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1. Introduction 

Variational inequalities first studied by Stampacchia [1] in 

1960s have played an important role in the development of 

pure and applied mathematics. They have also witnessed an 

explosive growth in theoretical progression, algorithmic 

development, etc.; see e.g. [2-14]. Let H be a real Hilbert 

space, whose inner product and norm are denoted by 〈∙， ∙〉	 and ǁ.ǁ, respectively. Let C  be a nonempty closed 

convex subset of H  and A  a mapping from C  to H . The 

classical variational inequality problem is to find a vector 	 ∈ C such that 

〈A	, � − 	〉 ≥ 0, 

For all or � ∈ C.  The set of solutions of the variational 

inequality is denoted by VI(C, A). A mapping A of C to H	is 

called α-inverse-strongly monotone [6] if there exists a 

positive real number α such that 

〈A	, � − 	〉 ≥ α‖A	 − A�‖�, 

for any 	, � ∈ C . A mapping S  of C  into itself is called 

nonexpansive [6] if 

‖�	 − ��‖ ≤ ‖	 − �‖, 
for all 	, � ∈ C. We denote the set of fixed points of S by F(S). 
In order to seek for an element of F(S) ∩ VI(C, A). Takahashi 

and Toyoda [4] introduced the following iterative scheme 

���� = !��� + (1 − !�)�$%(& − 	'�()�� ,            (1) 

for every ) = 0,1,2, …, where �, ∈ -, .!�/ is a sequence in (0,1)	 and 	'�  is a sequence in (0,2 !), $%  is the metric 

projection of 0  onto -.  They proved that the iterative 

consequences .��/ generated by (1) converge weakly to an 

element 1 ∈ 2(�) ∩ 3&(-, () ≠ ∅. For convenience, we will 

use 2 = 	2(�) ∩ 3&(-, () ≠ ∅ through the whole paper. 

On the other hand, Iiduka and Takahashi [5] put forward 

another iterative scheme: 

���� = !�� + (1 − !�) �$%(& − 	'�()�� ,            (2) 
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for every ) = 0,1,2, …, where �, ∈ -, .!�/ is a sequence in (0,1)  	'�	 is a sequence in (0, 2!), and	$%  is the metric 

projection of 0  onto -.  It was proved that the iterative 

consequences .��/ generated by (2) converge strongly to an 

element 1 ∈ 2. 

Furthermore, Yao and Yao [6] proposed the following mixed 

gradient method: 

9 �� = 		:	-,;� = $%(& − 	'�()������ = !�	 + <��� + =�	�$%(& − 	'�();� ,        (3) 

for every ) = 1,2, …, where .!�/ ,	.<�/, .=�/ are sequences 

in (0,1) satisfied !� + <� + =� = 1, and 	'� is a sequence in 

(0, 2!), 	$%  is the metric projection of 0 onto -. They proved 

that the iterative consequences defined by (3) converge 

strongly to 1 = $>	, , where $>	 was the metric projection 

of 	 onto 2. 
In recent years, many authors have studied some different 

iterative schemes both in Hilbert spaces and Banach spaces, 

see e.g. [2-14]. Inspired and motivated by those previous 

researches, we suggest and analyze a new iterative scheme 

for finding a common element of the set of fixed points of a 

nonexpansive mapping and the solution set of a variational 

inequality for α-inverse-strongly monotone mapping in real 

Hilbert spaces. Strong convergence theorems are established 

and the iterative methods considered by [4, 5, 7, 10] are 

included in our results. 

2. Preliminary 

For convenience, we would like to list some definitions and 

fundamental lemmas which are useful in the following 

consequent analysis. They can be found in any standard 

functional analysis books such as [15, 16]. 

