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Abstract 

This paper study the vibration analysis using the differential quadrature method (DQM) which has very wide applications in 

the field of structural vibration of various elements such as beams, plates, cylindrical shells and tanks. One of the most 

advantages of the DQM is its simple forms for nonlinear formulations. In this paper, the free vibration of uniform and non-

uniform beams resting on fluid layer under axial force under three sets of boundary conditions, that is, simply–simply 

supported (S–S), clamped–clamped supported (C–C) and clamped–simply supported (C–S) were studied using the generalized 

differential quadrature (GDQ). The proposed approach directly substitutes the boundary conditions into the governing 

equations (SBCGE). The approach of directly SBCGE is presented to overcome the drawbacks of previous approaches in 

treating the boundary conditions. The non-dimensional natural frequency and the normalized mode shapes of uniform and non-

uniform beams were obtained. Results show good agreement with the previous analytical solutions. The effect of the varying 

cross section area on the vibration was studied. This work reflects the power of the DQM in solving non-uniform problems. 
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1. Introduction 

Often, numerical approximation methods have to be sought 

to solve vibration problems due to the complexity of the 

problems. Classical techniques such as finite element and 

finite difference methods are well developed and well known. 

These methods can provide very accurate results by using a 

large number of grid points; thus they are computationally 

expensive. In a large number of cases, only a limited number 

of frequencies and mode shapes or a dynamic response at 

only a limited number of points is needed to be found. The 

DQM discretizes any derivative at a point by a weighted 

linear sum of functional values at its neighboring points. The 

key to DQM is the determination of weighting coefficients. 

Based on the idea of integral quadrature the DQM was first 

introduced by Richard Bellman [1, 2]. Bellman et al. [2] 

suggested two methods to determine the weighting 

coefficients of the first order derivative. The first method 

used a simple function as test functions, the second method is 

similar to the first one with the exception that the coordinates 

of grid points should be chosen as the roots of the Nth order 

Legendre polynomial. Unfortunately, when the order of the 

algebraic equation system is large, its matrix is ill-

conditioned. Thus it is very difficult to obtain the weighting 

coefficients for a large number of grid points using this 

method. To overcome the drawbacks, of the above methods, 

Quan and Chang [12], Wen and Yu [17] use Lagrange 

interpolation polynomials as test function, and then obtained 

explicit formulations to determine the weighting coefficient 

for the first and second order derivatives discretization. More 
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generally, Shu and Richards [14], and Shu [15] present the 

generalized differential quadrature (GDQ). In GDQ, the 

weighting coefficients of the first derivative are determined 

by a simple algebraic formulation, and the weighting 

coefficient of the higher order derivatives are determined by 

a recurrence relationship. The major advantage of GDQ over 

DQ is its ease of the computation of the weighting 

coefficients without any restriction on the choice of grid 

points. The pioneer work for the application of the DQ 

method to the general area of structural mechanics. To solve 

these equations, the boundary conditions have to be 

implemented appropriately. For the case where there is only 

one boundary condition at each boundary. However, in some 

cases, there is more than one boundary conditions at each 

boundary, which could result in difficulties in the numerical 

implementation of the boundary conditions. One example is 

the solution of the flexural vibration analysis of a thin beam 

or a plate. The governing equation for bending of a thin beam 

or a plate is a fourth order differential equation with two 

boundary conditions at each boundary. The details of the DQ 

method can be found in reference [16]. 

