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1. Introduction 

One of the most basic and complex problems in numerical 

analysis is to solve nonlinear equations in terms of ( ) 0f x = . 

However, it is somewhat difficult to find the roots of nonlinear 

equations accurately. Iterative methods are the most 

commonly used techniques to obtain approximate solutions. 

Let 
* [ , ]x a b∈  be a root of the equation 

( ) 0f x = .                    (1) 

We change the equation (1) as equivalent form 

( )x xφ= .                    (2) 

Taking 0
[ , ]x a b∈ , construct the recursive formula 

( ) ( )1 0, 1,k kx x kφ+ = = ⋯ .           (3) 

We get a sequence 0{ }k kx ∞
=  through the recursive formula (3). 

Taking limit on both sides of the formula (3), we can get 

( )x xφ=ɶ ɶ ,                    (4) 

where xɶ  is a limit of the sequence 0{ }k kx ∞
=  when k → ∞ . 

Obviously, xɶ is a root of the equation (2) through the formula 

(4).  Because of equation (1) is equal to (2), we would obtain 

* lim
k

k
x x x x

→∞
= ⇒ =ɶ ɶ ,              (5) 

and the equation (3) is called iterative formula. Meanwhile, 

the method using equation (3) is named iterative method. 

Newton’s method [1] is the classical approach for solving 

nonlinear equations, the computational algorithm is written as 

follows: 

( )
( )1

n

n n

n

f x
x x

f x
+ = −

′ .               (6) 

where ⋯,3,2,1=n . This is an example of a one-point 

iteration scheme [10]. In some applications, ( )f x′  is more 

difficult to evaluate than ( )xf . Recently, much research effort 
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[7, 9, 17, 20,21] enlightened the ideas of removing derivatives 

from iteration functions in order to avoid the necessity of 

defining new function evaluations, such as the first derivative 

or second derivative. For example, Steffensen [12] made use 

of the forward difference approximation to replace ( )f x′  to 

propose the following computational scheme 

( )
( ) ( )

2

1
( )

n

n n

n n n

f x
x x

f x f x f x
+ = −

+ −
.         (7) 

Recently, Dehghan and Hajarian [6] presented a third order 

iterative method (DM) and incorporated four function 

evaluations per each iteration step as follows 

( ) ( ) ( )
( )( ) ( )( )

1

1

2 n n n

n n

n n n n

f x f z f x
x x

f x f x f x f x

+
+

−  = −
+ − −

,     (8) 

where 
( )

( )( ) ( )( )
2

1

2 n

n n

n n n n

f x
z x

f x f x f x f x
+ = +

+ − −
. Besides, 

Ren et al. [15] proposed another optimal fourth-order method 

in terms of the following scheme (RMa, a R∈ , and ‘a’ is a 

parameter). 

( )
( ) ( ) ( )

( )

2

1

, ,

.
[ , ] [ , ] [ , ] ( )

+

= − = +
−

= −
+ − + −

n

n n n n n

n n

n

n n

n n n n n n n n

f x
y x z x f x

f z f x

f y
x x

f x y f y z f x z a y z

 (9) 

In Eq. (9), the function [ , ]
n n

f x y is represented by

[ ] ( ) ( )
ba

bfaf
baf

−
−=, . Afterward, Liu et al. [11] presented a 

fourth-order method (LM) as follows 

( )
( ) ( ) ( )

( )1 2

, ,

[ , ] [ , ] [ , ]
.

[ , ]
+

= − = +
−

− +
= −

n

n n n n n

n n

n n n n n n

n n n

n n

f x
y x z x f x

f z f x

f x y f y z f x z
x y f y

f x y

  (10) 

The aforementioned methods [6, 11, 15] are optimal in 

accordance with Kung-Traub conjecture to obtain a 

derivative-free computational scheme. 

It is not limited to the above computational scheme [6, 11, 

15], many variants of Steffensen’s methods were proposed in 

the past decade. Sharma [16] introduced a Newton-Steffensen 

method to achieve the third order convergence. Cordero et al. 

