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Abstract 

This paper deals with the study of unsteady, MHD laminar boundary layer forced flow of an incompressible electrically 

conducting fluid over a wedge in the presence of heat generation/absorption. Similarity transformation is used to convert the 

governing nonlinear boundary-layer equations to non-linear ordinary differential equations and later, these equations are solved 

numerically using Keller-box method to obtain self-similar solutions. The results are obtained for local skin friction coefficient 

and Nusselt number for different governing flow parameters. It is found that dual solutions exist up to a critical value of the 

unsteady parameter beyond which, the boundary layer separates from the surface. Further, it is established that application of 

the magnetic field delays the boundary layer separation. 
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1. Introduction 

In their innovative work of 1931, Falkner and Skan [1] have 

explored two-dimensional incompressible flow past a wedge. 

Since then it has been studied by many researchers [2-14] 

employing various methods suitable for flow and heat 

transfer phenomena. 

The hydro-magnetic boundary-layer flow and heat transfer in 

a incompressible electrically conducting fluid over a wedge 

is a significant type of flow having wide applications in 

industries and engineering. This type of flow has attracted the 

interest of many researchers due to its applications in MHD 

generators, plasma studies, nuclear reactors, geothermal 

energy extractions. Indeed, Vajravelu and Nayfeh [15] 

examined the hydromagnetic convection at a cone and a 

wedge. Kafoussias and Nanousis [16] have considered the 

magneto hydrodynamic Falkner-Skan flow with suction or 

injection. K.A.Yih [17] studied MHD forced convection flow 

adjacent to a nonisothermal wedge while, Seddeek. et al. [18] 

presented similarity solutions for a steady MHD Falkner-

Skan flow and heat transfer over a wedge. 

Of late, Ashwini and Eswara [19] have presented the effect of 

internal heat generation or absorption on the Falkner-Skan 

boundary layer flow with an applied magnetic field. 

In all the above studies the effect of unsteadiness were not 

studied. Hence, the present study is aimed at analyzing the 

unsteady, MHD decelerating self-similar Falkner-Skan flow 

with internal heat generation or absorption where 

unsteadiness in the flow is due to the time-dependent free 

stream velocity. The governing non-linear partial differential 

equations are reduced to a system of non-linear ordinary 

differential equations by applying similarity transformations.  

Later, they are solved numerically using an implicit finite 

difference scheme viz., Keller-box method, to obtain self-

similar solutions. Similarity solutions are very useful in the 

sense that they reduce the independent variables of the 

problem. 

It is remarked here that the counter part of the present paper 
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pertaining to accelerating flow has been studied recently by 

Ashwini and Eswara [20]. 

2. Mathematical Formulation 

 

Fig.    1. Physical model and co-ordinate system for unsteady MHD Falkner- 

Skan wedge flow, where 1 and 2 represent edge of thermal and momentum 

boundary layers, respectively. 

Consider the flow of an unsteady laminar incompressible 

viscous fluid over a wedge (Figure 1) where x  is measured 

along the surface of the wedge and y  is normal to it. The 

unsteadiness in the flow field is introduced by the free stream 

velocity
e

u , varying inversely with time. The temperature 
w

T  

of the wall is constant and greater than that of free stream 

temperature T∞ . A transverse magnetic field 
0

B  is applied in 

the direction normal to the wedge surface and, it is assumed 

that the magnetic Reynolds number is small, so that the 

induced magnetic field can be neglected. No electric field is 

assumed to exist and Hall effect is negligible. The fluid 

properties are assumed to be constant and the viscous 

dissipation has been neglected in the energy equation. Under 

the above assumptions, the boundary layer equations 

governing the unsteady, MHD forced convection flow past a 

wedge is given by: 
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Equations (1)-(3) are a system of partial differential 

equations with three independent variables   
,x y and t . It is 

possible that these partial differential equations can be 

reduced to a system of
 
ordinary differential equations, if the 

free stream velocity varies inversely as a linear function of 

time viz., ( ) ( ) 1
*( ) / 1

m

eu t u x L tλ
−

∞= −  where λ  is the 

parameter characterizing unsteadiness in the free stream and 
*t  is the non dimensional time variable (Eswara and Nath 

[21]; Schlichting [22]). This similarity property permits a 

decrease in the number of independent variables from three 

to one and yields treatment using ordinary differential 

equations instead of partial differential equations, to obtain 

self similar solutions for the nonzero values of λ . In fact, the 

flow is accelerating if 0λ >  and the flow is decelerating if

0λ < . In this paper results pertaining to decelerating flow 

are displayed and discussed, since results of accelerating 

flow are already been published in a standard journal.  

