results 

in more accurate results. The approximation of the 

components of ��+×� are shown in tabular forms in tables 2-4 

for some Y , then some interpretations and experiments of 

applying different approaches are presented. Notice that by 

passing time (increasing Y ), the values of oscillations 

parameters tend to zero. It is clear that output results be 

different compared with those are presented for other random 

matrices (2.13), but according to our observations, they are 

similar to presented results for any random matrices.  

Table 2. Comparison of different schemes for Y = 0.5. 
·¸ FDM 

B-spline 

method 
RBF RBF-FD �� -2.0001 -1.6544 -0.9563 -0.7650 �+ 0.3999 0.2225 0.1567 0.1198 �� -0.0190 -0.0122 -0.0065 -0.0054 �¹ -0.1666 -0.1589 -0.1011 -0.0776 �� 0.0795 0.0650 0.0655 0.0400 �� -0.0561 -0.0444 -0.0340 -0.0201 �º -0.0231 -0.0226 -0.0121 -0.0098 �» -0.0990 -0.0760 -0.0602 -0.0341 
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·¸ FDM 
B-spline 

method 
RBF RBF-FD �¼ 0.0808 0.0685 0.0700 0.0614 ��V 0.0861 0.0790 0.0502 0.0440 ��� 0.0902 0.0599 0.0407 0.0384 ��+ 0.0357 0.0309 0.0255 0.0189 

CPU 

time(second) 
0.37 0.21 0.45 0.09 

Table 3. Comparison of different schemes for Y = 2.5. 
·¸ FDM 

B-spline 

method 
RBF RBF-FD �� -1.0191 -0.8789 -0.5950 -0.4711 �+ 0.1391 0.1045 0.0865 0.0705 �� 0.0142 0.0103 -0.0094 0.0074 �¹ -0.3093 -0.2999 -0.2374 -0.2090 �� 0.1577 0.1209 0.0997 0.0413 �� -0.0342 -0.0268 -0.0104 -0.0099 �º 0.0091 0.0079 0.0043 0.0038 �» -0.0788 -0.0595 -0.0375 -0.0214 �¼ 0.1672 0.1544 0.1286 0.1174 ��V 0.0502 0.0491 0.0205 0.0188 ��� 0.1399 0.1390 0.1208 0.1186 ��+ 0.1184 0.1096 0.0954 0.0609 

CPU 

time(second) 
0.37 0.21 0.45 0.09 

Table 4. Comparison of different schemes for Y = 4.5. 
·¸ FDM 

B-spline 

method 
RBF RBF-FD �� -0.0177 -0.0185 -0.0054 -0.0001 �+ 0.0391 0.0287 0.0098 0.0019 �� 0.0051 0.0048 0.0031 0.0008 �¹ -0.1291 -0.1019 -0.0848 -0.0666 �� 0.0886 0.0696 0.0475 0.0109 �� -0.0099 -0.0087 -0.0054 -0.0039 �º -0.0009 -0.0006 -0.0005 -0.0001 �» -0.0502 -0.0299 -0.0154 -0.0076 �¼ 0.0444 0.0390 0.0401 0.0389 ��V 0.1021 0.0991 0.0868 0.0753 ��� 0.0608 0.0582 0.0397 0.0115 ��+ 0.0299 0.0289 0.0221 0.0190 

CPU 

time(second) 
0.37 0.21 0.45 0.09 

As it is shown in numerical results, the RBF-FD scheme as a 

meshless method results in less values as solutions because 

of less computational errors rather than other results. As well 

as the CPU time in this case is less than others. The RBF 

scheme as another meshleass method has run 0.45  second 

that is more than CPU time for other methods that its reason 

is the system matrices with high condition numbers in this 

scheme. It results in that the mesh-based methods are better 

than the RBF method as meshless method but the RBF-FD as 

a meshless method that is produced by combining of FDM 

and RBF methods has better performance rather than other 

approaches. 

Notations and Symbols   �:  independent unknown dynamic variables of the rocket-

launching device system motion ��: vehicle chassis translation �
: chassis pitch movement ��: chassis rolling movement 	�: gyration movement around the  vertical axes 	
: pitch movement �: rocket translation �: matrix of the coefficients for the nonlinear combinations 

of the unknown variables 2: external forces that acts on the system �: shape parameter y: Euclidean distance ��: set of centers 7�: derivative of s 7��: derivative of �� 89:: derivative of 	
 8<= : derivative of �� 8<: : derivative of �
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