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Abstract 

This paper presents a generalized differential quadrature method as an accurate, efficient and simple numerical technique for 

structural analysis of uniform and non-uniform beams resting on fluid layer under axial force and distributed load under three 

sets of boundary conditions, that is, simply–simply supported (S–S), clamped–clamped supported (C–C) and clamped–simply 

supported (C–S) and studied the buckling of uniform and non-uniform bar resting on fluid layer under axial force and 

distributed load under the same three sets of boundary conditions. These problems were studied using the GDQ method. 

Firstly, drawbacks existing in the method of differential quadrature (DQ) are evaluated and discussed. Numerical examples 

have shown the super accuracy, efficiency, convenience and the great potential of this method. 
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1. Introduction 

Numerical approximation methods for solving partial 

differential equations have been widely used in various 

engineering fields. Most numerical simulations of 

engineering problems can be currently carried out by 

conventional low order, classical techniques, such as finite 

element and finite difference methods are well-developed and 

well known. These methods can provide very accurate results 

by using a large number of grid points. However, in some 

practical applications, the numerical solutions of partial 

differential equations are required at only a few specified 

points in the physical domain. In seeking an alternate 

numerical method using fewer grid points to find results with 

acceptable accuracy, the method of differential quadrature 

(DQ) was introduced by Bellman et al. [1, 2]. The DQM is a 

global approximate method. The DQM is an easy and 

efficient numerical method for the rapid solution of various 

linear and nonlinear differential and integro-differential 

equations. For more details see [3, 4]. The DQM discretizes 

any derivative at a point by a weighted linear sum of 

functional values at its neighboring points. The key to DQ is 

to determine the weighting coefficient for any order 

derivative discretization. Bellman et al. [2] suggested two 

methods to determine the weighting coefficients of the first 

order derivative. More generally, Shu and Richards [5], and 

Shu [6] present the generalized differential quadrature 

(GDQ), they applied it to solve some fluid dynamics 

problems. In GDQ, the weighting coefficients of the first 

order derivative are determined by a simple algebraic 

formulation without any restriction on choice of grid points, 

and the weighting coefficient of the second and higher order 

derivatives are determined by a recurrence relationship. The 

major advantage of GDQ over DQ is its ease of the 

computation of the weighting coefficients without any 

restriction on the choice of grid points. The pioneer works for 

the applications of the DQM to the general area of structural 
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mechanics [7-16] and fluid mechanics [17-23]. To solve 

these equations, the boundary conditions have to be 

implemented appropriately. For the case where there is only 

one boundary condition at each boundary, the 

implementation is very simple and can be done in a 

straightforward way. However, in some cases, there is more 

than one boundary condition, which could result in 

difficulties in the numerical implementation of the boundary 

conditions. In this paper, numerical solution using a 

generalized differential quadrature method is applied to solve 

some problems in structural analysis, as determination the 

static deflection behaviours of uniform and non-uniform 

beams resting on fluid layer under axial force and the 

analysis of buckling behaviours of uniform and non-uniform 

bars resting on fluid layer. 

2. Generalized Differential 
Quadrature Method 

In order to overcome the deficiencies which appears in 

classical differential quadrature method (DQM), Bellman et 

al. [2], a generalized differential quadrature (GDQ), which 

was recently proposed by Shu and Richards [5, 6] for solving 

partial differential equations in fluid mechanics, will be 

introduced and applied to solve some problems in vibration 

analysis. In order to find a simple algebraic expression for 

calculating the weighting coefficients without restricting the 

choice of grid meshes, Shu chose Lagrange interpolated 

polynomials as the set of tests functions g(x). Shu and 

Richards [5, 6] gave a convenient and recurrent formula for 

determining the derivative weighting coefficients as follows: 
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Equations (1) provide simple expressions for computing 
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without any restriction in choice of the co-ordinates of the 

grid points xi. It is obvious that 
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can be easily calculated 
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 can be obtained from equation (2). 