Assuming the value zero to λ , the problem reduces to the 

steady case.  

Introducing the following transformations: 
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to Eqns. (1), (2) and (3), we see that the continuity Eqn. (1) is 

identically satisfied and Eqns.(2) and (3) reduce, respectively, 

to 
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Further, we note that in (6) and (7), the parameter m  is 

connected with the apex angle πβ  by the relation

/ (2 )m β β= − or 2 / ( 1)m mβ = + . 

The transformed boundary conditions are 

0; 1 0

1; 0

F G at

F G as

η
η

= = =
= = → ∞

           (9) 

The heat generation or absorption parameter Q  appearing in 

Eqn. (7) is the non-dimensional parameter based on the 

amount of heat generated or absorbed per unit volume given 

by 
0
( ) ,Q T T∞− with 

0
Q  being constant coefficient that may 

take either positive or negative values. The source term 

represents the heat generation that is distributed everywhere 

when Q  is positive ( 0Q > ) and the heat absorption when 

Q  is negative ( 0Q < ); Q  is zero, in case no heat generation 

or absorption. 

It is worth mentioning here that when 0.0λ = , Eqns. (6) and 

(7) reduce to: 
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Which have been considered by Ashwini and Eswara [19] 

representing the steady counter part of the current problem. 

Further, Eqns. (10) and (11) reduce to those of Watanabe [6], 

when 0.0M Q= = . 

The physical quantities of engineering interest here are the 

skin friction coefficient 
fC  and heat transfer coefficient in 

the form of Nusselt number Nu ; and they are defined, 

respectively, as  

21
2

w

f

e

C
u

τ
ρ

= , ( )
w

k T Tw

q x
Nu

− ∞
=             (12) 

where  

0

w

y

u

y
τ µ

=

 ∂=  ∂ 
and 

0

( )
=

 ∂= −  ∂ 
w

y

T
q x k

y
are shear stress and 

heat flux along the surface of the wedge, where µ and k are 

dynamic viscosity and thermal conductivity, respectively. 

Using Eqns. (5) and (8) in (12) the skin friction and Nusselt 

number can be written as 
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, the local Reynolds number. 

3. Results and Discussion 

 

Fig. 2. Comparison of steady state ( 0.0=λ ) results for 

0.0, 0.25 and 0.25= −Q  when 2.0=M  with those of Ashwini and Eswara 

[19]. 

An accurate and very efficient implicit finite difference 

scheme called Keller-box method [23] is used to solve the 

coupled ordinary differential equations (6) and (7) along with 

boundary conditions (9). To assess the accuracy of the 

method which we have used, the  skin friction ( )wF ′ and heat 

transfer ( )wG ′  parameter results have been compared with 

those of Watanabe [6] for the range of m , 0 1.0m≤ ≤ [See 

Table I]. Further, the steady state heat transfer results for 

0.0, 0.25 and 0.25Q = −  with a magnetic field ( 2.0M = ) 

are compared with those of Ashwini and Eswara [19] [See 

Fig.2]. There is an excellent agreement between the present 

results and the above mentioned studies. 
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Table 1. Comparison of steady state ( 0.0=λ ) results for the range of m  

( 0 1.0≤ ≤m ) when 0.0= =M Q
 
with those of Watanabe [6]. 

m  
′

wF  ′
wG  

Present Watanabe[6] Present Watanabe[6] 

0.0 0.4696 0.46960 0.4151 0.41512 

0.0141 0.5046 0.50461 0.4205 0.42051 

0.0425 0.5690 0.56898 0.4299 0.42984 

0.0909 0.6550 0.65498 0.4413 0.44125 

0.1429 0.7320 0.73200 0.4504 0.45042 

0.2 0.8021 0.80213 0.4583 0.45826 

0.3333 0.9277 0.92765 0.4708 0.47083 

1.0 1.2326 1.23258 0.4957 0.49571 

 

 

Fig. 3. Effect of magnetic field (M) on (a) skin friction and (b) heat transfer 

coefficients. 