[4] proposed a new fourth-order Steffensen type method. In 

addition, other researchers also introduced a variety of new 

methods to solve nonlinear equations based on Steffensen’s 

type method (see the literature published in [3, 14, 15, 18]). 

Meanwhile, there are various methods using linear functions 

to calculate ( )f x′ . For example, Gustavo et al. in [8] 

presented three new optimal fourth-order methods to consider 

the polynomial. Cordero et al. [5] and Soleymani [19] 

proposed Padé approximants to estimate ( )f x′ . 

In this paper, a new optimal technique is presented to adopt 

Lagrange’s interpolation and Steffensen-like methods to 

exclude derivative functions in the computational iteration 

scheme. The paper is organized as follows, the methodology 

and principle of the new optimal technique, using Lagrange’s 

interpolation, for solving nonlinear equations is introduced in 

Section 2. In the next section, the proposed technique is 

generalized for getting eighth-order methods which are both 

derivative-free and optimal. In Section 4, we can derive the 

sixteenth-order methods when the proposed technique and 

other three-step optimal methods are used. Illustrative 

examples are given to verify the accuracy of the proposed 

method in Section 5. Finally, the paper ends with concluding 

remarks in Section 6. 

2. Fourth-Order Optimal 
Method 

We consider a general nonlinear equation ( ) 0f x = . 

Assuming that α is a simple root of the equation ( ) 0f x = , 

and γ is a given initial guess which is close enough to α . 

According to Taylor’s series expansion around γ gives 

( ) ( ) ( )( ) ( ) ( )21

2
f x f f x f xγ γ γ γ γ′ ′′= + − + − +⋯  (11) 

The first-order approximating equation is 

( ) ( ) ( ) 0f f xγ γ γ′+ − = .           (12) 

Then from Eq. (12), we can infer the following iterative 

method 

( )
( )1

n

n n

n

f x
x x

f x
+ = −

′ .                (13) 

This is the classical Newton’s method with a second-order 

convergence. Using the following forward-difference to 

replace ( )f x′  yields 

( ) ( )( ) ( )
( )

n n n

n

n

f x f x f x
f x

f x

+ −
′ = .       (14) 

We can get Steffensen’s method by making use of Eq. (14). 

Then we obtain a method formed by the composition of 

Steffensen and Newton methods as follows: 
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( )( )
( ) ( )

( )
( )

2

1

,

,

n

n n

n n

n

n n

n

f x
y x

f z f x

f y
x y

f y
+

= −
−

= −
′

         (15) 

Where 
( )nnn xfxz +=

,this uses four function evaluations 

which are , , , . In order to avoid the 

evaluation of the first derivative and reduce the function 

evaluations, it is suggested approximating it by the derivative

 of the following Lagrange polynomial of degree 2. 

( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( )

( ) ( )( )
( )( )

− − − −
= +

− − − −

− −
+

− −

n n n n

n n

n n n n n n n n

n n

n

n n n n

t y t z t x t z
p t f x f y

x y x z y x y z

t x t y
f z

z x z y

(16) 

 

Then the derivative of  evaluated in can be expressed 

as 

( ) ( )( ) ( )
( )( )( )

( ) ( ) ( ) ( )
( )( )( )

2 2

2− − +
′ =

− − −

− − −
+ ⋅

− − −

n n n n n n

n

n n n n n n

n n n n n n

n n n n n n

x z x y z f y
p y

x y x z y z

y z f x x y f z

x y x z y z

    (17) 

Substituting Eq. (17) in the second equation of Eq. (15), we 

get a new two-step iterative method (GM) using the Lagrange 

polynomial whose expression is written as follows: 

( )
( ) ( ) ,

2

nn

n
nn

xfzf

xf
xy

−
−=             (18) 

( )( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2 2
.

