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Abstract 

The purpose of this paper is to propose a simulated annealing algorithm to maximize the production and minimize the 

processing time in the steelmaking continuous casting by optimizing the order of the sequences (a sequence is a group of jobs 

with the same chemical characteristics). Based on the work of [1] a mixed integer programming for scheduling Steelmaking-

Continuous casting production with the object to minimize the makespan. The order of the sequences in continuous casting is 

assumed fixed. Our contribution is to analyze and suggest an additional way to determine the optimal order. A simulated 

annealing algorithm restricted by a tabu list (SATL) is addressed to obtain the optimal order. After parameter tuning of the 

algorithm, the proposed algorithm was implemented to different instances using a .NET application and the commercial 

software solver Cplex v12.5. 
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1. Introduction 

The steel industry is an important activity that contributes to 

the economy development of many countries. Companies 

have consistently sought innovative solutions in the 

production process to meet multiple challenges such as 

competition and fluctuations in energy costs. The production 

scheduling is an essential tool to improve productivity 

through saving energy, minimizing treatment times as well as 

production costs. 

The problems that impede planning and scheduling of 

steelmaking processes have been widely discussed in the 

literature. These problems can be classified according to the 

structure of the workshop (converters number, number of 

refining stands and number of continuous casting), 

constraints taken into account as well as the optimization 

tools used in this field namely operating research methods 

and artificial intelligence methods. Thus, several works are 

proposed based on heuristics, exact models, and expert 

systems, methods of constraint satisfaction, meta-heuristics, 

methods of human-machine coordination and multi-agent 

methods. [2, 3] have applied a heuristics to solve SCC. [1, 4] 

mathematical programming modelling approach was utilized 

to schedule the SCC production planning. In [5] both the 

concept of ant colony optimization and nonlinear 

optimization methods were introduced in order to solve the 

problem. A bee colony-based algorithm was proposed in [6] 

to solve the CV–RS–CC steelmaking planning and 

scheduling problem. To solve the SCC scheduling problem 

the work discussed in [7] developed a constraint 

programming model.  

Based on the work introduced in [1] which supposes that the 

order of the sequences is assumed fixed, the main 

contribution of this work is to apply a metaheuristic 

algorithm to obtain the optimal order which will maximize 

the production and also minimize the processing time in the 
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steelmaking continuous casting. The rest of this paper is 

organized as follows: section 2 introduces the mathematical 

model of production scheduling; section 3 presents the 

proposed algorithm to optimize the order of the sequences in 

continuous casting; section 4 deals with the numerical results; 

then, a summary and conclusion are given in section 5. 

2. SCC Production Process 
Description and the 

Mathematical Model 

In this section, the overall assumptions of this problem are 

defined following a description of the SCC production 

process. 

2.1. Process Description 

The steelmaking process, known in the literature as SCC 

(Steelmaking-Continuous-Casting), consists of three major 

steps (stages): (1) two identical converters (CV) (the basic 

oxygen furnace) with the same processing time, (2) two 

refining stands (RS) with the same processing time at each 

machine, and (3) two continuous casting (CC) with a 

different processing time at each charge. Different material-

handling and travelling crane are considered, but we just hold 

back the transfer time between successive stages Fig. 1. 

 

Figure 1. Schema of the layout. 

The converter refines pig iron to produce the crude steel 

which is burnt by blowing in pure oxygen. The refining stand 

eliminates impurities and adjusts the chemical composition 

of the steel. Finally, the liquid steel is continuously poured 

into a bottomless mould. Guided by a set of rollers and 

continues cooling and solidifying, the moulded metal 

descends (Arcelor, 2004). 

2.2. Mathematical Model 

The mathematical model in [1] is based on mixed integer 

linear programming which concerns the scheduling of several 

sequences (a sequence consists of multiple jobs with the 

same characteristics that are treated in a given order). A 

sequence is dedicated to one of the two production lines (RS-

CC). It is part of an already ordered set on each of the 

continuous casting. The objective of this scheduling is to 

basically maximize the production and minimize the 

processing time. Doing so, it should ensure the two following 

points:  

• The jobs of the two sequences should be assigned to 

converters. 

