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Abstract 

The sloped rocket launch used in military forces is one of the most important kinds of defence instruments. The rockets 

stability during the firing path especially when they are unguided is very important for firing precision. It completely depends 

on the elementary conditions and oscillations when the firing. In this work, we consider this issue, modelling the problem 

results in a differential equations system of the second order. A meshless method based on radial basis functions (RBFs) is 

applied to solve the underlying system and the numerical results are presented in the figural forms. 
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1. Introduction 

The study of launching device oscillations during the firing is 

necessary for the design of precise and efficient rocket-

launching device systems, especially in the case of unguided 

rockets. We suppose that the launching device and the 

moving rocket form a complex oscillating system that join 

together a sum of rigid bodies bound by elastic elements (the 

vehicle chassis, the tilting platform and the rockets in the 

containers) [1]. Some authors have been considered all forces 

and moments to a real analysis of problem [1, 2]. It results in 

a matrix form of the second order differential equations 

system that describes the matrix form of dynamic equations 

of the rocket-launching device system motion. 

Suppose the independent unknown dynamic variables of the 

rocket-launching device system motion are presented in the 

form of the following column vector [2]: 

��×� = [��	�
���	]� ,																												(1.1) 

where the vehicle chassis translation ��, the vehicle chassis 

rotation 	 (the chassis pitch movement), the vehicle chassis 

rotation �  (the chassis rolling movement), the tilting 

platform rotation �
  (the gyration movement around the  

vertical axes), the tilting platform rotation �	  (the pitch 

movement) and the rocket translation �, are components of �. 

So, one can obtain the matrix form of the second order 

differential equations system that describes the rocket-

launching system components motion: 

���×� = ��×�. ���×� + ��×�. ��×� +��×��. ���×� +
					��×�. ��×�.               (1.2) 

Where ��×� =  !",#$%,&'�,� is the matrix of the velocities 

coefficients, ���×� ; ��×� =  (",#$%,&'�,�  is the matrix of the 
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unknown variables coefficients �. ��×�� =  )",#$ "'�,�
#'�,��

is the 

matrix of the coefficients for the nonlinear combinations of 

the unknown variables: 

���×� =
[��*�	*���	��	*��
* 	…

…	��	��
����	����
�	��	 …
…		�	��
�������	����	 …
…	����
,-�.	* + �.
* ]�

																					 (1.3) 

For more information about the components of matrices (1.3), 

that can be specified randomly, one can see [1, 2]. And, the 

��×� = (0",#)"'�,�
#'�,�

 is the matrix of the external forces that acts 

on the system: 

2�×� = [34�#56]� .																												(1.4) 

The vector (1.4) is used to express the influence of the 

external forces on the motion system. In this vector, the first 

term corresponds to the weight force, the second term 

corresponds to the rocket thrust and the last term to the 

rocket jet force [2]. 

The mathematical model can be used to study any launching 

device like the underlying problem [1, 2]. The rest of the 

paper is organized as follows: In the Section 2, a brief review 

on the radial basis functions (RBFs) is presented. The RBFs 

method is applied to the problem in Section 3. The numerical 

results are shown in the Section 4. 

2. A Brief Review on the RBFs 
Method 

One of the most popular meshless methods is constructed by 

radial kernels as basis called radial basis function (7�� ) 

method. It is (conditionally) positive definite, rotationally 

and translationally invariant. These properties make its 

application straightforward specially for approximation 

problems with high dimensions. Some of the well-known 

RBFs are as follows, 

89:;<=9>?@<( (8A): 	√1 + D*@* 

E)FG@�GH9:;<=9>?@<( (E8A): 	(√1 + D*@*)I� 

J>9��<>) (JK): exp	(−D*@*) 
where@  is the Euclidean distance between any two points 

P, Q ∈ ℝT , <. G. @ = ‖P − Q‖*, [3, 4]. The 7��� include two 

useful characteristics: a set of scattered centers �V =
{P�X , … , PYX } ⊆ ℝT with possibility of selecting their locations 

and existence of a free positive parameter, D, known as the 

shape parameter. 

Assume the D#  be the shape parameter corresponding to 

\6] center P#X , we use following notation for translation of 

7��� at \6] center, 

�# ^, D#$ = � _`^ − #̂X`*, D#a ,							\ = 1, … , �. 
Let data values 0#X = 0(P#X) are given, the function 0(P) will 

be approximated using a linear combination of translates of a 

single 7�� so that, 

0(P) ≃ c(P) = ∑ e#�# P, D#$Y#'� ,																(2.1) 

where the unknown coefficients {e#}#'�Y  will be determined 

by collocating (2.1) at the same set of centers, �V. 

The shape parameter plays an important role in 7���, the 

choice of it controls the shape of the basis functions and 

interchanges the error and stability of interpolation process. 