2

+ = −
− − −

− + − − + − −

n n

n n n n n n n

n n n n n n n n n n n n

x y

x y x z y z f y

y z f x x z x y z f y x y f z

 

 

Theorem 2.1. Let be a simple zero of a sufficiently 

differentiable function f : ℜ→ℜ⊆D  in an interval D . If 

0x is sufficiently close to α ， then the method (18) has 

optimal fourth-order convergence. 

.Pr oof  Let be the error in , which is α−= nn xe . By 

Taylor expanding at α=x , we have 

( )54
4

3
3

2
21)( nnnnnn eOececececxf ++++= ,         (19) 

where ( ) ⋯,2,1,!/)( == kkfc k
k α . 

On the basis of ( )nnn xfxz += , we get 

( ) ( ) ( )
( ) ( )( )

( )( )
( ) ( )

2 2

1 1 1 1 2

2 2 3 3

1 2 1 1 1 3

3 2 3 4 4

2 1 1 1 1 4

2 4 5

1 1 2 3

1 1 3

2 1 1 4 3

1 5 6 4

5 8 3 .

= + + + +

+ + + + + +

+ + + + + +

+ + + +

n n n

n

n

n n

f z c c e c c c e

c c c c c c e

c c c c c c e

c c c c e O e

      (20) 

Substituting Eq. (19) and (20) in the first equation of Eq. (18), 

we have 

( )( )

( ) ( )( )

2 2

1 1 22 3

2 2

1 1

2 3 32
1 1 1 21 1 1 3 3 4

2 3

1 1

2 21
1

4 5 32 3

− + + 
− = + + 

 

+ + ++ +
+ +

n n n

n n

c c c
y c e e

c c

c c c cc c c c
e e

c c

α
 

( ) )

( ) ( )

2 3

1 1 1 1 2 3 4

3

1

2 2 3

1 1 1 1 4 4 5

3

1

7 10 7 2

3 6 4
.

+ + +
−

+ + +
+ +

n

n n

c c c c c c
e

c

c c c c c
e O e

c

     (21) 

Then, we get 

( )
( )(

( ) ( )( )

2 2

1 1 22 3

1 2

1

2 3 32
1 1 1 21 1 1 3 3 4

2

1 1

2 2
( ) 1

5 7 42 3

− + +
= + +

+ + ++ +
+ +

n n n

n n

c c c
f y c c e e

c

c c c cc c c c
e e

c c

 

( ) )

( ) ( )

2 3

1 1 1 1 2 3 4

2

1

2 2 3

1 1 1 1 4 4 5

2

1

7 10 7 2

3 6 4

+ + +
−

+ + +
+ +

n

n n

c c c c c c
e

c

c c c c c
e O e

c

        (22) 

with Eq. (19), (20) and (22), we can deduce that the error 

equation of the GM method is 

( ) ( ) ( ),
1 54

3
1

31
2
22

2
1

1 nnn eOe
c

ccccc
e +

−+
=+        (23) 

showing that the method (GM) has optimal fourth-order 

convergence. 

( )nxf ( )nzf ( )nyf ( )nyf ′

( )nyp′

( )tp ny

D∈α

ne nx
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3. Eighth-Order Optimal 
Methods 

The technique can be further applied to higher order methods 

by using higher degree Lagrange polynomials. To obtain 

derivative-free methods having optimal eighth-order 

convergence, we consider a three-step cycle in which the first 

two steps are any derivative-free optimal fourth-order 

methods, and 2ϕ is a function that defines an optimal 

derivative free method for 2=n , the combination of and

4ϕ defines an optimal derivative-free iterative method for 

3=n , 

[ ]
[ ]nnnn

nnn

zyxu

zxy

,,

,

4

2

ϕ
ϕ

=
=

           (24) 

( )
( )n
n

nn
uf

uf
ux

′
−=+1 . 

Then, the derivative ( )nup′ of the following Lagrange 

polynomial of degree 3 is used to replace ( )nuf ′ . 

