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Abstract 

In this study, we examine the effect of variable viscosity on steady MHD free convection flow of an electrically conducting 

fluid over a porous plate, in the presence of suction and injection. The system of coupled nonlinear partial differential 

equations governing the non-similar flow has been solved numerically using implicit finite difference scheme along with a 

quasilinearization technique. Computations are performed and numerical results are displayed graphically to illustrate the 

influence of the different physical parameters such as magnetic field parameter, viscosity variation parameter, suction and 

injection on the flow field and heat transfer characteristics. 
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1. Introduction 

Convective boundary-layer flows are often controlled by 

injecting or withdrawing fluid through a porous bounding 

heated surface. This can lead to enhanced heating or cooling 

of the system and can help to delay in change over from 

laminar to turbulent flow. The case of uniform suction and 

blowing (injection) through an isothermal vertical wall was 

treated first by Sparrow and Cess [1]; they obtained a series 

solution which is valid near the leading edge. This problem 

was considered in more detail by Merkin [2], who obtained 

asymptotic solutions, valid at large distances from the 

leading edge, for both suction and blowing (injection). Using 

the method of matched asymptotic expansions, the next order 

corrections to the boundary-layer solutions for this problem 

were obtained by Clarke [3], who extended the range of 

applicability of the analyses by not invoking the usual 

Boussinesq approximation. The effect of strong suction and 

blowing from general body shapes which admit a similarity 

solution has been studied by Merkin [4]. A transformation of 

the equations for general blowing (injection) and wall 

temperature variations has been given by Vedhanayagam et. 

al. [5]. The case of heated isothermal horizontal surface with 

transpiration has been discussed in some details first by 

Clarke and Riley [6] and then by Lin and Yu [7]. Kumaran 

and Pop [8] have studied the steady free convection boundary 

layer over a vertical flat plate embedded in a porous medium. 

Further, the effect of magnetic field on free convection flow 

over a plate with suction and injection is discussed by 

Jayakumar.et.al [9]. However, in many cases of practical 

interest, it is essential to study the effect variable viscosity on 

the momentum and transport phenomena along with an 

applied magnetic field. Eswara and Bommaiah [10] studied 

the effect of variable viscosity on laminar flow due to point 

sink. Recently the effect of temperature dependent viscosity 

on two-dimensional and axisymmetric has been discussed by 

Jayakumar et.al. [11]. 
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The aim of present discussion is to study, the effects of 

variable viscosity on the MHD non-similar free convection 

flow of an electrically conducting fluid over a plate with 

suction and injection. The governing equation of mass, 

momentum and energy  

were transformed into two point boundary value problem and 

the nonlinear equations along with proper boundary 

conditions are solved using an implicit finite difference 

scheme. 

2. Problem Formulation 

Consider a semi-infinite porous plate at a uniform 

temperature Tw0 which is played vertical in a quiescent fluid 

of infinite extent maintained at constant temperature T∞. The 

plate is fixed in a vertical position with leading edge 

horizontal. The physical co-ordinates (x,y) are chosen such 

that x is measured from the leading edge in the stream wise 

direction and y is measured normal to the surface of the plate. 

The co-ordinate system and flow configuration are shown in 

Fig.1. 

 

Figure 1. The coordinate system and the physical model 

Further, the fluid added (injection) or removed (suction) is 

the same as that involved in flow. A magnetic field B0 is 

applied in y-direction normal to the body surface and it is 

assumed that magnetic Reynolds number is small. The Hall 

current and displacement current effects have been neglected. 

The fluid is assumed to have constant physical properties 

except for the fluid viscosity (µ) which is assumed to be an 

inverse linear function of the temperature (T) (see Lai and 

Kulacki [12]), viz. 
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Under the aforesaid assumptions with Boussinesq’s 

approximation, the equations governing the flow are: 
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Introducing the following transformations 
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to Eqns.(1) – (3), we see that the continuity Eq.(1) is 

identically satisfied and Eqns.(2) – (3) reduces, respectively, 

to 
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Where 
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It is remarked here that the upper sign in Eqns.(9) and (10) is 

taken throughout for suction and the lower sign for blowing 

(injection). 

