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Abstract 

This study investigates the effect of porous media location over the natural convection heat transfer and related entropy 

generation inside a square cavity. A two dimensional lattice Boltzmann model with nine velocities was used to solve the 

problem numerically. The simulations were done for different Rayleigh numbers, porous part configurations and porosities. 

The main differences and gradients in fluid temperature take place near the hot and cold walls. Therefore in models which 

porous part was accumulated near these walls, fluid flow patterns were more affected by porous part and more variations were 

observed in comparison with clear case. In addition, these models were most sensitive to porosity. It was seen that the effect of 

porosity and porous part location on flow field increased for higher Rayleigh numbers. In all models it was illustrated that 

existence of porous media causes an increase in the amount of non-dimensional entropy generation. 
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1. Introduction 

The phenomenon of natural convection in enclosures has 

received considerable attention due to its importance in many 

applications, such as solar collectors, electronic cooling 

devices, building engineering, geophysical applications, etc. 

A review of natural convection in enclosures can be found in 

Oosthuizen and Naylor [1]. Fluid flow and convection heat 

transfer in porous media have been widely investigated 

numerically and experimentally due to its many important 

applications such as petroleum processing, catalytic and 

chemical particle beds, transpiration cooling, packed-bed 

regenerators, heat transfer enhancement, solid matrix or 

micro-porous heat exchangers, and many others. Many 

researchers studied the natural convection heat transfer in 

enclosures filled with porous medium by analytical, 

experimental and numerical methods [2, 3]. El-Amin et al. [4] 

numerically studied the non-Darcy natural convection over a 

vertical flat plate in a fluid-saturated porous medium. 

Narayana et al. [5] investigated the free convection heat and 

mass transfer of non-Newtonian power law fluid from a 

vertical surface embedded in a doubly stratified Darcy porous 

medium. By considering thermal dispersion, natural 

convection heat transfer from a vertical flat plate embedded 

in a thermally stratified non-Newtonian fluid saturated non-

Darcy porous medium was analyzed [6]. Kiwan and Khodier 

[7]used the Darcy-Brinkman-Forchheimer model along with 

Boussinesq approximation for numerical simulation of the 

steady-state, laminar, two-dimensional, natural convection 

heat transfer in an open-ended channel partially filled with an 

isotropic porous. Khan et al. [8] developed novel pool boiling 

enhancement technique for a passive electronics cooling 

design. They tested and reported a combination of surface 

modification by metallic coating and micro-machined porous 

channels attached to the modified surface.  

The lattice Boltzmann method (LBM) is a powerful 
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numerical technique based on kinetic theory for modeling the 

fluid flows and physics in fluids [9]. In the recent years, the 

lattice Boltzmann method has developed as a significant 

success alternative numerical approach for the solution of a 

large class of engineering. Several natural convection 

problems in clear and porous cavities have simulated 

successfully with the different thermal lattice Boltzmann 

models or other Boltzmann-based schemes [9-13]. Peng et al. 

[9] proposed a simplified thermal energy distribution model 

for natural convection in a square cavity at a wide range of 

Rayleigh numbers. Seta et al. [10, 11] used thermal lattice 

Boltzmann method to study natural convection and other 

thermal problems in porous media. D’Orazio et al. [14] to 

simulate the two-dimensional natural convection flow in a 

cavity proposed a thermal lattice Boltzmann model with 

doubled populations, together with a new boundary condition 

for temperature and heat flux. Mezrhab et al. [15] 

numerically investigated the effect of a single and multiple 

partitions on heat transfer phenomena in an inclined square 

cavity, differentially heated. Jami et al. [16] a numerical 

investigation of laminar convective flows in a differentially 

heated, square enclosure with a heat-conducting cylinder was 

carried out by lattice Boltzmann equation for flow field.  