According to the Lagrange polynomial, we get 

( ) ( ) ( )( ) ( )
( )( )( )

( ) ( ) ( )( )
( )( )( )

( ) ( )( )( )
( )( ) ( )

( ) ( ) ( ) ( )
( ) ( )( ) .

− − −
=

− − −

− − −
+

− − −

− − −
+

− − −

− − −
+

− − −

n n n

n

n n n n n n

n n n

n

n n n n n n

n n n

n

n n n n n n

n n n

n

n n n n n n

t y t z t u
p t f x

x y x z x u

t x t z t u
f y

y x y z y u

t x t y t z
f z

z x z y z u

t x t y t z
f u

u x u y u z

      (25) 

Then the derivative of ( )tp  evaluated in nu  can be 

expressed as 

( ) ( ) ( ) ( )

( )( ) ( )
( ) ( )( )

( )( ) ( )
( )( ) ( )
( )( ) ( )

( )( ) ( )
.

′ = + +
− − −
− −

+
− − −

− −
+

− − −

− −
+

− − −

n n n

n

n n n n n n

n n n n n

n n n n n n

n n n n n

n n n n n n

n n n n n

n n n n n n

f u f u f u
p u

u x u y u z

u y u z f x

x u x y x z

u x u z f y

y u y x y z

u x u y f x

z u z x z y

        (26) 

Using ( )nup′  to replace ( )nuf ′  obtains the following 

three-step class 

[ ]
[ ]nnnn

nnn

zyxu

zxy

,,

,

4

2

ϕ
ϕ

=
=

                 (27) 

( )
( )n
n

nn
uD

uf
ux

1
1 −=+  , 

where ( )nuD1  is the derivative of ( )tp in nu , in other words, 

( )nuD1 = ( )nup′ . We evaluate four functions which are ( )nxf ,

( )nyf , ( )nzf , ( )nuf  in each iteration. The computational 

method stated in Eq. (27) will be optimal if we prove that it 

has eighth-order convergence. 

Theorem 3.2.  Let be a simple zero of a sufficiently 

differentiable function :  in an interval . If 

is sufficiently close to ， then the method (27) has 

optimal eighth-order convergence. 

.Proof  Let = −
n n
e x α . By Taylor expanding at α=x , we 

have 

( )98
8

7
7

6
6

5
5

4
4

3
3

2
21)(

nnnn

nnnnnn

eOececec

ecececececxf

++++

++++=
,       (28) 

where ( ) ⋯,2,1,!/)( == kkfc k
k α . 

On the basis of ( )nnn xfxz += , we obtain 

( ) ( ) ( )
( ) ( )( )

( )
( )( ) ( ).1

385

34112

311

94
4

4
1

4
4132

2
132132

3
2

3
3

3
1

2
11

2
21

2
2

2
1111

nn

n

n

nnn

eOecc

eccccccccccc

ecccccc

ecccecczf

+++

+++++

++++++

++++=

⋯

  (29) 

Substituting Eq. (28) and (29) in the first equation of Eq. (27), 

we have 

( )(

( ) ( ) )( 4

3
1

3
2

3
1

2
113

2
1

3
2
111

3

2
1

2
2

2
112

2
1

35432

221
1

nn

nnn

e
c

cccc
e

c

cccc

e
c

ccc
ec

c
y

+++
+

++
+

++−
+








+=−α

 

( )

( ) ( )94

3
1

4
3
1

2
11

2
1

4

3
1

32
3
1

2
111

463

27107

nn

n

eOe
c

ccccc

e
c

cccccc

++
+++

+

+++
−

⋯

    (30) 

Then, we expand ( )nyf  aroundα  with Eq. (30) to derive 

the following expression. 

