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1. Introduction 

Thermohaline convection or more generally double diffusive 

convection has matured into a subject possessing fundamental 

departure from its counterpart, namely single diffusive 

convection, and is of direct relevance in the fields of 

oceanography, astrophysics, limnology and chemical 

engineering etc. For a broad and a recent view of the subject 

one may be referred to Brandt and Fernando [1]. Two 

fundamental configurations have been studied in the context 

of thermohaline instability problem, the first one by Stern [2] 

wherein the temperature gradient is stabilizing and the 

concentration gradient is destabilizing and the second one by 

Veronis [3] wherein the gradient is destabilizing and the 

concentration gradient is stabilizing. The main results derived 

by Stern and Veronis for their respective configurations are 

that both allow the occurrence of a stationary pattern of 

motions or oscillatory motions of growing amplitude provided 

the destabilizing concentration gradient or the temperature 

gradient is sufficiently large. However, stationary pattern of 

motion is the preferred mode of setting in of instability in case 

of Stern’s configuration whereas oscillatory motions of 

growing amplitude are preferred in Veronis’ configuration. 

More complicated double-diffusive phenomenon appears if 

the destabilizing thermal/concentration gradient is opposed by 

the effect of magnetic field or rotation. 

The derivation of upper limits for the linear growth rate of a 

disturbance in thermohaline convection problems is an 

important problem especially when both the boundaries are 

not dynamically free so that exact solutions in closed form are 

not obtainable and one has to depend on numerical solutions 

which are rather laborious. In this situation, derivation of 

certain integrals estimates acquire great importance, for, they 

enable us to obtain sufficient conditions of stability and define 

a possible range of parameters for growing perturbations in 

case of instability. For further study one may be referred to 

Banerjee et al. [4] and Gupta et al. [5]. Mohan and Anjula [6] 

derived upper limits for the complex growth rate of an 

arbitrary oscillatory perturbation which may be neutral or 

unstable for Veronis’ and Stern’s thermohaline configurations 

which in particular yield sufficient conditions for the validity 

of “principle of exchange of stabilities” for these 

configurations and their results are uniformly valid for all 

combinations of dynamically free or rigid boundaries .Mohan 

[7] investigated the problem of thermohaline convection 
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coupled with cross-diffusions for the Veronis type 

configuration and derived a semi-circle theorem that 

prescribed upper limits for the complex growth rate of 

oscillatory motions of neutral or growing amplitude in such a 

manner that it naturally culminates in sufficient conditions 

precluding the non- existence of such motions. 

All the above researchers have considered the case of two 

component systems. However, it has been recognized later on 

by Griffiths [8], Turner [9] that there are many situations 

wherein more than two components are present. Examples of 

such multiple diffusive convection fluid systems include the 

solidification of molten alloys, geothermally heated lakes, 

magmas and their laboratory models and sea water. Griffith 

[8], Pearlstein et al. [10] and Lopez [11] have theoretically 

studied the onset of convection in a horizontal layer, of infinite 

extension of a triply diffusive fluid (where the density depends 

on three independently diffusing agencies with different 

diffusivities). These researchers found that small 

concentrations of a third component with a smaller diffusivity 

can have a significant effect upon the nature of diffusive 

instabilities and oscillatory and direct salt finger modes are 

simultaneously unstable under a wide range of conditions, 

when the density gradients due to components with the 

greatest and smallest diffusivity are of same signs .Some 

fundamental differences between the double and triply 

convection are noticed by these researchers diffusive. Among 

these differences, one is that if the gradients of two of the 

stratifying agencies are held fixed ,then three critical values of 

the Rayleigh number of the third agency are sometimes 

required to specify the linear stability criteria(only one critical 

number is required in double diffusive convection ) . Another 

difference is that the onset of convection may occur via a 

quassiperiodic bifurcation from the motionless basic state. 

Terrones [12] studied the effect of cross-diffusion on the 

stability criteria in a triply diffusive system. Ryzhkov and 

Shevtsova [13] studied the case of multicomonent mixture 

with application to thermo gravitational column. Ryzhkov and 

Shevtsova [14] also studied the long wave instability of a 

multicomponent fluid with Soret effect. Rionero [15] studied a 

triply convective diffusive fluid mixture saturating a porous 

horizontal layer, heated from below and salted from above and 

obtained sufficient conditions for inhibiting the onset of 

convection and guaranteeing the global nonlinear stability of 

the thermal conduction solution. Rionero [16] also 

investigated the multicomponent diffusive convection in 

porous layer for the more general case when heated from 

below and salted by m salts partly from above and partly from 

below. Zhao, Wang and Zhang [17] investigated the problem 

of triply diffusive convection in Maxwell fluid saturated 

porous layer and obtained the criterion for the onset of 

stationary and oscillatory convection. Shivkumara and Kumar 

[18] investigated the bifurcation analysis of a triply diffusive 

coupled stress fluid in terms of a simplified model consisting 

of seven nonlinear ordinary differential equations. 