For the discretization of the second and higher order 

derivatives, the following linear constrained relationships are 

applied 
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The recurrent formula for determining the derivative 

weighting coefficients as follows: 
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where ���
���

 and ���
��	
�

 are the weighting coefficients of the 

m
th

 and the (m−1)
th

 derivatives. The ���
���

 can be obtained 

from a relationship similar to equation (2). 

where ���
���

 and ���
��	
�

 are the weighting coefficients of the 

m
th

 and the (m−1)
th

 derivatives. The ���
���

 can be obtained 

from a relationship similar to equation (2). 

Thus equations (4) and (5) together with equation (1) and 

equation (2) give a convenient and general form for 

determining the weighting coefficients for the derivatives of 

orders one through 1N − . 

3. Application of GDQ to 
Structural Analysis 

The method of GDQ using the method of directly Substitutes 

the Boundary Conditions into the Governing Equations is 

used for analyzing some static structural problems. The first 

problem is determining the static deflection behaviours of 

beams resting on fluid layer under axial force under three sets 

of boundary conditions, that is, simply supported–simply 

supported (S–S), clamped–clamped supported (C–C) and 

clamped–simply supported (C–S). The second problem is for 

the analysis of buckling behaviours of columns resting on 

fluid layer under the same previous boundary conditions. The 

formulations and programming are shown to be very 

straightforward and simple. The boundary conditions are 

easy to be implemented. 

Basic Equations 

(1) Fluid Back Pressure Equations 

For an incompressible, irrotational, inviscid fluid of constant 

density γf the pressure of the fluid ���
, �, ��  satisfies the 

following equation: 

2 2 0f f fP Pγ∇ + =                         (6) 

where; 

The contact conditions are: 
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The method of separation of variables is used to determine 

the fluid back pressure (Pf), 

( , , ) ( ) ( ) ( )fP x y t W x P y f t=                       (8) 

Substituting equation (14) in equation (6) yields; 

( , , ) ( )0 fP x t K W x=                         (9) 

where; �����, �, �, ℎ� is the fluid linear stiffness. 

(2) Beam Equations 

The governing equation of a Bernoulli–Euler beam in 

bending is: 

2 2 2
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where EI is the beam’s flexural rigidity, ρA is the mass per 

unit length; f(x) the external distributed load, L is the length 

of the beam and �� = �� 	� is the fluid back pressure. 

Normalizing the equation (10) then the non-dimensional 

governing equation of a Bernoulli-Euler beam of varying 

cross-section resting on fluid layer under axial force may be 

written as: 
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Equation (11) is a 4
th

 order ordinary differential equation 

with inertia ratio ���� = �1 + �
��
�� . In the case of non-

uniform beam will study two cases of inertia ratio ����; the 

first case �
 = 0.5, �# = 1.0 and the second case �
 = −1.0, 

�# = 1.0. It requires 4 boundary conditions, two at	� = 0, 

and two 	at		� = 1. In the present work, the following two 

types of boundary conditions are considered: 

Simply Supported end (S) 

2

2

( )
    

0
0 and 0

d W
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dx
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Clamped Supported end (C) 
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0
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dW
W

dx
= =                  (12b) 

We assume that the computational domain 0 ≤ � ≤ 1  is 

divided by (N – 1) intervals with coordinates of grid points as 

X1, X2,…, XN. With the coordinates of grid points, the GDQ 

weighting coefficients can be computed through equations 

(1), (2), (4) and (5). Then, applying the GDQ method to the 

equation (11) yields; 
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where 	�� , & = 1,2,⋯ ,),  is the functional value at the 

grid��,*��, ��� and +��  is the weighting coefficient matrix of 

the sec-ond, third and forth order derivatives. ,�#����� , 

,�
�����,  
are the second and first order derivatives of ( )S X  

at		�� 	. Similarly, the derivatives in the boundary conditions 

can be discreti-zed by the GDQ method. As a result, the 

numerical boundary conditions can be written as: 