The transformed boundary conditions are 

F = 0; G = 1 at η = 0 

F = 0; G = 0 as η→ ∞ for ξ ≥ 0                  (12) 

The local skin friction parameter and heat transfer parameter 

can be expressed as 
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Here, u and v are velocity components in x and y direction; F 

is dimensionless velocity; T and G are dimensional and 

dimensionless temperatures, respectively; ξ,η, t* are 

transformed co-ordinates; ψ and f are the dimension and 

dimensionless stream functions respectively; Pr is the Prandtl 

number; ν, α are respectively kinetic viscosity and thermal 

diffusivity; w0 and ∞ denote conditions at the edge of the 

boundary layer on the wall at time t=0 and in the free stream 

respectively and prime ( )'  denotes derivatives with respect 

to η. The dimensionless temperature G and viscosity ratio 

µ/µ∞ are redefined as follows: 
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where Ge is constant, called viscosity variation parameter, 

which is defined by 
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and its value is determined by viscosity characteristics of the 

fluid under consideration and operating temperature 

difference ∆T=Tw - T∞. It may be remarked here that, if Ge is 

large (i.e.,Ge→∞) the effect of variable viscosity can be 

neglected. On the other hand, for a smaller value of Ge, 

either the fluid viscosity changes markedly with temperature 

or operating temperature difference is high. In either case, the 

variable viscosity effect is expected to become very 

significant. Also, it may be noted here that, liquid viscosity 

varies differently with temperature than that of gas and 

therefore, it is important to note that Ge<0 for liquids and 

Ge>0 for gases when the temperature difference ∆T is 

positive. It is worth mentioning here that when M = 0.0, γ→0 

i.e., µ = µ∞, then Ge→∞ and Eqns.(9) and (10) reduces to 
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which are exactly same as those of Merkin [2]. Also, if M ≠ 

0.0 and Ge→∞ then the Eqns. (9) and (10) reduces to 
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which are exactly same as those of Jayakumr et al. [9]. 

3. Method of Solution 

The coupled non-linear partial differential Eqns.(9) and (10) 

under the boundary conditions (12) have been solved 

numerically using an implicit finite difference scheme in 

combination with the quasilinearization technique [13,14]. 

Quasi-linearisation technique can be viewed as a 

generalization of the Newton-Raphson approximation 

technique in functional space. 

Applying quasilinearzation technique, we replace the non-

linear partial differential equations (9) and (10) by an 

iterative sequence of linear equations as follows: 
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where the coefficient functions with iterative index k are 

known and functions with iterative index k+1 are to be 

determined. The boundary conditions become 
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The coefficients in (21) and (22) are given by 
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The equations (21) and (22) along with boundary conditions 

(23) were expressed in difference form, considering central 

difference scheme in −η direction. In each iteration step, 

equations were then reduced to a system of linear algebraic 

equations with a block tri-diagonal structure which is later 

solved using [15]. To ensure the convergence of the 

numerical solution to the exact solution, step size η∆  is 

optimized and taken as 0.01. The results presented here are 

independent of the step size in −η direction at least up to the 

four decimal place The value of ∞η (i.e., the edge of the 

boundary layer) has been taken as 5.0 throughout the 

computation. Iteration is employed to deal with the nonlinear 

nature of the governing equations to become linear, locally. A 

convergence criterion based on the relative difference 

between the current and the previous iteration values of the 

velocity and temperature gradients at wall are employed. The 

solution is assumed to have converged and the iterative 

process is terminated when  

( ) ( ) ( ) ( )( k 1 ) ( k ) ( k 1 ) ( k ) 4
w w w w| F F |, | G G | 10Max

+ + − ′ ′ ′ ′− − <
 

 

4. Results and Discussion 

In order to assess the accuracy of the method which we have 

used, results were obtained for M=0.0 by solving Eqns. (12) 

and (13). The skin friction and heat transfer parameters 

( )Qw ,τ  for suction [See Fig.2 (a)] and injection [See Fig.2 

(b)] have been obtained and compared with those of Merkin 

[2]. Further, the steady state skin friction results with 

magnetic field  M ≠ 0 are compared with those of Jayakumar 

et al.[9] [See Fig.3(a) for suction] and [See Fig.3(b) for 

injection] by solving the Eqns.(14) and (15). Our results are 

found to be in excellent agreement, with the above-

mentioned studies. 