• Scheduling the execution of the jobs in the three steps of 

the steel by respecting the constraints. This involves the 

start of processing sequences in continuous casting 

(possible delays are relative to the date availability of 

those). And it determines the load processing time on 

continuous casting (possible slowdown is relative to 

minimum duration of treatment). 

3. Literature Review 

The steel production process is considered as a hybrid flow 

shop problem, because all jobs (tasks) visit the three steps in 

the same direction and at every stage there are several 

parallel and/or identical machines. However, it is different 

from classical HFS in terms of the processing jobs in the last 

step. Processing at this stage requires a consecutive treatment 

of a set of charges (sequences) on the same refining stand and 

in the same continuous casting. In other words, algorithms 

applied to HFS can solve this problem. In this paper 

metaheuristics is used to find a solution to this problem. The 

following table shows some references. 

Table 1. The summary of the literatures concerning the simulated annealing 

applied to flow shop hybrid. 

Authors Algorithm Comment 

Nearchou, 2004 SA-GA 

Approach that combines the characteristics 

of a canonical procedure simulated annealing 

with borrowed characteristics of the genetic 

algorithm. 

Law et al. 2004 MSAA 

Records the characteristics of good solution 

and introduced into the simulated annealing 

to make the search process more robust 

Ruiz et al. 2006 GA 

Genetic algorithm with new features and 

four new crossover operators applied to a 

hybrid flow shop problem. 

Bandyopadhyay 

et al. 2008 
AMOSA 

Incorporates the concept of archive to 

provide a set of compromise solutions for the 

problem considered 

Laha and 

Chakraborty 

Kumar. 2008 

NEH-SA 

Uses simulated annealing in conjunction 

with a constructive heuristic Nawaz et al. 

1983 

Naderi et al 

2009 
HSA 

A compromise between intensification and 

diversification to increase the 

competitiveness of the simulated annealing 

method 

Czapinski. 2010 PSA-GA 
Parallelization between simulated annealing 

and genetic algorithm is presented. 

Lin et al. 2011 MSSA 

Based on the main properties of the 

simulated annealing (apparent convergence, 

small population, efficient memory usage 

and easy implementation). 

Samuel et al. 

2014 
NEH-SAO 

Offers a simulated annealing algorithm 

hybridized with the NEH algorithm for flow 

shop problem with a new cooling scheme. 
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4. The Proposed Hybrid 
Algorithm 

The MILP described in [1], concerns several sequences 

already ordered. In this section, we tend to additionally 

analyze the possibility to optimize the order of the 

consecutive sequences. It is very clear that it is unrealistic to 

introduce directly this approach in the MILP model.  Indeed, 

binary variables already numerous in this model are based on 

the known order of jobs i and j. If this order is unknown, the 

extension of the MILP model will require the introduction of 

additional binary variables to represent this order; but this 

unfortunately generates nonlinearities (binary variables 

product). Other approaches may be considered: The 

enumerative algorithms such as the complete enumeration, in 

practice this approach is more accurate in term of the quality 

of the solution found. However, the major drawback of this 

approach is the significant execution time for large instances. 

Hence, there is a need to consider other methods to find a 

compromise between the optimality of the solution and the 

execution time such as metaheuristics. A method based on 

simulated annealing (SATL) and restricted by a tabu list is 

described in this section to deal with the problem.  

The proposed method contains two main components 

(Algorithm 1): Simulated annealing and tabu list. The SA is 

often presented as the oldest metaheuristics method; it 

transposes the process of annealing applied in metallurgy to 

solve an optimization problem. In SA not only better 

solutions are accepted, but also worse neighboring solutions 

have a probability of being accepted. By this strategy and the 

cooling schema, the algorithm is capable of escaping local 

optimum and to explore the space of solutions as much as 

possible. [8–11] use simulated annealing to solve parallel 

machine scheduling problem. On the other hand, the tabu list 

is one of the key factors that determine the quality of a TS 

algorithm in order to avoid the search process turning back to 

the solutions generated in the last iterations.  