1
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where n0, n1 may be taken as either 1 or 2. By choosing the 

value of n0 and n1, Equation (14) can give the following four 

sets of boundary conditions, 

n0 = 1 , n1 = 1 ـــــــــــــــ clamped–clamped 

n0 = 1 , n1 = 2  ـــــــــــــــ clamped–simply supported 

n0 = 2 , n1 = 1  ـــــــــــــــ simply supported–clamped 

n0 = 2 , n1 = 2  ـــــــــــــــ simply supported–simply supported 

Equations (14a) and (14c) can be easily substituted into the 

governing equation. This is not the case for Equations (14b) 

and (14d). However, one can couple these two equations 

together to give two solutions, �#		 and 		�-	
, as 
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According to Equations (15), �#		 and 		�-	
  are expressed 

in terms of		�., 	�/, ⋯ ,�-	#, and can be easily substituted 

into the governing equation (19). It should be noted that 

Equation (14) provides four boundary equations. In total we 

have N unknowns 		�
,�#, ⋯ ,�- . In order to close the 

system, the discretized governing equation (13) has to be 

applied at �) − 4�  mesh points. This can be done by 

applying Equation (13) at grid points 		�., 	�/, ⋯ , �-	#. 

Substituting Equations (14a), (14c) and (15) into Equation 

(13) gives: 
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Considering a uniform load with value f(x) =fo, then F(X)=1. 

The deflections of the beam at various points are presented 

together with the exact solutions, if available. 
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It is noted that Equation (17) has ( )4N −  equations with 

( )4N −  unknowns, which can be written in matrix form as; 

[ ]{ } 1,A W = −                                (18) 

Where 1�2 = 1�.,�/, ⋯ ,�-	#, 2
3

 

The Matlab program has been used to solve this problem and 

get the deflection of the uniform and Non-uniform beam. 

3) Buckling of Bar Resting on Fluid Layer under Axial Force 

and Distributed Load 

For the buckling behavior of a slender elastic bar, the 

normalized governing differential equation can be written as: 

4 3 2 2
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+ + +  

2

2f

W
K W

X
λ ∂=

∂
                             (19) 

where, X and W are defined in the same way as those in 

equation (10). 

Applying the GDQ to equation (19) at each discrete point on 

the grid;
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Equation (20) is a 4
th

 order ordinary differential equation 

with inertia ratio ���� = �1 + �
��
�� . In the case of non-

uniform beam will study two cases of inertia ratio ����; the 

first case �
 = 0.5, �# = 1.0 and the second case �
 = −1.0, 

�# = 1.0. It requires 4 boundary conditions, two at	� = 0, 

and two 	at		� = 1. In the present work, the following two 

types of boundary conditions in equation (12). Similarly, the 

derivatives in the boundary conditions can be discretized by 

the GDQ method. As a result, the numerical boundary 

conditions can be written as equations (14). 

Equations (14a) and (14c) can be easily substituted into the 

governing equation. This is not the case for Equations (14b) and 

(14d). However, one can couple these two equations together to 

give two solutions, �#		and		�-	
, as equations (15). 

According to Equations (15), �#		 and 		�-	
  are expressed 

in terms of		�., 	�/, ⋯ ,�-	#, and can be easily substituted 

into the governing equation (20). It should be noted that 

Equation (14) provides four boundary equations. In total we 

have N unknowns 		�
,�#, ⋯ ,�- . In order to close the 

system, the discretized governing equation (20) has to be 

applied at ( )4N − mesh points. This can be done by applying 

Equation (20) at grid points 		�., 	�/, ⋯ , �-	#.  Substituting 

Equations (14a), (14c) and (15) into Equation (20) gives: 
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It is noted that Equation (21) has ( )4N −  equations with 

( )4N −  unknowns, which can be written in matrix eigen-



12 Ramzy M. Abumandour et al.:  Application of the GDQ Method to Structural Analysis  

 

value form as: 

[ ]{ } [ ]{ }2    ,A W B Wλ=                         (22) 

where { } { }3 4 2
    , ,...,

T

N
W W W W −=  

The Matlab program has been used to solve this eigen-value 

problem together with appropriate boundary conditions and 

get the buckling load λ. 