Fluid flow and heat transfer characteristics at the interface 

between a porous medium and an adjacent free fluid have 

received considerable attention due to its wide range of 

engineering applications such as electronic cooling, drying 

processes, thermal insulation, porous bearing, solar collectors, 

and heat pipes. Chandesris and Jamet [17] investigated the 

velocity boundary condition that be imposed at an interface 

between a porous medium and a free fluid. Alazmi and Vafai 

[18] analyzed different types of interfacial conditions 

between a porous medium and a fluid layer. They found five 

primary categories of interface conditions in the literature for 

the fluid flow and four primary categories of interface 

conditions for heat transfer, more information can been found 

in [18]. 

Optimized design of heat systems can be obtained within 

minimizing of entropy generation. Entropy generation is 

associated with thermodynamic irreversibility, which exists 

in all heat transfer processes. This field was attending greatly 

at fields such as cross flow heat exchangers, power plants, 

energy storage systems, and refrigeration usages. For 

optimizing the working conditions, a set of design parameters 

can be obtained for a specified thermal system. Notable 

researches have been done to investigate importance of 

entropy generation in thermal systems. The early works for 

optimization design with minimizing the entropy generation 

have been done by Bejan [19-21]. In Sahin [22] worka 

comparative study of entropy generation inside of ducts with 

different shapes and determination of optimum duct shape 

subjected to isothermal boundary condition have been done. 

Mahmud and Fraser [23] applied the second law analysis to 

fundamental convective heat transfer problems. Al¨boud-

Saouli et al. [24] investigated entropy generation in a laminar 

liquid flow inside a channel made of two parallel heated 

plates under the action of transverse magnetic field. 

Heidary et al. [25] numerically studied the free convection 

and entropy generation in an inclined square cavity filled 

with a porous medium and the effect of a partition on the 

bottom wall. They show that the partition can be used as a 

control element for heat transfer, fluid flow and entropy 

generation. 

In the author previously works [12, 13] the lattice Boltzmann 

method were employed to investigate the effect of the heater 

location on flow pattern, heat transfer and entropy generation 

in a cavity. Results showed that the location of heater and 

Rayleigh number have great effects on the flow pattern and 

temperature field in the enclosure and subsequently on 

entropy generation. Mehrizi et al. [26] investigated heat 

transfer and fluid flow in a porous media cold plate using 

lattice Boltzmann method and they investigated effect of 

porosity on heat transfer from the fins surfaces was studied at 

different Reynolds and Prandtl numbers. Salehi et al. [27] 

placed a set of porous arrays with square cross section at 

specific location of channel and investigated pressure drop 

and Nusselt number in this channel. 

In addition to Lattice Boltzmann Method, analytical methods 

have been used for the study of influence of porous media on 

the fluid flow and heat transfer [28-31]. 

In this study, the effects of porosity, porous medium location 

and Rayleigh number on overall heat transfer and entropy 

generation inside the square enclosure were investigated. A 

2D thermal lattice Boltzmann method with 9 velocities, 

D2Q9, was used to solve the thermal flow problem. The 

simulations in each configuration were made for Rayleigh 

numbers changing from 10
3
 to 10

6
. Then in all simulations, 

entropy generation was calculated and the second law 

analysis was used to compare different geometries.  

2. The Lattice Boltzmann 
Method 

In this study, the D2Q9 model was used. After introducing 

Bhatnagar–Gross–Krook approximation (BGK), the general 

form of lattice Boltzmann equation with external force is 

written as [32]: 
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where c , f , F , τ and t∆ are equilibrium distribution, 

discrete lattice velocity in k direction, external force, lattice 

relaxation time and lattice time step, respectively, and k and 

eq show streaming direction and equilibrium. The 

equilibrium distribution function is calculated with: 
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where u , ρ and ω  are velocity vector, density and 

weighting factor. To consider both the flow and the 

temperature fields, the thermal LBM utilizes two distribution 

functions, f and g , for flow and temperature fields 

respectively. The f distribution function is as same as 

discussed above; the g  distribution function is as below: 
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The corresponding equilibrium distribution functions are 

defined as [12, 13, 32]: 
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Having computed the values of these local distribution 

functions, the flow properties are defined as: 

, ,kiK i k k

k k k

f u Tf gcρ ρ= = =∑ ∑ ∑         (5) 

where the sub-index i denotes the component of the Cartesian 

coordinates and T  is Temperature. 