Definition 2.1 A mapping ?: C → C is a contraction on C if 

there exists a constant B ∈ (0,1) such that 

‖?(	) − ?(�)‖ ≤ B‖	 − �‖, ∀		, � ∈ -. 
Definition 2.2 A set-valued mapping T: H → 2E  is called 

monotone if for all �, ; ∈ H, ? ∈ T�  and F ∈ Ty  imply 〈� − ;, ? − F〉 ≥ 0. 
Definition 2. 3 A monotone mapping T: H → 2E is maximal if 

its graph H(I) is not properly contained in the graph of any 

other monotone mapping. 

It is known that a monotone mapping I is maximal if and 

only if, for (�, ?) ∈ 0 × 0, 〈� − ;, ? − F〉 ≥ 0  for every (;, F) ∈ H(I) implies ? ∈ I�. Let ( be a monotone mapping 

of - into 0 and let K%(. )	be the normal cone operator to - 

defined by K%(�) = .L ∈ H:	〈L, � − 	〉 ≥ 0, ∀		 ∈ -/ . 

Define 

I(�) = M((�) + K%(�), � ∈ -,∅,						NOℎQRLSTQ.                   (4) 

Then I  is maximal monotone and 0 ∈ I(�)  if and only if � ∈ 3&(-, () (see [11]). 

Definition 2.4 For every point � ∈ 0, there exists a unique 

nearest point 	 in -, denoted by $%�, such that ‖� − $%�‖ ≤‖� − ;‖ for all ; ∈ -. $%  is called the metric projection of 0 

onto -. 
It is well known that $%  is a nonexpansive mapping of 0 onto - and satisifies 									〈� − ;, $%� − $%;〉 ≥ ‖$%� − $%;‖�	for 

every �, ; ∈ 0.  
Moreover, $%  is characterized by the following properties: 

〈� − $%�, ; − $%�〉 ≤ 0, for all � ∈ 0, ; ∈ -            (5) 

It is easy to see that the following is true: 

	 ∈ 3&(-, () ⇔ 	 = $%(	 − 	'(	), ∀	' > 0.        (6) 

Note that 0  satisfies Opial's condition [17], i.e., for any 

sequence .WX/ with WX → W,, the inequality 

limX→\ S)?‖WX − W,‖ < limX→\ S)?‖WX − W‖  holds for 

every W ∈ 0 with W ≠ W,. 
Next we present some useful lemmas. 

The following lemma is an immediate consequence of 

equality: 

‖� + ;‖� = ‖�‖� + 2〈;, � + ;〉 − ‖;‖�. 
Lemma 2. 1 Let 0 be a real Hilbert space. Then the following 

inequality holds: 

‖� + ;‖� ≤ ‖�‖� + 2〈;, � + ;〉, ∀	�, ;	 ∈ 0. 
Lemma 2. 2 (Osilike [14]) Let (^, 〈. , . 〉) be an inner space. 

Then for all �, ;, W ∈ ^ and !, <, _ ∈ [0,1] with ! + < + _ =1, we have 

									‖!� + <; + _W‖�=	!‖�‖� + <‖;‖� + _‖W‖� −!<‖� − ;‖� 

−!_‖� − W‖� − 	<_‖; − W‖�. 
Lemma 2. 3 (Xu [10]) Assume .b�/  is a sequence of 

nonnegative real numbers such that b��� ≤ (1 − c�)	b�+:�, 

where c�  is a sequence in (0,1) and :�  is a sequence such 

that 

(i). ∑ c��e\�e, =∞; 
(ii). lim�→\ T	h ijkj ≤ 0 or ∑ |:�|�e\�e, < ∞. 
Then lim�→\ b� = 0. 
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For convenience, we use → for strong convergence and ⤏ for 

weak convergence in the following analysis. 

3. Main Results 

In this section, we suggest and analyze a new iterative 

scheme for finding the common element of the fixed points 

of a nonexpansive mapping and the solution set of variational 

inequalities for an α-inverse-strongly monotone mapping in a 

real Hilbert space. Strong convergence theorems are 

established and several special cases are also discussed. 