Shivkumara and Kumar [19] have studied the linear and 

weakly nonlinear triple diffusive convection in a couple stress 

fluid layer. 

Motivated by these considerations, the present paper derives 

semi-circle theorems that prescribe upper limits for the 

complex growth rate of oscillatory motions of neutral or 

growing amplitude in such a manner that it naturally 

culminates in sufficient conditions precluding the non- 

existence of such motions in a triply diffusive fluid layer with 

one of the components as heat with diffusivity κ . Further, the 

results derived herein are uniformly valid for quite general 

nature of bounding surfaces. 

2. Mathematical Formulation 
and Analysis 

A viscous and finitely heat conducting Boussinesq fluid is 

statically confined between two horizontal boundaries z=0 

and z=d of infinite horizontal extension and finite vertical 

depth which are respectively maintained at uniform 

temperatures 0 1 0 1( )T and T T T>
 

and uniform concentrations

10 20 11 10 21 20, ( ), (, )S S and S S S S< < . 

Following Griffiths [8] and Banerjee et al. [4], the relevant 

governing equations and boundary conditions for the triply 

diffusive convection in their non-dimensional form are given 

by: 

( )2 2 2 2 2 2 2
1 2T s s

p
D a D a w R a R a R aθ ϕ ϕ

σ
  ′− − − = − − 
 

   (2.1) 

( )2 2D a p wθ− − = − ,                  (2.2) 

2 2
1

1 1

p w
D a ϕ

τ τ
 

− − = − 
 

,                (2.3) 

2 2
2

2 2

p w
D a ϕ

τ τ
 

− − = − 
 

,               (2.4) 

together with the boundary conditions 

1 20w Dwθ ϕ ϕ= = = = =  at z =0 and z =1    (2.5) 

(both boundaries rigid) 

or  

2
1 20w D wθ ϕ ϕ= = = = =   at z =0 and z =1  (2.6) 

(both boundaries dynamically free) 

or 1 20w Dwθ ϕ ϕ= = = = =  at z =0 
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and  

2
1 20w D wθ ϕ ϕ= = = = =  at  z =1 .       (2.7) 

(lower boundary rigid and upper boundary dynamically free) 

or 2
1 20w D wθ ϕ ϕ= = = = =  at z =0 

and  

1 20w Dwθ ϕ ϕ= = = = =  at z =1.            (2.8) 

(lower boundary free and upper boundary dynamically rigid) 

The meanings of symbols from physical point of view are as 

follows; 

z is the vertical  coordinate, 
d

D
dz

≡ is differentiation along the 

vertical direction, a
2
 is square of horizontal wave number, σ 

0>  is the Prandtl number, 1 20 0andτ τ> >  are the Lewis 

numbers for the two concentrations 1 2S and S respectively, TR  

is the thermal Rayleigh number, S SR and R′  are the 

concentration Rayleigh numbers for the two concentration 

components, p = pr + ipi is complex growth rate such that pr 

and pi are real constants, w is the vertical velocity, θ  is the 

temperature, 1 2andϕ ϕ  are the respective concentrations of 

the two components. 

We now prove the following theorem: 

Theorem 1: If (p, w, θ , ϕ ), p = pr + ipi, pr ≥ 0 0ip ≠  is a non 

-trivial solution of equations (2.1)–(2.4) together with one of 

the boundary conditions (2.5)-(2.8) with, 0TR > , 0SR >  

0SR′ > , then 

( )

2

2
1 2

1

2 2

TR M
p

σ
π τ τ σ

−<
+ +

, 

where 

4
1 2

8

27 ( 2 )

TR
M

σ
π τ τ σ

=
+ +

. 

Proof: Multiplying equation (2.1) by w* (the complex 

conjugate of w) and integrating the resulting equation over the 

vertical range of z, we get 

1

2 2 2 2

0

1 1 1

2 2 * 2
1 2

0 0 0

*( ) ( )

* * .T S S

p
w D a D a w dz

R a w dz R a w R a w dz

σ

θ ϕ ϕ

− − −

′= − −

∫

∫ ∫ ∫

     (2.9) 

Taking the complex conjugate of equations (2.2) (2.3) and (2.4) 

and using the resulting equations in equation (2.9), we get 

1

2 2 2 2

0

1 1

2 2 2 2 2 2
1 1 1

10 0

1

2 2 2
2 2 2

20

*( ) ( )

*
( ) * * ( ) .