The main advantage of combining these components is to use 

the diversification strategy of simulated annealing algorithm, 

and the tabu list is implemented in order to: (1) store the 

solutions generated in the previous generations; (2) escape 

the local optima. The length of tabu list is a fixed size. When 

the tabu list is full, the oldest element of the list is replaced 

by the best new solutions. 

The mechanism of the research in the proposed method could 

be described as follows: The algorithm begins the research 

with an initial solution generated by the NEH algorithm after 

the initialization of the parameters (initial temperature, final 

temperature).Then, a neighboring solution is generated 

according to the neighbourhood structure of the problem by 

Algorithm 2. The solution is evaluated. If the solution that 

results is of a lower cost than the current solution, the move 

is accepted and this new solution (S) becomes the current 

solution (S), otherwise if the new solution is of higher cost 

(lesser quality solution), SA accepts it with probability 

�(�
∆�
��
)
with 	
  the current temperature and∆� = �(���) −

�(���) , Otherwise the solution is rejected. After an 

application of the metropolis sample criteria, the temperature 

is updated using the geometric cooling schema. A detailed 

description is given in figure 2. 

4.1. Representation of a Solution 

A solution is associated to the sequences prepared by the 

"logistics" service within a given order depending on the 

demand and the quality of the steel. These sequences are 

divided into blocks; each block contains three sequences (the 

last block may hold the rest). This choice is inspired by the 

industrial reality since the steel does not receive all of these 

sequences once for all. It receives packages; each of these 

packages allows it to have the material to make its schedules 

for 2-3 days. Afterwards, the rest of the sequence comes 

progressively. Figure.2. shows the structure of chromosome 

(CC1 contains the sequences in Continuous casting 1, CC2 

contains the sequences in Continuous casting 2). 

Algorithm 1. The pseudo code of the SA. 

Inputs:  

Initial solution S, Temp-in, Temp-fin, L, Amax, Rmax. 

Outputs:  

Best Solution found S* 

1 Call NEH algorithm to improve the initial solution S 

2 Best individual S* = S ; f(S*) =f (S); 

3 T=Temp-in 

4 
while T≥Temp-fin and Amax≥A and Rmax≥R do* the cooling loop 

* 

5 l=0 

6 while L≥l and Amax≥A and Rmax≥R do * the equilibrium loop * 

7 Call Algorithm 3 to generate new solution; 

8 ∆C = C(S���) − C(S���); 
9 if∆C ≤ 0 then  

10 S��� = S���; 

11 else  

12 if∆C > !"#() then  

13 S��� = S���; 

14 A=A+1; 

15 else  

16 The solution is rejected ; 

17 R=R+1; 

18 end if 

19 end if 

20 if f(S*) ≥ f (S) then* update best individual * 

21 S*= S; 

22 f(S*) = f (S); 

23 end if 

24 l=l+1; 

25 end while 

26 Update (T); * Update T with geometric schema * 

27 end while 

28 return S* 
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4.2. Generation of an Initial Solution 

The choice of the initial solution influences the convergence 

of the algorithm. Generally, the simulated annealing starts 

with an initial solution, which is randomly generated. In the 

context of this problem, in order to increase the convergence 

speed of the proposed algorithm, the NEH algorithm is 

implemented to generate the initial solution. The NEH 

algorithm generates an initial sequence by allotting the jobs 

in a sequence based on their completion times. Jobs with 

higher processing times are given higher priority compared to 

jobs with lower processing times. The NEH algorithm 

ensures a better initial solution and guarantees the same 

initial solution each time for the proposed problem. 

 

Figure 2. Solution representation. 

4.3. Evaluation Function 

For each solution corresponds an evaluation function 

corresponding to the minimization of the makespan 

optimization. This function is calculated by calling the 

commercial solver using the Cplex API. 