2ϕ

D∈α
f ℜ→ℜ⊆D D

0x α
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( ) ( )(

( ) ( )( ) 4

2
1

3
2

3
1

2
113

1

3
2
111

3

1

2
2

2
112

21

47532

22
1)(

nn

nnn

e
c

cccc
e

c

cccc

e
c

ccc
eccyf

+++
+

++
+

++−
++=

       

( )

( ) )( ( ).463

27107

94

2
1

4
3
1

2
11

2
1

4

2
1

32
3
1

2
111

nn

n

eOe
c

ccccc

e
c

cccccc

++
+++

+

+++
−

⋯

  (31) 

We define that the first two steps are optimal fourth-order 

method, and assume 

)( 98
8

7
7

6
6

5
5

4
4 nnnnnnn eOehehehehehu +++++= ,    (32) 

with Eq. (28), (29) and (31), we can thus deduce the error 

equation of the method as 

( )( ) ( )98

2
1

414
2

142
1

1
nnn eOe

c

hccchc
e +

++
=+ .          (33) 

The above method shows the optimal eighth-order 

convergence.  

For example, applying RM1 (assume 1=a ) in (27), we get 

the method (GRM): 

( )
( ) ( ) ( ),,

2

nnn
nn

n
nn xfxz

xfzf

xf
xy +=

−
−=       (34) 

( )
( )( )

( )
( )1

1

,
[ , ] [ , ] [ , ]

.+

= −

+ − + − −

= −

n n

n

n n n n n n n n n n

n

n n

n

u y

f y

f x y f y z f x z y x y z

f u
x y

D u

 

The above calculation method satisfies the following error 

equation: 

( )

( ) ( )

( )

4 2 2 3 2

1 2 2 1 3 2 1 4 8

1 7

1

4 2 2

1 2 2 1 3 1 2 2 3 8

7

1

9

1 ( ( 1 ))( )

1 ( ( 1 )) ( )

.

+

+ − + − + +
= −

+ − + − + −
+

+

n n

n

n

c c c c c c c c
e e

c

c c c c c c c c c
e

c

O e

  (35) 

In addition, if we apply the method of LM in Eq. (27), we can 

get another method (GLM) in the form of: 

( )
( ) ( ) ( )

2

, ,= − = +
−
n

n n n n n

n n

f x
y x z x f x

f z f x
 

( )

( )
( )

2

1

1

[ , ] [ , ] [ , ]
,

[ , ]

.+

− +
= −

= −

n n n n n n

n n n

n n

n

n n

n

f x y f y z f x z
u y f y

f x y

f u
x y

D u

 (36) 

This method satisfies the following error equation: 

( ) ( ) ( ).11 98

7
1

41
2
13211

nn eOe
c

ccccccc
+

+++
−      (37) 

4. Sixteenth-Order Optimal 
Methods 

To further obtain derivative-free methods of optimal 

sixteenth-order convergence, we consider a four-step cycle in 

which the first three steps are any derivative-free optimal 

eighth-order method as follows: 

[ ]
[ ]
[ ]

2

4

8

,

, ,

, , ,

=

=

=

n n n

n n n n

n n n n n

y x z

u x y z

v x y z u

φ
φ
φ

 

( )
( )n
n

nn
vf

vf
vx

′
−=+1 .                 (38) 

Where 8ϕ  is a iterative function of optimal eighth order 

derivative-free method composed with 2ϕ , 4ϕ . The 

derivative ( )nvp′  of the following Lagrange polynomial of 

degree 4 is adopted to replace ( )nvf ′ . 

( ) ( ) ( )( )( )( )
( )( )( )( )

( ) ( )( )( )( )
( )( )( )( )

( ) ( ) ( )( )( )
( )( )( )( )

( ) ( )( )( ) ( )
( )( )( ) ( )

( ) ( )( )( )( )
( )( )( )

v

− − − −
=

− − − −

− − − −
+

− − − −

− − − −
+

− − − −

− − − −
+

− − − −

− − − −
+

− − − −

n n n n

n

n n n n n n n n

n n n n

n

n n n n n n n n

n n n n

n

n n n n n n n n

n n n n

n

n n n n n n n n

n n n n

n

n n n n n n n

t y t z t u t v
p t f x

x y x z x u x v

t x t z t u t v
f y

y x y z y u y v

t x t y t u t v
f z

z x z y z u z v

t x t y t z t v
f u

u x u y u z u v

t x t y t z t u
f

v x v y v z v( )
.