The effect of magnetic field ( )M on skin friction [ 1/2(Re )f LC ] 

and heat transfer [ 1/ 2(Re )LNu − ] coefficients when 0.2m =

(60
o
), 0.0Q = (no heat generation/absorption and thermal 

radiation) for 0λ <  (decelerating flow) are illustrated in 

Fig.3. It is observed that as magnetic field increases both 
1/2(Re )f LC and 1/ 2(Re )LNu − increases quantitatively. The 

percentage of increase in 1/2(Re )f LC  is about 95.65% and 

percentage of increase in 1/ 2(Re )LNu −  is around 2.83% in the 

range 0.0 1.0M≤ ≤  when 0.5λ = − . It is interesting to view 

the existence of  dual solutions for both 1/2(Re )f LC and 

1/ 2(Re )LNu −  , in the range of λ (
c

λ < λ < 0), and no solution 

for λ < c
λ , where 

c
λ is a critical value of .λ  Therefore, 

solution exist up to a critical value λ = 0
c

λ < , beyond 

which the boundary layer separates from the wedge surface 

and the solution based upon the boundary layer 

approximations are not possible. Based on our computation, 

the values of 
c

λ are 1.2
c

λ = −  and 1.1
c

λ = − , respectively 

for 1/2(Re )f LC [Fig. 3(a)] and 1/ 2(Re )LNu − [Fig.3(b)] in the 

absence of the magnetic field ( )0.0M = . Further, the values 

c
λ  are seen to be pushed further by the application of the 

magnetic field ( )1.0M = and, in fact, they are 2.6
c

λ = −  and 

2.6
c

λ = − , respectively for 1/2(Re )f LC and 1/ 2(Re )LNu − . This 

vindicates the significant role played by the transverse 

magnetic field in the stabilization process of the laminar 

boundary layer flow during this short span of time. 

Figure 4 shows the consequential velocity and temperature 

profiles of the corresponding first and second solutions, when

1.0λ = − . It is clearly seen that both momentum and thermal 

boundary layer thicknesses are found to decrease with the 

increase of the magnetic field. Further, these profiles satisfy 

the far field boundary conditions asymptotically, which 

support the obtained numerical results. It is remarked that the 

upper branch solutions (first solution) are stable and 

physically realizable, while the lower branch solutions 

(second solution) are not. Although such solutions are 

deprived of physical significance, they are nevertheless of 

mathematical interest [22]. 
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Fig. 4. Effect of magnetic field on (a) velocity (F) and (b) temperature (G) 

profiles. 

 

 

Fig. 5. Effect of heat generation and heat absorption parameter ( )Q on (a) 

heat transfer coefficient and (b) temperature profile. 

Figure 5 displays the effects of heat generation or absorption 

parameter ( Q ) on heat transfer coefficient [ 1/ 2(Re )LNu − ] and 

temperature profiles ( G ) for 0λ <  (decelerating flow) at the 

wedge angle 00.14(45 )m =  and 1.0M = . It is observed that 

1/ 2(Re )LNu − decreases as Q  increases ( 0.25 0.25Q− ≤ ≤ ). 

The percentage of decrease in 1/ 2(Re )LNu −  is 23.56% at λ = 

-1.5. 

Fig.5 (b) shows the corresponding temperature profiles, 

where thermal boundary layer thickness decreases when heat 

is absorbed ( )0Q < , whereas opposite trend is observed for 

the heat generation ( )0Q > . This is due to the fact that heat 

generation ( )0Q >  increases the thermal state of the fluid 

leading to enhancement of the heat transfer rate. 

4. Conclusions 

The effect of magnetic field and heat generation/absorption 

on the behavior of unsteady decelerating flow of an 

electrically conducting fluid flow past a wedge has been 

numerically investigated. Dual solutions are found to exist in 

forced convection decelerating flow regime. The magnetic 

field stabilizes the flow which in turn delays the boundary 

layer separation from the wedge surface. Heat generation 

increases thermal boundary layer thickness due to decrease in 

heat transfer coefficient and opposite trend is observed 

during heat absorption. 
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Nomenclature 

e
u  Free stream velocity 

w
T  Wall Temperature 

T∞  Free stream temperature 

0
B

 Transverse magnetic field
 

,x y  Cartesian co-ordinates along and normal to surface, 

respectively 

,u v  
Velocity components along x and y -directions, 

respectively 
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α  Thermal diffusivity 

T  Fluid temperature 

µ  Dynamic viscosity 

ν  Kinematic viscosity 

σ  Electrical conductivity 

ρ   Density of the fluid 

pC  Specific heat 

0
Q

 
Heat generation or absorption coefficient

 

L  Length of the wedge 

m  Falkner – Skan power law Parameter 

λ  Unsteady parameter 

*t  Non-dimensional time variable 

ψ
 Dimensional stream functions

 

f
 Dimensionless stream functions

 

F
 

Dimensionless velocity
 

G
 

Dimensionless temperature
 

M
 

Dimensionless magnetic parameter
 

Re
L  Local Reynolds number 

Pr  
 

Prandtl number
 

η  Transformed coordinate 

β
 Hartree pressure gradient parameter

 

Subscripts 

∞  Conditions at the free stream 

e  Conditions at the edge 

w  Conditions at the wall 

Superscripts 

(′) Partial derivatives with respect to η 
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