4.4. Generation Neighbourhood Method 

The generation of neighbouring solution is an essential step 

in the algorithm construction phases. In the present work, this 

generation must keep the random aspect that characterizes 

the simulated annealing. A detailed description is given in 

Algorithm 2. 

Algorithm 2. Generation neighbourhood method. 

Inputs:  

Current solution Scurrent 

Outputs:  

New solution Snew 

1 Select randomly a continuous casting CC1 or CC2. 

2 
Choose randomly two blocks$
 and $% in the selected cast and swap 

them. 

3 
Choose randomly a block$& and exchange the two sequences'( 

and'). 

4 

Verify the occurrence of the solution in the tabu list. If the solution 

has been already explored, go to step 1.Otherwise return the new 

solution 

4.5. New Solution Acceptation Process 

At each iteration, a solution ���  neighbor of the current 

solution ��� is generated. Depending on its quality, the new 

solution ��� will be accepted with probability equal 

�(�
∆�
��
�
with 	
  the current temperature and∆� � ������ �

������. Or will be rejected using the metropolis criterion:  

*++�,-�∆�, 	
� � -/0� ⇔ 	!3"#45�� 	6 �
��∆78�

�
 

4.6. Cooling Schema 

There is always a compromise between the quality of 

solutions and cooling scheme. If the temperature is slowly 

decreasing, the best solutions are obtained, but with a greater 

computation time. In our case, the temperature declines 

according to the following function: 	
 � 9 ∗ 	
�;  With 

9 ∈ =0,1? is the cooling ratio. 

4.7. Parameter Settings 

The implementation of the proposed algorithm requires the 

adjustment of a set of parameters that influence the process 

time and the objective function convergence. The SATL 

parameters are as follows: 

i. Initial temperature (	@) 

The initial temperature is an essential parameter in simulated 

annealing. It will change the execution time of the algorithm 

based on the effort required to the research. In this way, T0 is 

chosen based on the maximum estimated difference in the 

objective function (Sanvicente-Sánchez et al. 2004), as 

follows: 

	@ �
�∆ABCD

E��FG�∆ABCD��
With ∆HIJK � L3MNHO%P � H�
�Q  and 

RS�∆HIJK� ∈ =0,1				the acceptance probability of a solution 

to the initial temperature. In the context of this problem, it is 

chosen to have a solution that degrades the objective function 

accepted with a probability of 0.99. So, the initial 

temperature is			@ � 100 ∗ ∆HIJK 	. 

ii. Final temperature (	T) 
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The final temperature is an essential parameter simulated 

annealing; it will stop the algorithm. The final temperature 

�	T� selected as if: 

• There are no alterations in the cost value 

• The probability of accepting a move is too low 

RSO∆H
%P ≈ 0 

The final temperature is chosen based on the minimum 

estimated difference in the objective function (Sanvicente-

Sánchez et al. 2004), as follows: 

	T = �∆AB�V
E�(FG(∆AB�V))

With ∆HI
� = LW"{HO%P − H(
)}  and 

RS(∆HI
�)  the acceptance probability of a solution to the 

initial temperature. In the context of this problem, it is chosen 

to have a solution that degrades the objective function 

accepted with a probability of 0.01. So the final temperature 

is	T ≈ ∆XYZ[
\  

iii. The epoch length (L) 

To reach a state of equilibrium at each temperature, a 

sufficient number of transitions is required. The theory 

suggests that the number of iterations at each temperature can 

be exponential in the size of the problem, which is a difficult 

strategy to be applied in practice. The number of transitions 

may be as follows: 

• Static: The number of transitions is determined before the 

start of the research. For example, it is necessary to reach 

the equilibrium state at each temperature. 

• Adaptive: The number of neighbors generated depends on 

the characteristics research. 