4. Results and Discussion 

In this section we will analyze the determination of static 

deflection behaviours of uniform and non-uniform beams 

resting on fluid layer under axial force and the analysis of 

buckling behaviours of uniform and non-uniform bars resting 

on fluid layer. In the first case will calculating the deflection 

of a uniform and non-uniform beams and in the second case 

will calculating non-dimensional buckling loads and mode 

shapes of the uniform and non-uniform bars under three sets 

of boundary conditions, that is, simply supported–simply 

supported (S–S), clamped–clamped supported (C–C) and 

clamped–simply supported (C–S). By using the GDQ 

method, using the method of directly Substitutes the 

Boundary Conditions into the Governing Equations is 

referred to as (SBCGE). 

In the present study, the coordinates of the grid points for the 

beam are chosen according to Chebyshev-Gauss-Lobatto by 

using N sampling as: 

1 1
( ) 1 cos ,

2 1

i
X i

N
π −  = −   −  

 1,2,3, ,i N= ⋯  

Numerical calculations for the deflection of beam under a 

given distributed load f(x) have been done for both a uniform 

and a non-uniform beam under three sets of boundary 

conditions, namely simply–simply supported (S–S), 

clamped–clamped supported (C–C) and clamped–simply 

supported (C–S). The deflections of uniform beam at various 

points are presented in Table 1 together with the exact 

solutions. The exact solution of this problem for uniform 

beam clamped–clamped (C–C) supported is 	W�X6� =



#/
X#�2X − X# − 1� , for simply–simply supported (S–S) 

is 	W�X6� =



#/
X	�2X# − X. − 1� , and for clamped–simply 

(C–S) supported (C–S) is	W�X6� =



/7
X#	�5X − 2X# − 3�. It 

can be seen from the table 1 that the results obtained from 

GDQ method (SBCGE) are very close to the exact solutions 

and up to 11 digits accuracy can be achieved by using 15 

nodes, and are very accurate even using five grid points only. 

Included in Table 1 are SBCGE results for uniform beam, the 

SBCGE results for uniform beam resting on fluid layer under 

axial force, and the exact solution for uniform beam. Tables 1 

and Figures 1, show that the convergence of this method is 

seen to be very good. Accurate results can be achieved by 

using very few grid points. Also we note that the deflection 

of beam resting on fluid decreases comparing with the 

deflection of uniform beam while the deflection of beam 

resting on fluid under axial force increases. 

Table 1.a. Deflection of uniform Simple–Simple beam under uniformly distributed load. 

X W(SBCGM) for uniform beam W (EXACT) for uniform beam 
W (SBCGM) for uniform beam resting on fluid 

under axial force (Kf=1, P=1) 

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 

0.012536043909088 -0.000522172019469 -0.000522172019470 -0.0005738029055314 

0.049515566048790 -0.002053282235960 -0.002053282235960 -0.002256437749143 

0.109084258765985 -0.004442907699535 -0.004442907699535 -0.004883446929569 

0.188255099070633 -0.007340315693757 -0.007340315693758 -0.008070963881860 

0.283058130441221 -0.010171639030995 -0.010171639030996 -0.011188794184760 

0.388739533021843 -0.012253537486948 -0.012253537486949 -0.013483472449208 

0.500000000000000 -0.013020833333332 -0.013020833333333 -0.014329660120701 

0.611260466978157 -0.012253537486948 -0.012253537486949 -0.013483472449208 

0.716941869558779 -0.010171639030995 -0.010171639030996 -0.011188794184760 

0.811744900929367 -0.007340315693757 -0.000973019162735 -0.008070963881860 

0.890915741234015 -0.004442907699535 -0.004442907699535 -0.004883446929569 

0.950484433951210 -0.002053282235960 -0.002053282235960 -0.002256437749142 

0.987463956090912 -0.000522172019469 -0.000522172019470 -0.000573802905531 

1.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 
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Table 1.b. Deflection of uniform Clamped–Clamped beam under uniformly distributed load. 