Theorem 3. 1 Let C be a nonempty closed convex subset of a 

real Hilbert space H.  Let A  be an α -inverse-strongly 

monotone mapping of C into H and let S be a nonexpansive 

mapping of C  into itself such that F = F(S) ∩ VI(C, A) ≠∅, ?: C → C  be a contraction mapping with coefficient B ∈ (0,1). Suppose �, ∈ - and .��/, .;�/, .W�/ are given by  

9 ;� = n��� + (1 − n�)�$%(& − 	'�()�� ,W� = <�?(��) + (1 − <�)$%(& − 	'�();� ,���� = !�?(��) + (1 − !�)	SW� , ) ≥ 0,            (7) 

where .!�/, .<�/,{n�} are three sequences in [0,1] and .'�/ 
is a sequence in [0,2α] . Assume that .!�/, .<�/ ,{n� } are 

chosen so that .'�/ ⊂ [b, p] for some a, b with 0 < b < p <2α, and  

(C1) lim�→\ !� = 0,∑ !��e\�e, =∞,∑ |!� − !�r�| < ∞�e\�e, ,	 
(C2) lim�→\ <� = 0,∑ <��e\�e, = ∞,∑ |<� − <�r�| <�e\�e,∞,	 lim�→\ sjtj = 0, 
(C3) ∑ |	'� − '�r�|�e\�e, < ∞,∑ |n� − n�r�|�e\�e, <∞, lim�→\ n� = 1. 
Then the sequence .��/ converges strongly to 1 ∈ F, where 1 = $>?(1)  or equivalently 1  satisfies the following 

variational inequality: 

〈(& − ?)1, 1 − h〉 ≤ 0, ∀	h ∈ 2. 
Proof: We first show that I − 	'�(  is a nonexpansive 

mapping. For all �, ; ∈ 0, and '� ∈ [0,2α], we have  

‖(I − 	'�()� − (I − 	'�();‖�= ‖� − ;‖� − 2	'�〈� − ;, (� − (;〉 
+	'��‖(� − (;‖� 																														≤ ‖� − ;‖� + 	'�(	'� − 2α)‖(� − (;‖� 

		≤ ‖� − ;‖, 
which implies that I − 	'�( is nonexpansive . 

For convenience, we set $� = $%(I − 	'�()�� , u� =$%(I − 	'�();� .	 

Then the iterative scheme (7) can be written as: 

9 ;� = n��� + (1 − n�)�$� ,W� = <�?(��) + (1 − <�)u� ,���� = !�?(��) + (1 − !�)	SW�, ) ≥ 0.             (8) 

Let h ∈ F.  Then we have h = $%(I − 	'�()h  by (6) and Sh = h. Since the proof of the theorem is rather long, it will 

be more convenient to divide the process into several steps. 

Step 1. We claim that .��/ is bounded. 

Since both $%  and I − 	'�( are nonexpansive mappings, we 

have 

‖$� − h‖ ≤ ‖(I − 	'�()�� − (I − 	'�()h‖ ≤ ‖�� − h‖.   (9) 

Similarly, we obtain that  

‖u� − h‖ ≤ ‖;� − h‖.                    (10) 

Combining (8) and (9), together with that S is nonexpansive 

mapping, we see that 

‖;� − h‖ ≤ ‖�� − h‖.                   (11) 

By (10) and (11), we get 

‖u� − h‖ ≤ ‖�� − h‖. 
Hence  

	‖W� − h‖ ≤ [1 − <�(1 − B)]‖�� − h‖ + <�‖?(h) − h‖.     (12) 

From (12), we arrive at 

‖���� − h‖ ≤ !�‖?(��) − ?(h)‖ + !�‖?(h) − h‖ + (1 − !�)‖W� − h‖ 

≤ max�w,.‖�� − h‖ , ‖x(y)ry‖�rX /.                (13) 

By the method of induction, we have  

‖�� − h‖ ≤ max.‖�, − h‖ , ‖x(y)ry‖�rX / ≜ {�.            (14) 

Therefore .��/ is bounded. Consequently, all those sequences .$�/, .u�/, .�$�/, .(;�/, .(��/, b)|	.?(��)/ are bounded. 