2. Generalized Differential 
Quadrature Method 

In order to overcome the deficiencies which appears in 

classical DQM, Bellman et al. [2], a generalized differential 

quadrature (GDQ), which was recently proposed by Shu and 

Richards [14, 15] for solving partial differential equations in 

fluid mechanics, will be introduced and applied to solve 

some problems in vibration analysis. In order to find a simple 

algebraic expression for calculating the weighting 

coefficients without restricting the choice of grid meshes, 

Shu chose Lagrange interpolated polynomials as the set of 

tests functions g(x). Shu and Richards [14, 15] gave a 

convenient and recurrent formula for determining the 

derivative weighting coefficients as follows: 

(1)

(1)

(1)

( )
,

( ). ( )

N i

ij

i j N j

M x
C

x x M x
=

−
 j i≠ and , , ,1i j N= …      (1) 

(1)

1

0
M

ij

j

C
=

=∑ , for 1, 2, , .i N= ⋯                  (2) 

Equations (1) provide simple expressions for computing 
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The recurrent formula for determining the derivative 

weighting coefficients as follows: 
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where ���

�	�
 and ���

�	
��
 are the weighting coefficients of the 

m
th

 and the (m−1)
th

 derivatives. The ���

�	�
 can be obtained 

from a relationship similar to equation (7). 

Thus equations (4) and (5) together with equation (1) and 

equation (2) give a convenient and general form for 

determining the weighting coefficients for the derivatives of 

orders one through � − 1. 

3. GDQ Application 

The method of GDQ is used to analyze the free vibration 

problems of uniform and non-uniform beams resting on fluid 

layer under axial force in this section. In this section will 

calculating the natural frequencies and drawing the mode 

shapes of uniform and non-uniform slender beams under 

three sets of boundary conditions, that is, simply–simply 

supported (S–S), clamped–clamped supported (C–C) and 

clamped–simply supported (C–S). The formulations and 

programming are shown to be very straightforward and 

simple. The boundary conditions are easy to be implemented. 

Basic Equations 

1. Fluid Back Pressure Equations 

For an incompressible, irrotational, inviscid fluid of constant 

density γf the pressure of the fluid Pf(x,y,t) satisfies the 

following equation: 

2 2 0,f f fP Pγ∇ + =                               (6) 

where; 

The contact conditions are: 
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The initial conditions are: 

( , 0, 0)
( , 0, 0) .

w x
w x

t

∂=
∂

                    (7c) 

The method of separation of variables is used to determine 

the fluid back pressure (Pf), 

( , , ) ( ) ( ) ( ).fP x y t W x P y f t=               (8) 

Substituting equation (8) in equation (6) yields; 

( , , ) ( ),0 fP x t K W x= ⋅                       (9) 

where; �����, �, �, ℎ� is the fluid linear stiffness. 

2. Beam Equations 

The governing equation of a Bernoulli–Euler beam in 

bending is given by: 
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where EI is the beam’s flexural rigidity, ρA is the mass per 

unit length, L is the length of the beam and �� = ��� is the 

fluid back pressure. 

Normalizing the equation (10) then the non-dimensional 

governing equation of a Bernoulli-Euler beam of varying 

cross-section resting on fluid layer under axial force may be 

written as: 
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where the non-dimensional coefficients is; 
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Equation (11) is a 4
th

 order ordinary differential equation 

with inertia ratio ���� = �1 + ������ . In the case of non-

uniform beam will study two cases of inertia ratio ����; the 

first case �� = 0.5, 
 
�" = 1.0 and the second case

 
�� = −1.0, 

 
�" = 1.0. It requires 4 boundary conditions, two at � = 0, 

and two  at  � = 1. In the present work, the following two 

types of boundary conditions are considered: 

Simply Supported end (S) 
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Clamped Supported end (C) 
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We assume that the computational domain 0 ≤ X ≤ 1 is 

divided by (N – 1) intervals with coordinates of grid points as 

X1, X2,…, XN. With the coordinates of grid points, the GDQ 

weighting coefficients can be computed through equations 

(1), (2), (4), and (5). Then, applying the GDQ method to the 

equation (11) yields; 
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where  #� ,   $ = 1,2, ⋯ , �,  is the functional value at the 

grid  ��,  '�� ,  ��� and  (�� is the weighting coefficient matrix 

of the second, third and forth order derivatives. ��"����� , 

�������� are the second and first order derivatives of ���� 

at  ��  . Similarly, the derivatives in the boundary conditions 

can be discretized by the GDQ method. As a result, the 

numerical boundary conditions can be written as: 
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where n0, n1 may be taken as either 1 or 2. By choosing the 