 

 

Figure 2. Comparison of skin friction and heat transfer parameters with 

Merkin [2] for (a) Suction (b) Blowing (injection) 
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Figure 3. Comparison of skin friction parameter for (a) Suction (b) Injection 

with those of Jayakumar et al. [9] 

4.1. Suction 

 

 

Figure 4. The effect of magnetic field (M) on (a) skin friction and (b) 

velocity in presence of viscosity variation parameter 

The effect of magnetic field (M) on skin friction and velocity 

in presence of viscosity variation parameter (Ge) is displayed 

in Fig.4. As M increases, it is found that τw decreases. This is 

because the variation of M leads to the variation of the 

Lorentz force due to the magnetic field, and the Lorentz force 

produces more resistance to phenomena. In fact, skin friction 

decreases 6% at ξ = 1.0 in the range of M (0.0 ≤ M ≤ 1.0). 

Also, it is found that the thickness of momentum boundary 

layer decreases by 3% with the increase of magnetic 

parameter in the same range of M. 

 

 

Figure 5. The effect of viscosity variation parameter (Ge) on (a) skin friction 

and (b) Velocity in presence of magnetic field 

Fig.5 depicts the effect of viscosity variation parameter (Ge) 

on both skin friction parameter and velocity with magnetic 

parameter M. It is observed from this figure that the skin 

friction parameter increases with the increase of Ge. 

Indeed,τw increases 21.6 % at  ξ = 1.0 in the range of Ge (1.5 

≤ Ge ≤ 3.5). As the parameter Ge increases the velocity 

inside the momentum boundary layer uniformly increases as 

seen in the figure5 (b). 
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Figure 6. The effect of viscosity variation parameter (Ge) on (a) heat 

transfer and (b) temperature in presence of magnetic field 

The influence of viscosity variation parameter (Ge) on heat 

transfer (Q) and temperature (G) is presented in figure 6. It is 

clear from the diagram that both heat transfer and 

temperature increases uniformly with the increase of Ge. 

4.2. Injection 

For the injection case, the corresponding results for skin 

friction parameter τw and velocity F are presented in Figs. 7 

and 8 respectively. It is observed that the results are found to 

be qualitatively similar but quantitatively different as 

compared to suction. Actually, τw decreases about 5% from 

M=0.0 to M=1.0 at ξ = 1.0, while percentage of decrease in F 

is about 4.5% at η = 1.0 in the range 0.0 ≤ M ≤ 1.0. [See 

Fig.7]. Also, the skin friction increases about 15.9% from Ge 

= 1.5 to Ge = 3.5 at ξ = 1.0. The corresponding increase in 

the thickness of the momentum boundary layer is about 5.4% 

in the range 1.5 ≤ Ge ≤ 3.5. [See Fig.8]. 

 

 

Figure 7. The effect of magnetic field (M) on (a) skin friction and (b) 

Velocity in presence of viscosity variation parameter 

 

 

Figure 8. The effect of viscosity variation parameter on (Ge) (a) skin friction 

and (b) Velocity in presence of magnetic field 

It is remarked here that the heat transfer parameter Q and 

temperature field (G) is little affected by the viscosity 

variation parameter (Ge) and magnetic field (M) as it is 

present only in the momentum equation. 

5. Conclusions 

From the present investigation, skin friction and heat transfer 

parameters are found to decrease with the increase of 

magnetic field both, in the presence of suction as well as 

injection, while the effect of viscosity variation parameter is 

just opposite. Also, the momentum and thermal boundary 

layer thicknesses are found to decrease with the increase of 

magnetic field and, increase with the increase of viscosity 

variation parameter. 
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