The temperature differences are small as enough 

( ( )0 1T Tβ − << ) to use the Boussinesq approximation and 

neglecting the radiation heat transfer. β is thermal expansion 

coefficient. In order to incorporate buoyancy force in the 

model, the force term in the Eq. (1) needs to are calculated as 

below in vertical direction (y): 

3k k y kyF g cω βρθ=               (6) 

To simulate the natural convection problems with the LBM, 

it is necessary to determine the characteristic velocity 

( )1 2

V
y

THgβ= ∆  and then to obtain the corresponding kinetic 

viscosity (ν ), thermal diffusivity (α ) and duct width (H). It 

implies that for different Rayleigh numbers both the kinetic 

viscosity and thermal diffusivity cannot be fixed as constants 

in LBM simulations if the characteristic velocity is kept 

constant (more information in Kao et al., [33]).  

The Brinkman-Forchheimer equation which has been used 

successfully in simulation of porous media in wide range of 

porosities, Rayleigh, Reynolds and Darcy numbers [7, 10, 

11]was used for simulation the flow in porous regions, which 

is written as: 
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Where ε , p and ν are porosity, pressure and kinetic 

viscosity . The last term in the right hand in the parenthesis is 

the total body force, F, which was written by using the widely 

used Ergun’s relation [32]. For porous medium, the 

corresponding distribution functions are as same as Eq. (1). 

However, the equilibrium distribution functions are 

calculated by: 
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In Eq. (1) the best choice for the forcing term, kF , to achieve 

correct equation of hydrodynamics in porous zones is taking 

[15]: 

( )
2 4 2

uF c cc .F1 u.F
1

2

k kk
k k

v s s s

:
F

c c c
ρω ε ετ

  = − + −  
   

     (9) 

After improving Eq. (6) as below it can be used for both fluid 

and porous zones: 

 



 International Journal of Mathematics and Computational Science Vol. 1, No. 4, 2015, pp. 214-226 217 

 

( ) ( ) 2 0 1u u 1
u. u F,

1 1eff
p

t

ε
ε κ κ

εε ρ υ
=∂  + ∇ = − ∇ + + =   ≠∂   

∇                   (10) 

The matching conditions at the fluid-porous interface are thus 

satisfied automatically due to this unified governing equation. 

So employing LBM significantly reduces the complexity of 

the traditional methods, which considers two regions 

separately.  

According to above equations, F is related to u , so the Eq. 

(9) is nonlinear for the velocity. Guo and Zhao (2002) 

presented a temporal velocity v  to solve this nonlinear 

problem as follows: 
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where d is diameter. The permeability of porous media is 

calculated by [35]: 
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               (12) 

where pd represents the solid structure particles diameter. is 

hot wall temperature,To proper investigation of conjugate 

convection and conduction heat transfer in porous medium, 

the effective thermal conductivity of the porous media, 
effk , 

should be identified, which was calculated by [36]: 
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where 
fk  is fluid conductivity, 

sk represents solid 

structure conductivity. 

3. Boundary Conditions 

The unknown distribution functions are those toward the 

domain because of the fact that from the streaming process, 

the distribution functions out of the domain are known. 

Regarding the boundary conditions of the flow field, the 

bounce-back scheme is applied for the solid walls which 

assumed no slip. This scheme specifies the outgoing 

directions of the distribution functions as the reverse of the 

incoming directions at the boundary sites. In addition, for the 

temperature field, the local temperature is defined as in Eq. 