value of n0 and n1, Equation (20) can give the following four 

sets of boundary conditions, 

n0 = 1, n1 = 1 ـــــــــــــــ clamped–clamped supported 

n0 = 1, n1 = 2 ـــــــــــــــ clamped–simply supported 

n0 = 2, n1 = 1 ــــــــــــــ  simply–clamped supported 

n0 = 2, n1 = 2 ـــــــــــــــ simply–simply supported 

Equations (14a) and (14c) can be easily substituted into the 

governing equation. This is not the case for Equations (14b) 

and (14d). However, one can couple these two equations 

together to give two solutions, #"  and  #)
�, as 
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According to Equations (15), #"  and  #)
� are expressed in 

terms of  #*,  #+, ⋯ , #)
", and can be easily substituted into 

the governing equation (13). It should be noted that Equation 

(14) provides four boundary equations. In total we have N 

unknowns  #�, #", ⋯ , #). In order to close the system, the 

discretized governing equation (13) has to be applied at 

�� − 4�
 
mesh points. This can be done by applying Equation 

(13) at grid points   �*,  �+, ⋯ , �)
". Substituting Equations 

(14a), (14c) and (15) into Equation (13) gives: 
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It is noted that Equation (16) has �� − 4�  equations with 

�� − 4� unknowns, which can be written in matrix eigen-

value form as; 

[ ]{ } { }2  ,A W W= Ω                            (17) 

where -#. = -#*, #+, ⋯ #)
"./ .
 

The Matlab program has been used to solve this eigen-value 

problem and get the normalized frequencies Ω and the 

corresponding mode shapes. 

4. Results and Discussion 

In this section we will analyze the vibration of uniform and 

non-uniform beams resting on fluid layer under axial force, 

we will calculating the natural frequencies and corresponding 

mode shapes of uniform and non-uniform beams under three 

sets of boundary conditions, that is, simply supported–simply 

supported (S–S), clamped–clamped supported (C–C) and 

clamped–simply supported (C–S). By using the differential 

quadrature method, using the method of directly Substitutes 

the Boundary Conditions into the Governing Equations is 

referred to as (SBCGE). 

In the present study, the coordinates of the grid points for the 

beam are chosen according to Chebyshev-Gauss-Lobatto by 

using N sampling as: 

1 1
( ) 1 cos ,

2 1

i
X i

N
π −  = −   −  

 1, 2,3, ,i N= ⋯  

 

Table 1a. First three non-dimensional frequencies of uniform Simply–Simply beam 

Natural Frequency Ω1 Ω2 Ω3 

Exact (Belvins [6], Qiang [13]) for uniform beam 9.8696 39.4784 88.8264 

SBCGM (for uniform beam) 9.8696 39.4784 88.8249 

SBCGM (for uniform beam resting on fluid, (Kf=1)) 9.9201 39.4911 88.8305 

SBCGM (for uniform beam resting on fluid under axial force, (Kf=1, P=1)) 9.4095 39.9880 88.3292 

Table 1b. First three non-dimensional frequencies of uniform Clamped–Clamped beam 

Natural Frequency Ω1 Ω2 Ω3 

Exact (Belvins [6], Qiang [13]) for uniform beam 22.3733 61.6728 120.9034 

SBCGM (for uniform beam) 22.3733 61.6728 120.9034 

SBCGM (for uniform beam resting on fluid, (Kf=1)) 22.3956 61.6809 120.9062 

SBCGM (for uniform beam resting on fluid under axial force, (Kf =1, P=1)) 22.1191 61.3064 120.4965 