Step 2. We now in the position to prove that lim�→\‖�� −��r�‖ = 0. 
Since both $%  and I − 	'�( are nonexpansive mappings, we 

first have  

‖$� − $�r�‖ ≤ ‖�� − ��r�‖ + |	'� − 	'�r�| ∙ ‖(��r�‖.  (15) 

By similar method, we have 

‖u� − u�r�‖ ≤ ‖;� − ;�r�‖ + |	'� − 	'�r�| ∙ ‖(;�r�‖. (16) 

In view of (15), after simple calculation, we see that 

‖;� − ;�r�‖ ≤ ‖�� − ��r�‖ + |	'� − 	'�r�| ∙ ‖(��r�‖ 

+|	n� − 	n�r�|(‖��r�‖ + ‖�$�r�‖).           (17) 
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By (16) and (17), we get 

‖W� − W�r�‖ ≤ ‖�� − ��r�‖ + |	<� − 	<�r�|(‖?(��r�)‖ +‖u�‖) 

+	|	n� − 	n�r�|(‖��r�‖ + ‖�$�r�‖) 

+	|	'� − 	'�r�|(‖(��r�‖ + ‖(;�r�‖).                              (18) 

In view of (18), we have  

‖W� − W�r�‖ ≤ [1 − !�(1 − B)]‖�� − ��r�‖ + }�,     (19) 

Where 

}�=|	!� − 	!�r�|[‖?(��r�)‖ + ‖�W�r�]‖]+	|	<� −	<�r�|(‖?(��r�)‖ + ‖u�‖) 

+	|	n� − 	n�r�|(‖��r�‖ + ‖�$�r�‖) 

+	|	'� − 	'�r�|(‖(��r�‖ + ‖(;�r�‖).                              (20) 

By the conditions (C1), (C2) and (C3), we see that ∑ |}�|�e\�e, < ∞,  and ∑ (1 − B)!	��e\�e, = ∞,  which 

combining with Lemma 2.3, yields 

														lim�→\‖�� − ��r�‖ = 0.                         (21) 

Since ���� − �� = !	�[?(��) − ��] + (1 − 	!�)(�W� − ��), 
together with (21) and the condition (C1) imply that 

															lim�→\‖�W� − ��‖ = 0.                          (22) 

Since ‖�� − ;�‖ =(1- 	n�)  ‖�� − �$�‖, lim�→\ 	n� = 1,  and ‖�� − �$�‖ is bounded, we have 

lim�→\‖�� − ;�‖ = 0.                         (23) 

Furthermore, combining Lemma 2.2 with that I − 	'�(  is 

nonexpansive, A  is α -inverse-strongly monotone mapping, .'�/ ⊂ [b, p] , and 0 < b < p < 2α, we obtain that  

	‖W� − h‖� = ‖	<�[?(��) − h] − (1 − 	<�)(	u� − h)‖� 

≤ 	<�‖?(��) − h‖� 

	+(1 − 	<�)[‖�� − h‖� + b(p − 2!)‖(;� − (h‖�].       (24) 

From (24), together with Lemma 2.2, we see that 

‖�� − h‖� = ‖!�[?(��) − h] + (1 − !�(�W� − h)‖� 

≤ [!� + (1 − !�)	<�]‖?(��) − h‖� 

+‖�� − h‖� + 	b(p − 2!)‖(;� − (h‖�,                         (25) 

which implies that 

−b(p − 2!)‖(;� − (h‖� ≤ [!� + (1 − !�)	<�]‖?(��) − h‖� 

+‖���� − ��‖(‖�� − h‖ + ‖���� − h‖).                        (26) 

It follows from conditions (C1), (C2) and (21) that 

																								lim�→\‖(;� − h‖ = 0.                         (27) 