In the context of this problem, the epoch length is chosen 

fixed. 

iv. Total neighbors to accepted (*IJK) 

Controls the number of neighbors to accept. In our case, 

*IJKis fixed at the beginning of the algorithm. 

v. Total neighbors rejected (!IJK) 

Controls the number of neighbors to accept. In our case, 

!IJKis fixed at the beginning of the algorithm. 

vi. Stopping Criterion 

Concerning the stop condition, the theory suggests a final 

temperature equal 0. In practice, the search stops when the 

probability of accepting a move is negligible. In our case, the 

algorithm stops when one of the following conditions is 

fulfilled. !IJK ≤ !	; *IJK ≤ *; 	@ ≤ 	T. 

vii. Improvement 

To improve the performance of the algorithm, we added a 

variable that stores the best value encountered; otherwise, the 

algorithm may converge to a solution, then we had visited a 

better solution before. 

5. Experimental Results 

This section describes the numerical results obtained by the 

test of the algorithm for different instances. For this, we have 

developed an application in NET that allows the connection 

to the CPLEX solver v12.5 and the application of the SATL. 

The parameter tuning of the proposed algorithm are set as 

follows:  

The initial and final temperatures: For each instance, the 

temperatures are determined using the equation described 

in the parameters section for a sample size of 20 solutions 

generated randomly. 

The cooling ratio: is set to 0.98 for all instances. 

The epoch length: 30, 40, 50. 

Total number of individual to accept: 50, 100 

Total number of individual to reject: 25, 30, 50. 

The length of tabu list: 15, 20, 30. 

Then the total number 3×2×3×3=54 of runs, 30 for the epoch 

length, 50 and 25 for the total number of individual to accept 

and reject, and 20 for length of tabu list. The numerical 

results found through NET application are given in table 1. 

The column 2 represents the size of the problem where n1 is 

the number of sequences in continuous casting 1 and n2 

represents the number of sequences in continuous casting 2. 

The column 3 represents the value of the objective function 

of the initial order proposed by the logistics service. The 

column 4 shows the best results of the proposed algorithm.  

For the column 5, it displays the gap between the objective 

function value and the value obtained by the proposed 

algorithm. 

For all instances, the algorithm obtains better solutions than 

the mathematical model. In order to compare the 

performance of the proposed algorithm, we have to measure 

the gap (column 5 in table 1)  

]3, = ^_(`aEF)�_(bS)_(`aEF) ^ ∗ 100. 

6. Conclusion 

This paper describes an optimization problem of the order of 

the sequences in continuous casting. The chief objective is to 

find an optimal order that minimizes the processing time and 

maximizes the productivity. A metaheuristic algorithm based 

on simulated annealing restricted by a tabu list was proposed 

to deal with this problem. Our research findings (Results) 
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show that the proposed algorithm SATL obtains better 

solutions for all instances. Using this approach, it was 

possible to reduce the processing time compared to the time 

required for the mathematical programming model. Other 

techniques are also applicable to evaluate the problem 

namely the implementation of other alternatives of the 

simulated annealing such as parallelization concept that 

increases the speed of the method and simulated annealing 

with multi-starts. See also approaches based on genetic 

algorithms. 

Table 1. Results obtained with the proposed algorithm for different instances. 

Instance 
Problem Size 

(n×m) 

Initial solution 

(min) 
SATL Gap  

Inst1 9×9 6415,8444 6298,6127 0,52 

Inst2 9×12 7528,0415 7410,7724 0,00 

Inst3 9×15 8314,8992 8281,6107 0,13 

Inst4 11×9 7129,2797 7099,7913 0,55 

Inst5 11×12 9374,8901 9321,3180 0,12 

Inst6 11×15 11924,9618 11802,1181 0,26 

Inst7 12×9 8406,3031 8316,9478 0,51 

Inst8 12×12 13021,8320 12915,8888 0,38 

Inst9 12×15 14510,7200 14490,8972 0,09 

Inst10 15×9 16327,3747 16280,0359 0,02 

Inst11 15×12 12405,0377 12399,9149 0,32 

Inst12 15×15 14134,8693 14127,0787 0,00 
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