Table 1c. First three non-dimensional frequencies of uniform Clamped–Simply beam 

Natural Frequency Ω1 Ω2 Ω3 

Exact (Belvins [6], Qiang [13]) for uniform beam 15.4182 49.9648 104.2477 

SBCGM (for uniform beam) 15.4182 49.9648 104.2471 

SBCGM (for uniform beam resting on fluid, (Kf =1)) 15.4506 49.9748 104.2519 

SBCGM (for uniform beam resting on fluid under axial force, (Kf =1, P=1)) 15.0731 49.5438 103.7999 
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Numerical calculations have been done for both a uniform 

beam ���� = 1 and a non-uniform beam under three sets of 

boundary conditions, namely simply–simply supported (S–S), 

clamped–clamped supported (C–C) and clamped–simply 

supported (C–S). The GDQ results using the present 

approach for implementation boundary conditions are 

compared with the well known exact solution (cf. Belvins) [6] 

and the exact solution (Qiang) [13] for uniform beam. Table 

1 lists natural frequencies for the first three modes of a 

uniform beam resting on fluid layer under axial force. 

Included in Table 1 are SBCGE results for uniform beam, the 

SBCGE results for uniform beam resting on fluid layer, the 

SBCGE results for uniform beam resting on fluid layer under 

axial force, the exact solution (Qiang) [13] and the exact 

solutions (cf. Belvins) [6] for uniform beam. The GDQ 

results are obtained using 15 non-uniformly spaced grid 

points. It can be observed from Table 1 that, the SBCGE 

results agree very well with the exact solutions. Also, It can 

be observed from Table 1 that, the natural frequencies 

increases when the beam resting on fluid layer while 

decreases when the beam resting on fluid layer under axial 

force. 

To demonstrate better the accuracy of the solutions, the mode 

shapes of the first three modes of uniform beam resting on 

fluid layer under axial force were also obtained for three sets 

of boundary conditions by using 15 non-uniformly spaced 

grid points. The mode shapes are presented in Figures 1. 

Also, Table 2, 3 lists natural frequencies of the first three 

modes for a non-uniform beams resting on fluid layer under 

axial force with different stiffness distributions  ���� =

�1 + ������ , the first case �� = 0.5 , �" = 1.0  and the 

second case �� = −1.0, �" = 1.0, respectively. Again, three 

sets of boundary conditions, (S–S, C–C and C–S), were 

considered for each beam. Also, the GDQ results are 

obtained using 15 non-uniformly spaced grid points. The 

varying cross section stiffness S(X) of the beams can be very 

easily implemented from equations (22). The computing 

effort is still small since one has to solve an eigen-value 

problem of a matrix of dimension 11 × 11 only.  Included in 

Table 2, 3 are GDQ results for non-uniform beam (Du, 

(1995)) if available, the SBCGE results for non-uniform 

beam resting on fluid layer and the SBCGE results for non-

uniform beam resting on fluid layer under axial force. It can 

be observed from Table 2, 3 that, the natural frequencies 

increases when the beam resting on fluid layer while 

decreases when the beam resting on fluid layer under axial 

force. 

From the tables, the convergence of this method is seen to be 

very good. Accurate results can be achieved by using very 

few grid points. 

 

Figure (1a). First three mode shapes of uniform Simply-Simply beam 

(Kf=1.0, P=1.0). 

 

Figure (1b). First three mode shapes of uniform Clamped-Clamped beam 

(Kf=1.0, P=1.0). 

 

Figure (1c). First three mode shapes of uniform Clamped-Simply beam 

(Kf=1.0, P=1.0). 

To demonstrate better the accuracy of the solutions, the mode 

shapes of the first three modes of uniform beam resting on 

fluid layer under axial force were also obtained for three sets 

of boundary conditions by using 15 non-uniformly spaced 

grid points. The mode shapes are presented in Figures 2, 3. 