*
( ) * .

T S

S

p
w D a D a w dz

p
R a D a p dz R a D a

p
R a D a dz

σ

θ θ τ ϕ ϕ
τ

τ ϕ ϕ
τ

− − −

 
 = − − − + − −  

 

 ′+ − − 
 

∫

∫ ∫

∫

 (2.10) 

Integrating equations (2.10) by parts a suitable number of 

times, using either of the boundary conditions (2.5)-(2.8) and 

one of the following inequalities 

21 1

2

0 0

* ( 1)n n nD dz D dzψ ψ ψ= −∫ ∫ ,            (2.11) 

where, 

,ψ θ ϕ= =  for n = 0, 1 and ,wψ =  for n = 0, 1, 2, 

we have 

( ) ]( ( ]

( ]

1 1 1 1
*2 2 2 2 2 2 2 2 2 2 22 2 4 2 2 2 * 2 2

1 1 1 1
1

0 0 0 0

1
*

2 2 22 2
2 2 2 2

2
0

2 ) )

)

T S

S

p p
D w a Dw a w dz Dw a w dz R a D a p dz R a D a dz

p
R a D a dz

θ θ θ τ ϕ ϕ ϕ
σ τ

τ ϕ ϕ ϕ
τ

 
+ + + + = + + − + +  

 

′− + +

∫ ∫ ∫ ∫

∫
 

Equating the real and imaginary parts of equation (2.11) equal to zero and using 0ip ≠ , we get 

( ) ]( ( ]

( ]

1 1 1 1
2 2 2 2 2 2 2 2 2 2 22 2 4 2 2 2 2 2

1 1 1 1
1

0 0 0 0

1

2 2 22 2
2 2 2 2

2
0

2 ) )

) 0

r r
T r S

r
S

p p
D w a Dw a w dz Dw a w dz R a D a p dz R a D a dz

p
R a D a dz

θ θ θ τ ϕ ϕ ϕ
σ τ

τ ϕ ϕ ϕ
τ

 
+ + + + − + + + + +  

 

′+ + + =

∫ ∫ ∫ ∫

∫   (2.12) 

and 



230 Hari Mohan and Pardeep Kumar:  A Mathematical Theorem in Triply-Diffusive Convection  

 

1 1 1 1

2 2 2 2 22 2 2 2
1 2

0 0 0 0

1
( ) 0T S SDw a w dz R a dz R a R a dzθ ϕ ϕ

σ
′+ + − − =∫ ∫ ∫ ∫                   (2.13) 

Multiplying equation (2.13) by rp and adding the resulting equation to (2.12), we have 

[ ]( ( ]

( ]

1
2 2 22 2 4

0

1 1

2 2 2 22 2 2 2
1 1 1

0 0

1 1

2 2 2 22 2 2
2 2 2

0 0

2

) )

2
) ) 0

T S

r
S

D w a Dw a w dz

R a D a dz R a D a dz

p
R a D a dz Dw a w dz

θ θ τ ϕ ϕ

τ ϕ ϕ
σ

 
+ + 

 

− + + +

′+ + + + =

∫

∫ ∫

∫ ∫

            (2.14) 

Equation (2.13) implies that 

1 1 1

2 2 2 22 2 2
1 2

0 0 0

1
( ) S SDw a w dz R a dz R a dzϕ ϕ

σ
′+ < +∫ ∫ ∫      (2.15) 

Since  1 2, , ,w θ ϕ ϕ  vanish at z = 0 and z = 1, therefore 

Rayleigh-Ritz inequality [20] yields 

1 1

2 22

0 0

Dw dz w dzπ≥∫ ∫               (2.16) 

1 1

2 22

0 0

D dz dzθ π θ≥∫ ∫             (2.17) 

1 1

2 22
1 1

0 0

D dz dzϕ π ϕ≥∫ ∫               (2.18) 

1 1

2 22
2 2

0 0

D dz dzϕ π ϕ≥∫ ∫             (2.19) 