X W(SBCGM) for uniform beam W (EXACT) for uniform beam 
W (SBCGM) for uniform beam resting on 

fluid under axial force (Kf=1, P=1) 

0.000000000000000 0.0 0.0 0.0 

0.012536043909088 -6.384873128 e-06 -6.384873128 e-06 -6.484634965888 e-06 

0.049515566048790 -9.2291620641 e-05 -9.2291620641 e-05 -9.384013544069 e-05 

0.109084258765985 -3.93537563891 e-04 -3.93537563891 e-04 -4.0079663326029 e-04 

0.188255099070633 -9.73019162735 e-04 -9.73019162735 e-04 -9.9276756748439 e-04 

0.283058130441221 -0.001715962979648 -0.001715962979648 -0.0017536506516755 

0.388739533021843 -0.002352657966624 -0.002352657966624 -0.0024070432078642 

0.500000000000000 -0.002604166666667 -0.002604166666667 -0.0026654379817753 

0.611260466978157 -0.002352657966624 -0.002352657966624 -0.0024070432078642 

0.716941869558779 -0.001715962979648 -0.001715962979648 -0.0017536506516755 

0.811744900929367 -9.73019162735 e-04 -9.73019162735 e-04 -9.927675674844 e-04 

0.890915741234015 -3.93537563891 e-04 -3.93537563891 e-04 -4.007966332603 e-04 

0.950484433951210 -9.2291620641 e-05 -9.2291620641 e-05 -9.3840135440689 e-05 

0.987463956090912 -6.384873128 e-06 -6.384873128 e-06 -6.4846349658879 e-06 

1.000000000000000 0.0 0.0 0.0 

Table 1.c. Deflection of uniform Clamped–Simple beam under uniformly distributed load. 

X W(SBCGM) for uniform beam W (EXACT) for uniform beam 
W (SBCGM) for uniform beam resting on 

fluid under axial force (Kf=1, P=1) 

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 

0.012536043909088 -0.000009617838285 -0.000009617838285 -0.000009920098516 

0.049515566048790 -0.000140841400808 -0.000140841400808 -0.000145491986852 

0.109084258765985 -0.000614398833749 -0.000614398833749 -0.000636152582312 

0.188255099070633 -0.001572357182365 -0.001572357182365 -0.001632481926707 

0.283058130441221 -0.002912686907003 -0.002912686907004 -0.003032476726389 

0.388739533021843 -0.004277089607242 -0.004277089607242 -0.004464063515380 

0.500000000000000 -0.005208333333333 -0.005208333333333 -0.005446596389740 

0.611260466978157 -0.005378666086168 -0.005378666086168 -0.005632038957293 

0.716941869558779 -0.004747077077966 -0.004747077077966 -0.004974160830139 

0.811744900929367 -0.003557329408617 -0.003557329408617 -0.003728432201988 

0.890915741234015 -0.002197361361855 -0.002197361361855 -0.002303081825307 

0.950484433951210 -0.001024237148133 -0.001024237148133 -0.001073466060593 

0.987463956090912 -0.000261045481142 -0.000261045481142 -0.000273586196411 

1.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 

 

To demonstrate better the accuracy of the solutions, Figures 1 

show the deflection which results from the GDQ method for 

uniform beam, uniform beam resting on Fluid Layer and 

uniform beam resting on Fluid Layer under axial force which 

compared with the exact solutions of uniform beam. 

 

Figure 1a. Deflection of uniform Simply-Simply beam under bending (Kf=1.0, P=1.0). 
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Figure 1b. Deflection of uniform Clamped-Clamped beam under bending (Kf=1.0, P=1.0). 

 

Figure 1c. Deflection of uniform Clamped-Simply beam under bending (Kf=1.0, P=1.0). 