nu

  (39) 

Then the derivative of ( )tp evaluated in nv can be expressed as 

( ) ( ) ( )( ) ( )( ) 8

7
1

3
21311

2
21

2
2

2
1

1

2121
nn e

c

ccccccccc
e

++−++
=+



 International Journal of Mathematics and Computational Science Vol. 1, No. 3, 2015, pp. 102-110  107 

 

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )
( )( )( )( )

′ = + + +
− − − −
− − −

+
− − − −

n n n n

n

n n n n n n n n

n n n n n n n

n n n n n n n n

f v f v f v f v
p u

v x v y v z v u

v x v y u z f u

u v u x u y u z

 

( )( )( ) ( )
( )( )( )( )

( )( )( ) ( )
( )( )( )( )

( )( )( ) ( )
( )( )( )( )nnnnnnnn

nnnnnnn

nnnnnnnn

nnnnnnn

nnnnnnnn

nnnnnnn

zyzxzvzu

zfyvxvvu

zyyxyvyu

yfzvxvvu

zxyxxvxu

xfzvyvvu

+−+−+−+−
−−+−

+

−+−+−+−
−−+−

+

−−+−+−
−−+−

+

 (40) 

Using ( )′
np v  replaces ( )′

nf v
, 

we get the following 

three-step class 

[ ]
[ ]
[ ]nnnnn

nnnn

nnn

uzyxv

zyxu

zxy

,,,

,,

,

8

4

2

ϕ
ϕ
ϕ

=
=
=

             (41) 
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where  is the derivative of  in nv , in 

otherwords, ( )nvD2 = .We evaluate five functions in 

each iteration. The method will be optimal if we prove that it 

has sixteenth-order convergence. 

Theorem 4.2. Let be a simple zero of a sufficiently 

differentiable function :  in an interval . If 

is sufficiently close to , then the method (41) has 

optimal sixteenth-order convergence. 

 Let . By Taylor expanding at , we 

have 
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3
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2
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where ( )( ) / !, 1,2,= = ⋯
k

kc f k kα . 

On the basis of ( )= +n n nz x f x , we obtain 

( ) ( ) ( ) ( )( )
( )( ) ( )

( )( )
( )

2 2 2 3

1 1 1 1 2 1 2

2 3 3 3 4

1 1 1 3 2 2 3

42 4

1 2 3 1 2 3 1 4 1 4

17

1 1 3 2 1

1 4 3 5

8 3 1

.

= + + + + + +

+ + + + + +

+ + + + +

+ +⋯

n n n n

n n

n

n

f z c c e c c c e c c e

c c c c e c c c e

c c c c c c c c c c e

O e

(43) 

Substituting Eq. (42) and (43) in the first equation of Eq. (41), 

we have 
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Then, we expand ( )nyf  around α  with Eq. (44) to 

achieve the following equation. 
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We define that the first three steps are optimal eighth-order 

method, we thus get 
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Finally, the error equation of the method can be derived as 

follows: 
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The above equation shows that the method (41) has an 

optimal fourth-order convergence. 

5. Numerical Examples 

The proposed methods described in Section 4 using the new 

technique are employed to solve some illustrative nonlinear 

problems. The obtained results are compared with 

Steffensen’s method (SM, (7)), Dehghan and Hajarian’s 

method (DM, (8)). Using Lagrange polynomials, we get a new 

optimal fourth-order method (GM) and two new optimal 
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eighth-order methods (GRM, GLM). 