(5). The treatment of the temperature population (i.e. the 

distribution function
k

g ) at the adiabatic walls can be 

simplified by applying the bounce-back scheme such that a 

‘‘heat flux-free state” is obtained in each lattice direction for 

the specific nodes. Applying this treatment for adiabatic 

walls yields (for bottom adiabatic boundary): 

2, 2, 1 5, 5, 1 6, 6, 1
,

n n n n n n
g g g g g g− − −

= = =     (14) 

where n  is the lattice on the boundary and 1n − , denotes the 

lattice inside the cavity adjacent to the boundary. For 

isothermal boundaries such as left side, hot wall, the 

unknown distribution functions were evaluates as: 

( ) ( ) ( )1 3 5 7 6 81, 3, 5, 7, 8, 6,
, ,h h hn n n n n n

g g g g g gT T Tω ω ω ω ω ω= + − = + − = + −            (15) 

More information about boundary condition in LBM can be found in [32]. 

4. Entropy Generation 

Volumetric entropy generation due to heat transfer,
'''

T
aS , due to friction, 

'''

PS , and the total volumetric entropy generation, 

'''

genS  are calculated as below: 
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µ is molecular viscosity. The non-dimensional entropy generation rates,
*

PS ,
*

TS  and 
*

genS  in whole domain are defined by: 

''' ''' '''

* * *

2 2 2

, ,
P P genV V V

P P gen

walls walls walls

dV dV dV

Q Q Q

S S S
S S S

T T T
= = =∫ ∫ ∫
ɺ ɺ ɺ

                      (17) 

wallQ is heat transferred from wall. Above equations were 

used in both clear and porous zones.  

5. Computational Domain and 
Validation 

The computational domain is a square cavity in which the left 

and right side walls are isotherms, the hot and the cold walls, 

respectively. Upper and bottom walls are adiabatic. Half of 

the cavity is filled with porous media. The porous part is 

located at different positions in the enclosure (Fig. 1). 

Although the models “LEFT” and ‘RIGHT’ seem to be 

symmetrical, but results illustrated that they are different 

specially regarding to thermal filed and entropy generation. 

 

Figure 1. Schematic of concerning geometries in different models. 

In this study, the Rayleigh number changes between 310 to

610 . For different porosities, 0.4, 0.6, 0.8 and 1.0 (no porous) 

the simulations have been carried out. In all models the 

temperature difference between the hot and the cold walls, 

Prandtl number and permeability were fixed at C�30 , 0.71 

and 10
-7

m
-2

, respectively. In this study, the σ  (in Eq. (13)) 

was set 0.1. In simulations, the variations of Rayleigh 

number were adjusted by changing the value of yg β in Eq. 

(6). 

Local and average Nusselt numbers were defined on 

isothermal walls in y directions as below:  

0

1
,

H

yy

wallh c

H T
Nu Nu Nudy

T T x H

∂= =
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hT is the hot wall temperature, cT is the cold wall 

temperature. The numerical simulation was done by an in 

house LBM code, which was written in FORTRAN. This 

code was validated for the problem of natural convection 

within a 2D clear square cavity. For validation and grid 

independency, the averaged Nusselt numbers were calculated 

at different Rayleigh numbers in different grid points. Table 1 

shows the computed averaged Nusselt numbers in 

comparison with previous works (Kao et al. [33] and De Vahl 

Davis [37]) for the grid point from 8181×  to 111111× . It 

is due to the results of the Table 1; the grid point 101101×
was selected for all numerical simulations. 

Table 1. Comparison of averaged Nusselt numbers computed at different 

Rayleigh numbers using different grids with results presented in De Vahl 

Davis [37] and Kao et al. [33].  