Combining inequalities (2.15) and (2.16), we get 

1 1 1 1
2 2 2 2

2 2 2 22 2
1 2

0 0 0 0
2 2

S S
a a

w dz w dz R a dz R a dz
π π ϕ ϕ

σ σ
+ + ′+ ≤ +∫ ∫ ∫ ∫  (2.20) 

or 

1 1 1 1
2 2 2 2

2 2 2 22 2
1 2

0 0 0 0

0
2 2

S S
a a

w dz R a dz w R a dz
π πϕ ϕ

σ σ

   
+ +   ′− + − ≤   

   
   

∫ ∫ ∫ ∫  

which implies that 

1 1
2 2

2 22
1

0 0
2

S
a

w dz R a dz
π ϕ

σ
+ ≤∫ ∫               (2.21) 

And 

1 1
2 2

2 22
2

0 0
2

S
a

w R a dz
π ϕ

σ
+ ′≤∫ ∫                (2.22) 

Also upon using inequalities (2.18) and (2.19) respectively, 

we have 

21 1

2 22 2 2 2 2
1 1 1

0 0

( ) ( )S SR a D a dz a R a dzϕ ϕ π ϕ+ ≥ +∫ ∫      (2.23) 

21 1

2 22 2 2 2 2
2 2 2

0 0

( ) ( )S SR a D a dz a R a dzϕ ϕ π ϕ′ ′+ ≥ +∫ ∫     (2.24) 

Combining inequalities (2.21) and (2.23), we have 

( )
1 1

2 2 2
2 2 22 2

1 1

0 0

( )
,

2
S

a
R a D a dz w dz

πϕ ϕ
σ

++ ≥∫ ∫       (2.25) 

and combining inequalities (2.22) and (2.24), we get 

( )
1 1

2 2 2
2 2 22 2

2 2

0 0

( )

2
S

a
R a D a dz w dz

πϕ ϕ
σ

+′ + ≥∫ ∫ .   (2.26) 

Further, utilizing Schwartz inequality, we have 

( ) ( )
1

21 1 1 1 112
2 22 2 22

0 0 0 0 0

*w dz Dw dz w D w dz Dw dz w dzπ≥ − = ≥∫ ∫ ∫ ∫ ∫  

(using(2.16)) 

which on simplification yields 

1 1
2 22 4

0 0

D w wπ
 

≥ 
 ∫ ∫                  (2.27) 
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Inequality (2.16) together with inequality (2.24) yields 

( )
1 1

2 22 2 22 2 4 2 2

0 0

2D w a Dw a w dz a w dzπ
 

+ + ≥ + 
 ∫ ∫      (2.28) 

Multiplying equation (2.2) by the complex conjugate of 

equation (2.2) and integrating the resulting equation over the 

vertical range of z, we get 

( )( ) ( )( )
1 1

2 2 2 2

0 0

* * *D a p D a p dz ww dzθ θ − − − − =  ∫ ∫  

Integrating the above equation by parts an appropriate number 

of times and using either of the given boundary conditions, we 

get 

( ) ( )( )
21 1 1 1

2 2 2 2 22 2 2

0 0 0 0

2 rD a p D a dz p dz w dzθ θ θ θ− + + + =∫ ∫ ∫ ∫  (2.29) 

Since 0rp ≥ , therefore from equation (2.29), we have 

( )
2 21 1 1

2 22 2

0 0 0

D a dz p dz w dzθ θ− + ≤∫ ∫ ∫          (2.30) 

Also emulating the derivation of inequalities (2.24) and (2.25) 

we derive the following inequality 

( ) ( )
21 1 1

2 22 2 22 2 2 2 4 2 2

0 0 0

2D a dz D a D a dz a dzθ θ θ θ π θ− = + + ≥ +∫ ∫ ∫  (2.31) 

Using inequality (2.28) in equality (2.27), we get 

( )
( )

2 21 122
2 2

2
2 2

0 0

1
p

a dz w dz

a

π θ
π

 
 

+ + ≤ 
 +  

∫ ∫         (2.32) 

Now, 

( ) ( )
1 1

2 22 2 2

0 0

*D a dz D aθ θ θ θ+ = − −∫ ∫  ≤  ( )
1

2 2

0

D a dzθ θ−∫  ≤

( )
1 1

1 12 22
2 2 2

0 0

D aθ θ
   
   −   
   
   
∫ ∫  

(using Schwartz inequality) 

≤  

( ) ( )

1 2122

2 2 22 2
0

1
1

p
w dz

aa ππ

−
 
 + 

+ +  
∫      (2.33) 

(using inequalities (2.28) and (2.29) ) 

Making use of inequalities (2.25), (2.26), (2.28) and (2.33), 

equation (2.14) yields 

( )