The deflection of non-uniform beam resting on fluid layer 

under axial force with different stiffness distributions 

���� = �1 � �
��
�� , the first case �
 � 0.5, �# � 1.0 and 

the second case �
 � $1.0 , �# � 1.0 , respectively studied 

under three sets of boundary conditions, (S–S, C–C and C–

S). Also, the GDQ results are obtained using 15 non-

uniformly spaced grid points. 

Figures 2, 3 show the deflection of non-uniform beam, 

Figures 2 for the first case �
 � 0.5, �# � 1.0, and Figures 3 

for the second case �
 � $1.0, �# � 1.0. Figures 2, 3, show 

that the deflections of non-uniform beam resting on fluid 

under axial force decreases comparing with the deflection of 

uniform beam. Also the deflection of non-uniform beam 

increases with the increase of the different stiffness 

distributions S(X). It can be observed from Figures 2, 3 that, 

the deflection decreases when the beam resting on fluid layer 

fluid but increases when the beam resting on fluid layer 

under axial force. 

 

Figure 2a. Deflection of non-uniform Simply-Simply beam under bending (Kf=1.0, P=1.0). 
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Figure 2b. Deflection of non-uniform Clamped-Clamped beam under bending (Kf=1.0, P=1.0). 

 

Figure 2c. Deflection of non-uniform Clamped-Simply beam under bending (Kf=1.0, P=1.0). 

 

Figure 3a. Deflection of non-uniform Simply-Simply beam under bending (Kf=1.0, P=1.0). 



16 Ramzy M. Abumandour et al.:  Application of the GDQ Method to Structural Analysis  

 

 

Figure 3b. Deflection of non-uniform Clamped-Clamped beam under bending (Kf=1.0, P=1.0). 

 

Figure 3c. Deflection of non-uniform Clamped-Simply beam under bending (Kf=1.0, P=1.0). 

Numerical calculations for the computations of the non-

dimensional buckling loads and mode shape of a uniform and 

a non-uniform bars under three sets of boundary conditions, 

(S–S, C–C and C–S). The buckling loads can be obtained by 

solving the eigen-value problem together with appropriate 

boundary conditions of uniform and non-uniform bars resting 

on fluid layer subjected to axial force by using the 

differential quadrature method (SBCGE). Table 2 presented 

SBCGE results for uniform bar, the SBCGE results for 

uniform bar resting on fluid layer, GDQ results for uniform 

bar Du [11] and the exact solution Chajes [24] and Newbery 

[25] for uniform bar. It can be seen from the Tables 2 that the 

convergence of the solution using GDQ is excellent 

comparison of the present results with the exact ones shows 

that the GDQ is a very accurate numerical technique by using 

15 nodes. 

Table 2 and Figures 4; show that the convergence of this 

method is seen to be very good. Accurate results can be 

achieved by using very few grid points. Also we note that the 

non-dimensional buckling loads of uniform beam resting on 

fluid increases comparing with the deflection of uniform 

beam. 

Table 2. Non-dimensional buckling loads of uniform bars. 

Buckling 

Load λ 

Boundary 

Conditions 

Exact Chajes [8] 

for uniform 

beam 

GDQ (N=11) Du 

[10] for uniform 

beam 

FEM Newbery 

[20] for uniform 

beam 

Present (SBCGM) 

for uniform beam 

Present (SBCGM) for 

uniform beam resting 

on fluid, (Kf=1) 

Simple-Simple  9.8696 9.8696 9.9438 9.8696 9.9709 

Clamped-Clamped 39.4784 39.4784 39.9730 39.4784 39.5544 

Clamped-Simple 20.19073 20.19072 20.4972 20.19072 20.2733 
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To demonstrate better the accuracy of the solutions, the mode 

shapes of the first three modes of uniform bar resting on fluid 

layer were also obtained for three sets of boundary conditions 

by using 15 non-uniformly spaced grid points. The mode 

shapes are presented in Figures 4. 

 

Figure 4a. The first three mode shapes of uniform Simply-Simply bar 

(Kf=1). 

 

Figure 4b. The first three mode shapes of uniform Clamped- Clamped bar 

(Kf=1). 