Step 3. We show that lim�→\‖�u� − u�‖ = 0. 
Since ‖�u� − �W�‖ ≤ ‖u� − W�‖ ≤ 	<�‖?(��) −u�‖ , 	‖?(��) − u�‖  is bounded, and lim�→\ 	<� = 0,	 we 

have  

																				lim�→\‖�u� − �W�‖ = 0.                        (28) 

We now show that lim�→\‖u� − ;�‖ = 0.  
Since 

‖u� − h‖� ≤ 〈(I − 	'�();� − (I − 	'�()h, u� − h〉  
=
�� {‖(I − 	'�();� − (I − 	'�()h‖� + ‖u� − h‖� 

−‖[(I − 	'�();� − (I − 	'�()h] − (u� − h)‖�} 

	≤ �� [‖;� − h‖� + ‖u� − h‖� − ‖;� − u�‖� 

+2	'�〈;� − u� , (;� − (h〉],                                             (29) 

we get that  

‖u� − h‖� ≤ ‖�� − h‖� − ‖;� − u�‖�+2	'�‖;� − u�‖ ∙ ‖(;� − (h‖.  (30) 

Hence  

‖���� − h‖� ≤ [!� + (1 − !�)	<�]‖?(��) − h‖� 

	+(1 − !�)(1 − 	<�)‖u� − h‖�.                  (31) 

It follows from (30) that 

		‖���� − h‖� ≤ [!� + (1 − !�)	<�]‖?(��) − h‖� + ‖�� − h‖� −(1 − !�)(1 − 	<�)‖;� − u�‖� 

+2	'�‖;� − u�‖ ∙ ‖(;� − (h‖.                                         (32) 

Hence  

(1 − !�)(1 − 	<�)‖;� − u�‖� ≤ [!� + (1 − !�)	<�]‖?(��) − h‖� 

	+‖���� − ��‖(	‖�� − h‖ + ‖���� − h‖	) 	+2	'�‖;� − u�‖ ∙ ‖(;� − (h‖.                                       (33) 

Since 

lim�→\ 	!� = lim�→\ 	<� = 0 , lim�→\‖���� − ��‖ =lim�→\‖(;� − (h‖ =0,   and ‖?(��) − h‖,  ‖�� − h‖ +‖���� − h‖, ‖;� − u�‖ are bounded,  

we have 

lim�→\‖;� − u�‖ = 0.                        (34) 

It follows from (28), (22),(23) and (34) , together with  

‖�u� − u�‖ ≤ ‖�u� − �W�‖ + ‖�W� − ��‖ + ‖�� − ;�‖ + ‖;� −u�‖ 

that 

lim�→\‖�u� − u�‖ = 0.                  (35) 
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Step 4. We prove that 1, ∈ 2. 
As .��/ is bounded, there exists a subsequence .��~/ of .��/ 
converges weakly to 1,.  
Since  ‖u� − ��‖ ≤ ‖u − ;�‖ + ‖;� − ��‖,  combining (23) and 

(34) we know that 		lim�→\‖u� − ��‖ = 0.  
Then u�~ ⤏ 1,.  
Next we show that 1, ∈ 3&(-, ().  
Let 

I(�) = M((�) + K%(�), � ∈ -,∅,			NOℎQRLSTQ.  

where K%(�) = .L ∈ 0: 〈� − 	,L〉 ≥ 0, ∀	 ∈ -/.  Then I  is 

maximal monotone. Let (�, L) ∈ H(I),  where H(I) =.(�, L): L ∈ I�/.  
Since L − (� ∈ K%�  and u� ∈ -,  we have 〈� − u� , L −(�〉 ≥ 0, ∀) ≥ 0.  
On the other hand, from (5) and u� = $%(& − 	'�();�,  
we see that 〈� − u� , u� − (& − 	'�();�〉 ≥ 0, ∀) ≥ 0. Then 