( )
( )

( ) ( )
21 1 12 2

22 1 22 2 22 2
1

0 0 02
2

2 2
2

2 2

2

1

T
aR a

a w dz w dz w dz

p
a

a

π τ τ
π

σ

π
π

+ +
+ − + +

 
 

+ + 
 +  

∫ ∫ ∫
 

+

21

2 2

0

2
( )rp

a w dzπ
σ

+ ∫  < 0            (2.34) 

Since, 0rp ≥ , it follows from inequality (2.34) that 

( )

( )
( )

1 1
22 2 22 2 1 2

1

0 02
2

2 2
2

2 2

1 0
2

1

TR a
a w dz w dz

p
a

a

τ τπ
σ

π
π

+ + + − < 
 

 
 

+ + 
 +  

∫ ∫
 

or 

( )
( )

1
23 22 2

1 2
2 2

2 2

2
1

2
T

pa
R

a a

πτ τ σ
σ π

 
+  + +  + <  

   +
  

.  (2.35) 

Since, minimum value of 
( )32 2

2

a

a

π +
 with respect  2a   is 

427
,

4

π
 it follows from inequality (2.35) that 

( )

1
2 2

4
1 2

2
2 2

2 27
1

2 4
T

p
R

a

τ τ σ π
σ π

 
 + +  + <  

   +
  

 

or 

( ) ( )

1
2 2

2 4
2 2 1 2

8
1 ( )

27 2

T
p R

M

a

σ
π τ τ σπ

 
 

+ < = 
+ + +

  

      (2.36) 

Therefore, we have 

( )2 2 2
1p a Mπ< + −                 (2.37) 
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Further, since 

( )

1

2
2

2
2 2

1 1
p

aπ

 
 

+ > 
 +
  

, therefore it follows from 

inequality (2.35) that 

( )
( )( )

2
2 2

2
2 2

1 2

2

2

TR a
a

a

σπ
τ τ σ π

+ <
+ + +

           (2.38) 

Now, the maximum value of 

( )
2

2
2 2

a

aπ +
 with respect to 2a  is

2

1

4π
, therefore inequality (2.38) yields 

( ) ( )
2 2

2
1 22 2

TR
a

σπ
π τ τ σ

+ <
+ +

            (2.39) 

Using inequality (2.39) in inequality (2.37), we get 

( )

2

2
1 2

1

2 2

TR M
p

σ
π τ τ σ

−<
+ +

. 

This completes the proof of the theorem. 

Theorem 1 from the point of view of hydrodynamic stability 

theory may be stated as: 

The complex growth rate r ip p ip= + of an arbitrary oscillatory 

perturbation of growing amplitude ( 0rp ≥ ) in triply diffusive 

convection problem lies inside a semi- circle in the right-half 

of the r ip p - plane whose centre is at the origin and whose 

radius is 

. 

Corollary 1. If (p, w, θ , ϕ ),  p = pr + ipi, pr ≥ 0 0ip ≠  is a 

non -trivial solution of equations (2.1)– (2.4) together with 

one of the boundary conditions (2.5)-(2.8) with, 0TR > , 

0SR >  0SR′ > and M 1≤  , then 0rp <  . 

Proof. Follows from Theorem 1. 

Corollary1 implies that oscillatory motions of growing 

amplitude are not allowed in triply 

diffusive convection problem if M 
( )4

1 2

8

27 2

TR σ
π τ τ σ

 
 =
 + + 

 1≤ . 

3. Conclusions 

In the present paper, triply diffusive convection problem is 

considered. The investigation of triply diffusive fluid layer 

with one of the components as heat with diffusivity κ is 

motivated by its interesting complexities as a thremosolutal or 

double diffusive phenomenon which has its importance in 

various fields such as high quality crystal production, 

oceanography, production of pure medication, solidification 

of molten alloys, exothermally heated lakes and magmas. The 

analysis made brings out the following main conclusions: 

(i) The complex growth rate r ip p ip= + of an arbitrary 

oscillatory perturbation of growing amplitude ( 0rp ≥ ) in 

triply diffusive convection problem lies inside a semi- circle in 

the right-half of the r ip p - plane whose centre is at the origin 

and whose radius is 

( )

2

2
1 2

1

2 2

TR Mσ
π τ τ σ

−
+ +

. 

(ii) The oscillatory motions of growing amplitude are not 

allowed in triply diffusive convection problem if M  

( )4
1 2

8

27 2

TR σ
π τ τ σ

 
 =
 + + 

 1≤ . 
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