Ra 
3

10  
4

10  
5

10  
6

10  

De Vahl Davis (1983) 1.118 2.243 4.519 8.825 

Kao et al. (2008) 1.113 2.231 4.488 8.696 

Present Study 

111x111 1.130 2.276 4.584 8.851 

101x101 1.131 2.278 4.578 8.833 

81x81 1.134 2.285 4.581 8.770 

Table 2 compares well results for simulation of free 

convection in cavity filled with porous media at different 

Rayleigh numbers with those of Seta et al. [10] and 

Nithiarasu et al. [38]. 

Table 2. Comparison of averaged Nusselt numbers for free convection in 

porous cavity computed at different Rayleigh numbers using different grids 

with results presented in Seta et al.[10] and Nithiarasu et al. [38], Da=0.01, 

Pr=1.0. 

Present Seta et al. [10] 
Nithiarasu et al. 

[34] 
Porosity Ra 

1.391 1.362 1.408 0.4 
410  

1.657 1.633 1.640 0.9 

3.056 2.992 2.983 0.4 
510  

4.001 3.902 3.910 0.9 

5.087 4.923 4.990 0.4 
55 10×  

6.731 6.336 6.700 0.9 

Figure 2 compares well velocity profile in clear and porous 

regions and porous fluid interface in LB model and Alazmi 

and Vafai [18]. 
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Figure 2. Comparison of velocity profile for partially filled channel with 

porous media between present model and Alazmi and Vafai [18]. 

A convergence criterion was defined as below for each 

concerned variable (ϕ ): 

510
10−− <

−

ϕ
ϕϕ

in

inin
               (19) 

which in and ϕ are the iteration number and variable in 

simulation. 

6. Results and Discussion 

In this study, the lattice Boltzmann method is used to 

investigate the effect of porous media location and its 

porosity over the natural convection heat transfer and entropy 

generation inside a square cavity at different Rayleigh 

numbers.  

Streamlines of all models at different porosities at 
5

10=Ra

are drawn in Fig. 3. In Fig 4 the streamlines for different 

Rayleigh numbers at fixed porosity ( 6.0=ε ) are shown. 

The solid matrix of porous media affects the velocity field in 

the cavity, so the porous media location has great effects on 

flow pattern, Figs. 3 and 4.  

 

Figure 3. Streamlines for different models at different porosities for 510Ra = . 

Due to density variation with temperature, the buoyancy 

force acts as motive force for fluid flow in natural convection. 

The main differences in fluid temperature take place near the 

hot and cold walls. So in models in which porous parts are 

accumulated near theses surfaces (models LEFT and RIGHT) 

fluid flow pattern is more affected by porous part and more 

variation is observed in comparison with clear case, also 

these models are most sensitive to porosity (Fig. 3). Due to 

symmetry in porous media location at models MIDDLE and 

SIDES, flow pattern is more similar to clear case. With 

increasing the flow velocity the effect of porous media 

increases (Eqs. 7&9) so it can be observed that in all models 

the effect of porosity and porous part location on flow field 

increases for higher Rayleigh numbers, Fig. 4. 

u/u
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In Fig. 5 the isotherms are drawn for different models at 510Ra = .  

 

Figure 4. Streamlines for different models at different Rayleigh numbers for 0.6ε = .  

 

Figure 5. Isotherms for different models at different porosities for 510Ra = . 

Isotherms for different models at 0.6ε = are shown in Fig. 6. 

The same manner, as discussed for flow pattern, was 

observed for temperature fields; for higher values of 

Rayleigh numbers the porosity effects increase. As illustrated 

in Figs 4 and 5, it is important that porous media is located 

near the left hot wall or the right cold wall, and these models 
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do not treat symmetrically. 

 

Figure 6. Isotherms for different models at different Rayleigh numbers for 0.6ε = . 

Figure 7 shows the effect of Rayleigh number and porosity on averaged Nusselt number ratio in different models.  