Figures 2 for the first case �� = 0.5, �" = 1.0, and Figures 3 

for the second case �� = −1.0, �" = 1.0. 
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Table 2a. First three non-dimensional frequencies of non-uniform (S–S) beam (α1 = 0.5, α2 = 1) 

Natural Frequency Ω1 Ω2 Ω3 

SBCGM (for non-uniform beam) 11.0035 43.9763 98.9180 

SBCGM (for non-uniform beam resting on fluid, (Kf=1)) 11.0489 43.9877 98.9231 

SBCGM (for non-uniform beam resting on fluid under axial force, (Kf=1, P=1)) 10.5923 43.5357 98.4720 

Table 2b. First three non-dimensional frequencies of uniform (C–C) beam (α1 = 0.5, α2 = 1) 

Natural Frequency Ω1 Ω2 Ω3 

SBCGM (for non-uniform beam) 24.8883 68.6339 134.5731 

SBCGM (for non-uniform beam resting on fluid, (Kf=1)) 24.9084 68.6412 134.5768 

SBCGM (for non-uniform beam resting on fluid under axial force, (Kf=1, P=1)) 24.6599 68.3046 98.4720 

Table 2c. First three non-dimensional frequencies of uniform (C–S) beam (α1 = 0.5, α2 = 1) 

Natural Frequency Ω1 Ω2 Ω3 

SBCGM (for non-uniform beam, Du [10])) 16.9280 55.4090 115.4800 

SBCGM (for non-uniform beam) 16.9279 55.3994 115.8263 

SBCGM (for non-uniform beam resting on fluid, (Kf=1)) 16.9574 55.4085 115.8306 

SBCGM (for non-uniform beam resting on fluid under axial force, (Kf=1, P=1)) 16.6218 55.0250 115.4272 

Table 3a. First three non-dimensional frequencies of non-uniform (S–S) beam (α1 = -1, α2 = 1) 

Natural Frequency Ω1 Ω2 Ω3 

SBCGM (for non-uniform beam) 6.3249 24.6150 53.5371 

SBCGM (for non-uniform beam resting on fluid, (Kf =1)) 6.4035 24.6353 53.5465 

SBCGM (for non-uniform beam resting on fluid under axial force, (Kf =1, P=1)) 5.5306 23.7378 52.5812 

Table 3b. First three non-dimensional frequencies of non-uniform (C–C) beam (α1 = -1, α2 = 1) 

Natural Frequency Ω1 Ω2 Ω3 

SBCGM (for non-uniform beam) 11.9742 34.3839 68.3635 

SBCGM (for non-uniform beam resting on fluid, (Kf=1)) 12.0159 34.3984 68.3708 

SBCGM (for non-uniform beam resting on fluid under axial force, (Kf=1, P=1)) 11.4527 33.6574 67.5535 

Table 3c. First three non-dimensional frequencies of non-uniform (C–S) beam (α1 = -1, α2 = 1) 

Natural Frequency Ω1 Ω2 Ω3 

SBCGM (for non-uniform beam, Du [10])) 10.7390 31.6930 65.3110 

SBCGM (for non-uniform beam) 10.3991 31.1571 63.4720 

SBCGM (for non-uniform beam resting on fluid, (Kf=1)) 10.4471 31.1731 63.4799 

SBCGM (for non-uniform beam resting on fluid under axial force, (Kf=1, P=1)) 9.7553 30.3305 62.5810 

 

 

Figure (2a). First three mode shapes of non-uniform Simply-Simply beam 

(Kf=1.0, P=1.0, α1=0.5, α2=1.0).  

 

Figure (2b). First three mode shapes of non-uniform Clamped-Clamped 

beam (Kf=1.0, P=1.0, α1=0.5, α2=1.0). 
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Figure (2c). First three mode shapes of non-uniform Clamped-Simply beam 

(Kf=1.0, P=1.0, α1=0.5, α2=1.0). 

 

Figure (3a). First three mode shapes of non-uniform Simply-Simply beam 

(Kf=1.0, P=1.0, α1=-1.0, α2=1.0). 

 
Figure (3b). First three mode shapes of non-uniform Clamped-Clamped 

beam (Kf=1.0, P=1.0, α1=-1.0, α2=1.0). 

 

Figure (3c). First three mode shapes of non-uniform Clamped-Simply beam 

(Kf=1.0, P=1.0, α1=-1.0, α2=1.0). 
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