 

 

Figure 4c. The first three mode shapes of uniform Clamped- Simply bar 

(Kf=1). 

Also, Table 3, 4 lists the non-dimensional buckling loads of a 

non-uniform bars resting on fluid layer with different 

stiffness distributions ���� � �1 � �
��
�� , the first case 

�
 � 1.0, �# � 1.0 and the second case �
 � 1.0, �# � 2.0,
 
 

respectively. Again, three sets of boundary conditions, (S–S, 

C–C and C–S), were considered for each bar. Also, the GDQ 

results are obtained using 15 non-uniformly spaced grid 

points. The varying cross section stiffness S(X) of the beams 

can be very easily implemented from equations (27). The 

computing effort is still small since one has to solve an 

eigen-value problem of a matrix of dimension 11 × 11 only. 

Tables 3, 4 presented SBCGE results for non-uniform bar, the 

SBCGE results for non-uniform bar resting on fluid layer, 

GDQ results for non-uniform bar Du [11],. It can be observed 

from Table 3, 4 that; the non-dimensional buckling loads 

increases when the bar resting on fluid layer. 

Table 3. Non-dimensional buckling loads of non-uniform bars. 

Buckling 

Load λ 

Boundary 

Conditions 

Reference for non-

uniform beam 

Reference for non-

uniform beam 

GDQ (N=11) Du [10] 

for non-uniform beam 

Present (SBCGM) for 

non-uniform beam 

Present (SBCGM) for 

non-uniform beam 

resting on fluid, (Kf=1) 

Simple-Simple  15.31 [6] 14.3 [27] 14.5113 14.5112 14.6121 

Clamped-

Clamped 
------- ------- 57.3453 57.3940 57.4697 

Clamped-Simple ------- ------- 29.4406 29.4490 29.5360 

Table 4. Non-dimensional buckling loads of non-uniform bars. 

Buckling 

Load λ 

Boundary 

Conditions 

Reference for 

non-uniform 

beam 

Reference for 

non-uniform 

beam 

GDQ (N=11) Du [10] 

for non-uniform beam 

Present (SBCGM) for 

non-uniform beam 

Present (SBCGM) for 

non-uniform beam 

resting on fluid, (Kf=1) 

Simple-Simple  20.7923 [10] 27.455 [26] 20.8047 19.8828 19.9810 

Clamped-Clamped     -------     ------- 82.1043 82.9986 83.0768 

Clamped-Simple     -------     ------- 41.9679 48.1054 84.2002 

 

To demonstrate better the accuracy of the solutions, the mode 

shapes of the first three modes of uniform bar resting on fluid 

layer were also obtained for three sets of boundary conditions 

by using 15 non-uniformly spaced grid points. The mode 

shapes are presented in Figures 5, 6. Figures 5 for the first 

case �
 � 1.0, �# � 1.0, and Figures 6 for the second case 

�
 � 1.0, �# � 2.0,
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Figure 5a. The first three mode shapes of non-uniform Simply-Simply bar 

(Kf=1.0). 

 

Figure 5b. The first three mode shapes of non-uniform Clamped- Clamped 

bar (Kf=1.0). 

 

Figure 5c. The first three mode shapes of uniform Clamped- Simply bar 

(Kf=1.0). 

 

Figure 6a. The first three mode shapes of non-uniform Simply-Simply bar 

(Kf=1.0). 

 

Figure 6b. The first three mode shapes of non-uniform Clamped- Clamped 

bar (Kf=1.0). 

 

Figure 6c. The first three mode shapes of uniform Clamped- Simply bar 

(Kf=1.0). 

5. Conclusions 

This paper studied some problems in structural analysis. In 

the first case will calculating the deflection of a uniform and 

non-uniform beams and in the second case will calculating 

non-dimensional buckling loads and mode shapes of the 

uniform and non-uniform bars under three sets of boundary 

conditions. The problems is studied by using the GDQM, 

using the method of directly Substitutes the Boundary 

Conditions into the Governing Equations is referred to as 

(SBCGE). 
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