 

Figure 7. Averaged Nusselt Number ratio variation with Rayleigh number for different models and different porosities. 
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The averaged Nusselt number ratio is calculated using: 

clear

porous

clear

porous
ratio

coldhot

coldhot

NuNu

NuNu

Nu

Nu
Nu

)(

)(

+

+
==          (20) 

In Fig. 8 the effect of porous part location on averaged 

Nusselt number for different porosities is shown. Porous 

media has two different effects on heat transfer in the 

enclosure, the first one is the presence of solid matrix and its 

weakening effects on the flow pattern and as a consequence 

on the heat transfer (convection). The second one is the 

change (increase) of effective thermal conductivity due to 

solid matrix of porous media and its positive effects on the 

overall heat transfer (conduction).  

 

Figure 8. Averaged Nusselt number ratio variation with Rayleigh number and different porosities. 

In low Rayleigh numbers the dominant heat transfer regime 

is conduction, because of the fact that the velocity of the fluid 

is low, the porous media has less effect on heat transfer, 

therefore the difference between different models and the 

clear cavity comes to minimum (Figs. 7 and 8). By increasing 

the Rayleigh number, the quota of conduction in overall heat 

transfer mechanism reduces and convection becomes as the 

governing heat transfer mechanism. This change takes place 

approximately at
4

10=Ra , so a minimum is observed for 

averaged Nusselt number ratio in Figs. 7 and 8. It is observed 

that more increasing the Rayleigh numbers, leads to 

increasing averaged Nusselt number due to stronger flow 

field in the cavity and more streamlines accumulation near 

the walls (Figs. 3 and 4). 

When porous parts are close to hot or cold walls, the fluids 

velocity decreases so the temperature and velocity gradients 

and the Nusselt number decrease, which leads to the Nusselt 

number ratio less than 1. The model MIDDEL has the largest 

Nusselt number because that porous part is in a distance from 

hot and cold walls, which makes the flow field near the walls 

more similar to clear cavity. At low Rayleigh number, as 

discussed above, the governing heat transfer mechanism is 

conduction, so the porous media increases the effective 

thermal conductivity, and higher heat transfer and Nu number 

ratio are achieved for this model rather than clear cavity 

(averaged Nusselt number greater than 1 in Fig. 7 and 8). 

In Fig. 8, a comparison has been made between different 

models in different porosities. The LEFT and RIGHT models 

are seen as an accumulation of porous materials besides of 

hot or cold walls, therefore Nusselt numbers are similar. In 

the MIDDEL model the porous parts are far from the hot and 

cold walls. Therefore, their Nusselt number is similar to clear 

model. However, due to the accumulation of porous parts 

nearby both the hot and cold walls, the SIDES model has the 

least Nusselt number in comparison to clear model.  

In all models, it can be seen that higher values of porosity 

leads to lower values of Nusselt number. It is due the fact that 

increasing the porosity causes lower effective thermal 

conductivity and heat transfer rate (conduction) near the 

walls. It can be seen that for higher values of Rayleigh 

number the differences between the models is more 

considerable.  

The average entropy generation ratio is calculated using: 

*

*

*

gen porous

gen ratio

gen clear

S
S

S

−
−

−

=                  (21) 

Figure 9 shows the change of non-dimensional entropy 

generation ratio in different models with Rayleigh number 

for different porosities.  

In Fig. 10 the change of non-dimensional entropy generation 

is compared between different models for different porosities. 

According to Figs. 9 and 10, the models that porous part is 

nearby the hot wall (SIDE and LEFT models) are similar, the 



 International Journal of Mathematics and Computational Science Vol. 1, No. 4, 2015, pp. 214-226 223 

 

non-dimensional entropy generation decreases due to an 

increase in porosity and the Rayleigh number. This amount in 

MIDDLE and SIDES models decreases when the non-

dimensional entropy generation increases and in MIDDLE 

model when the Rayleigh number increases the non-

dimensional entropy generation also increases and RIGHT 

model this amount first decreases then increases. 

 

Figure 9. Averaged non-dimensional entropy generation ratio variation with Rayleigh number for different models and different porosities. 