〈� − u�~ , 		u�~ − ;�~	'�~ + (;	j~〉 ≥ 0, ∀) ≥ 0. 
Thus 

〈� − u�~ , L〉 ≥ 〈� − u�~ , (�〉 
≥ 〈� − u�~ , (�〉 − 〈� − u�~ , 		u�~ − ;�~	'�~ + (;	j~〉 

= 〈� − u�~ , (� − (;	j~ − 		u�~ − ;�~	'�~ 〉 
≥ 〈� − u�~ , (u�~ − (;	j~〉 − 〈� − u�~ , 		�j~r�j~	�j~ 〉.              (36) 

Putting S → ∞, we have 〈� − 1,, L〉 ≥ 0.  
Since I  is maximal, we have 1, ∈ Ir�(0).  Hence 1, ∈3&(-, (). 
Now let us show that 1, ∈ 2(�).  Assume that 1, ∉ 2(�). 
From Opial’s condition, we have  

lim�→\	 S)? �u�~ − 1,� < lim�→\	 S)? �u�~ − �1,� 

≤ lim�→\	 S)? ��u�~ − �1,� 

≤ lim�→\	 S)? �u�~ − 1,�.                                                (37) 

This is a contradiction. Thus we obtain that 1, ∈ 2(�).  
Since $>? is a contraction mapping, by Banach's contraction 

theorem, there exists a unique fixed point 1	of $>? , that's 1 = $>?(1). 
Step 5. We prove that lim�→\	T	h〈?(1) − 1, �� − 1〉 ≤ 0. 
From (5), we know 

lim�→\	T	h〈?(1) − 1, �� − 1〉 = lim�→\	T	h〈?(1) − 1, u� − 1〉 
= lim�→\	T	h〈?(1) − 1, u�~ − 1〉 = 〈?(1) − 1, 1, − 1〉 ≤ 0.      (38) 

Step 6. We claim that �� → 1. From Lemma 2.1 and Lemma 

2.2, we obtain that 

‖���� − 1‖�=‖!�[?(��) − 1] + (1 − !�).�[<�[?(��) + (1 − <�)u�]/ − �1‖� 

	≤ (1 − !�)�‖�[<�[?(��) + (1 − <�)u� − �1]‖� + 2!�〈?(��) − 1, ���� − 1〉 
	≤ [(1 − !�)� + !�B]‖�� − 1‖� + 2<�(1 − !�)�‖?(��) − q‖ ∙ ‖?(��) − q‖ 

						+!�B‖���� − 1‖� + 2!�〈(1) − 1, ���� − 1〉.                                                                                   (39) 

Then we have 

(1 − !�B)‖���� − 1‖� ≤ [1 − (2 − B)!� + !��]‖�� − 1‖� +2<�(1 − !�)�‖?(1) − q‖ ∙ ‖?(��) − q‖ 

	+2!�〈?(1) − 1, ���� − 1〉.                                              (40) 

That is 

‖���� − 1‖� ≤ 1 − (2 − B)!� + !��1 − !�B ‖�� − 1‖� 

		+ 2<�(1 − !�)�1 − !�B ‖?(1) − q‖ ∙ ‖?(��) − q‖ 

		+ 2!�1 − !�B 〈?(1) − 1, ���� − 1〉 
≤ �1 − 2(1 − B)!�1 − !�B � ‖�� − 1‖� 

+ �(�rX)tj�rtjX �sj(�rtj)�(�rX)tj {� + tj�(�rX){� + 〈x(�)r�,�j��r�〉�rX �,           (41) 

where {� = T	h�w,.‖?(1) − q‖ ∙ ‖?(��) − q‖/ , and {� = T	h�w,{‖�� − 1‖�}. 
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From (38) and conditions (C1), (C2) and (C3), letting ) → ∞ 

yields 

lim�→\	T	h �sj(�rtj)�(�rX)tj {� + tj�(�rX){� + 〈x(�)r�,�j��r�〉�rX � ≤ 0.     (42) 

Let 

T� = 2(1 − B)!�1 − !�B , O�
= 2(1 − B)!�1 − !�B �<�(1 − !�)�(1 − B)!� {�
+ !�2(1 − B){� + 〈?(1) − 1, ���� − 1〉1 − B �. 