This behavior is manifested as a classical trade off between 

accuracy and stability or Uncertainty Principle [5] which 

refers to the fact that an RBF approximant cannot be accurate 

and well-conditioned at the same time. 

Two scenarios are available for choosing shape parameters: 

constant shape parameter (�cf) strategies that all of shape 

parameters take the same value and variable shape parameter 

( gcf ) strategies that assign different values to shape 

parameters corresponding to each center. Many scientists and 

mathematicians use �cf�  in 7��  approximations [6, 7, 8] 

because of their simple analysis as well as solid theoretical 

background rather than gcf�, but there are numerous results 

from a large collection of applications [9, 10, 11, 12] 

indicating the advantages of using gcf�. 

3. RBFs Method for Solving the 
Problem 

At the first, one can reduce the system of second order 

differential equations (1.2) to a system of first order 

differential equations by introducing the following 

variables[2]: 

F� = ��                                   (3.1) 

F
� = ���                                 (3.2) 

hij = ��	                               (3.3) 

hik = ��
                              (3.4) 

hlm = ��                             (3.5) 

hlj = �	                            (3.6) 

Using those new variables (3.1)-(3.6), the unknown variables 

vector can be presented as follows [2]: 
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��*×� = [F�hijhikF
nhlmhlj��	�
���	]� .							(3.7) 

Using the notations (3.1)-(3.6) and the vector (3.7), as well as 

the equation (1.2), we obtain the new matrix form of the first 

order differential equations, which describes the motion of 

the rocket-launching device system: 

���*�� � f�*��*. ��*�� � A�*���. ����� � 7�*��. ����,(3.8) 

where, 

                    (3.9) 

Which 0��� , 0����  and 0���  are zeros matrices and as 

mentioned before other blocks are the random matrices that 

their elements are random values imposing the launching 

device during the firing. Here, we solve the matrix system 

(3.8) by applying radial basis functions. The 6 scalar 

equations are necessary to calculate the 6 unknown variables 

that describe the movement of the rocket-launching device 

system during firing ( �, �	 , �
, ��, �, 	 ) while the other 

scalar equations allow to compute the evolutions of the 

differentials of 6 main unknown variables defined with (3.1)-

(3.6) [2]. 

For solving the system matrix (3.8), we approximate the 

components of ��*�� with the 7�� interpolant (2.1) so that: 

�" ≅ ∑ e"#�# ;, D#$Y
#'� ,					< � 1,2, … ,12									(3.10) 

Where D# � 1, \ � 1,… , N  is constant. By differentiating 

from (3.10) the components of ���*�� obtain as follows: 

��" ≅ ∑ e"#��# ;, D#$Y
#'� ,					< � 1,2, … ,12										(3.11) 

Substituting the equations (3.10), (3.11) in (3.8) and 

collocating it in same ) � 1 centers, we obtain 12 system of 

equations with unknown parameters e"# , < � 1,2, … ,12, \ �
1,… , � . Therefore, one can be approximate the unknown 

variables �" , < � 1,2, … ,12 from equations (3.10). 

4. Numerical Results 

In this Section, the proposed method based on 7��� is tested 

for solving the system (3.8). All results carried out with 

Maple software, the approximation of the components of 

��*��are shown in figural form. The 8A function with the 

constant shape parameterD# � 1 for \ � 1,… , N is applied for 

basis functions. Also the number of centers are selected so 

that ) � 6. Based on theoretical and numerical experiments 

[7, 8, 9, 10] it is clear that increasing )  results in more 

accurate results. The matrices f�*��*, A�*���, f�*��  are 

produced with Maple’s Random function that randomly 

assigns elements in interval �0,0.5�  for the underlying 

matrices. 

The differential oscillations parameters of rocket-launching 

device defined by (3.1)-(3.6) also oscillations parameters 

/�, �	 , �
 , ��, � , 	1  are approximated by the proposed 

method and the numerical results are shown in Fig. 1 and Fig. 

2. Notice that by passing time (horizontal axis), the values of 

oscillations parameters tend to zero. It is clear that output 

results be different compared with those are presented for 

other random matrices (3.9), but according to our 

observations, they are similar to presented results for any 

random matrices. 
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Fig. 1. The differential of oscillations parameters of rocket-launching device 
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Fig. 2. The oscillations parameters of rocket-launching device 

Notations and Symbols   

� 
independent unknown dynamic variables of the 

rocket-launching device system motion 

�� vehicle chassis translation 

	 chassis pitch movement 

� chassis rolling movement 

�
 gyration movement around the  vertical axes 

�	 pitch movement 

� rocket translation 

� 
matrix of the coefficients for the nonlinear 

combinations of the unknown variables 

2 external forces that acts on the system 

D shape parameter 

@ Euclidean distance 

�V set of centers 

F� derivative of s 

F
� derivative of �� 

hij derivative of �	 

hlm  derivative of � 

hlj  derivative of 	 
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