 

Figure 10. Averaged non-dimensional entropy generation ratio variation with Rayleigh number and different porosities. 

In all models, the porous media causes an increase in the 

amount of non-dimensional entropy generation. 

7. Conclusion 

Because of density variation of fluid with temperatures, the 

buoyancy force acts as motive force for fluid flow in natural 

convection. The main differences in fluid temperature take 

place near the hot and cold walls; as a consequence, in 

models in which porous parts are accumulated near theses 

surfaces, the fluid flow pattern is more affected by porous 

part and more variation is observed in comparison with clear 
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enclosure. In addition, these models are most sensitive to 

porosity. Due to symmetry in porous media location at 

models MIDDLE and SIDES, flow patterns are more similar 

to clear case. With increasing the flow velocity, the effect of 

porous media is increased, as a result it can be observed that 

in all models the effect of porosity and porous part location 

on flow field increases for higher Rayleigh numbers. It can 

be seen that increasing the Rayleigh number leads to 

increasing averaged Nusselt number due to change in flow 

pattern. In low Rayleigh numbers the dominant heat transfer 

regime is conduction, because the velocity of the fluid is low, 

the porous media has fewer effect on heat transfer, therefore 

the difference between different models and the clear cavity 

comes to minimum. The LEFT and RIGHT models can be 

seen as accumulation of porous materials adjacent to hot or 

cold walls, therefore Nusselt numbers are similar. In 

MIDDEL model because the porous mediums are relatively 

far from the hot and cold walls, the Nusselt number is similar 

to clear model. But the SIDES model has the smallest 

amount of Nusselt number in comparison to clear model 

because of the accumulation of porous material nearby both 

the hot and cold walls. In all models the existence of porous 

media causes an increase in the non-dimensional entropy 

generation. All these conclude to the fact that porous media 

have significant effects on the flow and thermal fields, heat 

transfer and so on entropy generation. 

Nomenclature 

c  - Discrete lattice velocity in direction, [ ]k  

d  - Diameter [ ]m  

F  - External force  

f  - Equilibrium distribution. 

H  - Duct width [ ]m  

h  - Convective heat transfer coefficient, [ ]12 −− KWm  

K  - Permeability [ ]2−m  

k  - Thermal conductivity [ ]11 −− KWm  

Kn  - Knudsen number, [ ]−  

Ma  - Mach number, [ ]−  

Nu  - Local Nusselt number )/( fkhx= , [ ]−  

p  - Pressure, [ ]Pa  

Pr  - Prandtl number )/( αν= , [ ]−  

Q  - Heat Transfer, [ ]W  

Ra  - Rayleigh number )/( 3 ανβ THg y ∆= , [ ]−  

S ′′′  - volumetric entropy generation rate, [ ]13 −− KWm  

T  -Temperature, [ ]K  

u  - Velocity vector, 1
ms

−    

vu,  - Horizontal and vertical components of velocity, 

[ ]1−ms  

V  - Characteristic velocity of natural convection

( )1 2

y
THgβ ∆ , [ ]1−ms  

Greek Symbols 

α  - Thermal diffusivity, [ ]2m  

β  - Thermal expansion coefficient [ ]1−K  

ε  - Porosity  

ϕ  - Variable in simulation 

µ  - Molecular viscosity [ ]11.. −− smkg  

ν  - Kinetic viscosity, [ ]2m  

ρ  - Density, [ ]3. −mkg  

τ  - Lattice relaxation time 

ω  - Weighting factor 

t∆  - Lattice time step 

Subscripts and Superscripts 

0  - Reference value 

c  - Cold 

gen  - Total generated 

h  - Hot 

in  - Iteration number 

T  - Due to heat transfer 

P  - Due to friction 

p  - Particle 

k  - Streaming direction 

i  - i direction 

y  - y direction 

eq  - Equilibrium 
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