Then ‖���� − 1‖� ≤ (1 − T�)‖�� − 1‖�+O�.  
It is easy to check that T� → 0,∑ T� = ∞,�e\�e, lim�→\	T	h �j	�j ≤0. 
By Lemma 2.3, we see that  

																		lim�→\‖�� − 1‖ = 0.                 (43) 

The proof is finished. 

As an implication of Theorem 3.1, we have the following 

corollary: 

Corollary 3.1 Let C be a nonempty closed convex subset of a 

real Hilbert space H.  Let A  be an α -inverse-strongly 

monotone mapping of C  into H  and let S  be a be a 

nonexpansive mapping of C into itself such that F = F(S) ∩VI(C, A) ≠ ∅, ? ∶ C → C  be a contraction mapping with 

coefficient k∈ (0,1). Suppose that �, ∈ - and .��/, .;�/, .W�/ 
are given by  

9 ;� = n��� + (1 − n�)$%(& − 	'�()�� ,W� = <�?(��) + (1 − <�)$%(& − 	'�();� ,���� = !�?(��) + (1 − !�)	SW�, ) ≥ 0,  

where .!�/, .<�/,{n�} are three sequences in [0,1] and .'�/ 
is a sequence in [0,2α] . Assume that .!�/, .<�/ ,{n� } are 

chosen so that .'�/ ⊂ [b, p] for some a, b with 0 < b < p <2α, and  

(C1) lim�→\ !� = 0,∑ !��e\�e, =∞,∑ |!� − !�r�| < ∞�e\�e, ,	 
(C2) lim�→\ <� = 0,∑ <��e\�e, = ∞,∑ |<� − <�r�| <�e\�e,∞,	 lim�→\ sjtj = 0, 
(C3) ∑ |	'� − 	'�r�|�e\�e, < ∞,∑ |n� − n�r�|�e\�e, <∞, lim�→\ n� = 1. 
Then the sequence .��/ converges strongly to q ∈ F, where q = $>?(1)  or equivalently 1  satisfies the following 

variational inequality: 

〈(& − ?)1, 1 − h〉 ≤ 0, ∀	h ∈ 2. 

Proof: The conclusion follows from Theorem 3.1 by setting � = &. 
Theorem 3.1 extends the corresponding results of [4, 5, 7, 10]. 

Remark 3.1 Putting ? = &, <� = 1, n� = 1  in Theorem 3.1, 

we can get the iterative scheme provided by [4]. 

Remark 3.2 Putting ?(��) = �,, <� = 0, n� = 1 in Theorem 

3.1, we can get the iterative scheme provided by [5]. 

Remark 3.3 The proposition 3.1 of [7] is a special case of our 

result.  

In fact, letting n� = 1, <� = 0 in Theorem 3.1, we get 

					�, ∈ -, ���� = !�?(��) + (1 − !�)�$%(& − 	'�()�� . 
Then 

�� → 1 ∈ 2(�) ∩ 3&(-, () by Theorem 3.1. 

Remark 3.4 Putting <� = 1, n� = 0 in Theorem 3.1, we can 

get the iterative scheme provided by [10]. 

Remark 3.5 The conditions in Theorem 3.1 can be easily 

satisfied, for example 

!� = 1√) + 8 , <� = 1) + 8 , 	'� = 12) , n� = ) − 1) . 
4. Conclusion 

By introducing a new iterative scheme for variational 

inequalities and nonexpansive mappings in Hilbert spaces, 

we proved that the sequences generated by the iterative 

scheme strongly converge to a common element of the fixed 

points of a nonexpansive mapping and the solution set of 

variational inequality for ! -inverse-strongly monotone 

mapping. 
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