All the computations were conducted by using MATLAB 8.0, 

we selected an approximate solution rather than the exact root 

computed with 1500 digits. The stopping criterion used is
150

1 10|)(||| −
+ <+− kkk xfxx , the iterative succession 

convergence was checked to verify the accuracy of the 

approximate solutions. Table 2 shows the number of the 

iterations needed to reach the acceptable tolerance for each 

method and estimates the computational order of convergence 

ρ
 
(usually called ACOC), defined by Cordero and Torregrosa 

[2] : 

|)|/|ln(|

|)|/|ln(|

211

11

−−−

−+

−−
−−

=
kkkk

kkkk

xxxx

xxxx
ρ .            (49) 

In Table 1, we show the comparison of efficiency indices [13] 

for different methods of various orders. The efficiency indices 

is defined as n
p

/1 , where p
 

is the order of convergence, n  

is the number of function evaluations per step.  

We use the following functions in numerical comparison: 

( ) 257530.0,232
1 =+−−= αxexxf x  

( )2 cos , 1.7746139xf x e x α−= + =  

( ) ( )2

3 ln 2 1, 4.152590f x x x x α= + + − + =  

( ) ( )4 2 1, 0.442854xf x x e α= + − = −  

( ) 3

5 10, 2.154435f x x α= − =  

( ) 2 2

6 sin 1, 1.404492f x x x α= − + =  

( ) 3 2

7 4 10, 1.365230f x x x α= + − =  

( ) 2

8 1 cos , 1.415014f x x x x x α= − + − + =  

It is found that the efficiency index of the methods (GM, 

GRM, GLM) are better than other methods from Table 1. 

From Table 2, we can find that the method (GM) converges 

more rapidly than Steffensen’s method, Dehghan and 

Hajarian’s method. The eighth-order methods (GRM, GLM) 

require less iterative steps to reach the stopping criterion. All 

theoretical order of convergence. 

Table 1. Orderder and efficiency indices of some methods 

Methods SM DM GM GRM GLM 

Order 2 3 4 8 8 

Efficiency 
index 2  4 3  3 4  2 2 

 

Table 2. Numerical results for nonlinear equation. 

f  0x  SM  DM  GM  GRM  GLM  

  Iter Error Iter Error Iter Error Iter Error Iter Error 

1f  0.2 1 5.83e-2 1 5.72e-2 1 5.75e-2 1 5.75e-2 1 5.75e-2 

  2 8.15e-4 2 2.77e-4 2 3.85e-7 2 7.99e-13 2 6.00e-14 

  3 1.73e-7 3 3.26e-11 3 7.64e-28 3 1.18e-99 3 8.60e-110 

  ⋮  ⋮  4 5.32e-32 4 1.19e-110 4 2.71e-794 4 1.53e-876 

  7 1.04e-117 5 1.89e-281 5 6.94e-442     

  8 2.80e-235         

ρ    2.00004  3.00000  4.00005  7.99993  8.00001 

2f  1.5 1 2.48e-1 1 2.47e-1 1 2.46e-1 1 2.46e-1 1 2.46e-1 

  2 1.46e-2 2 1.27e-3 2 2.27e-6 2 2.17e-11 2 1.45e-13 

  3 5.12e-8 3 3.26e-11 3 1.41e-26 3 5.54e-92 3 4.40e-114 

  ⋮  ⋮  4 1.20e-32 4 2.11e-107 4 1.01e-736 4 1.01e-736 

  7 1.09e-141 5 6.01e-98 5 1.04e-430     

  8 2.86e-284 6 7.53e-294       

ρ    1.99993  3.00002  4.00009  7.99995  8.00002 

3f  4.15 1 1.53e-1 1 2.59e-3 1 1.53e-1 1 2.59e-3 1 2.59e-3 

  2 5.88e-4 2 2.73e-10 2 5.86e-8 2 3.03e-26 2 6.65e-30 

  3 8.30e-9 3 3.20e-31 3 1.15e-33 3 1.05e-209 3 1.25e-242 

  ⋮  ⋮  4 5.16e-94 4 1.71e-136     

  7 2.55e-154 5 2.15e-282 5 8.33e-548     

  8 1.56e-309         

ρ    2.00001  3.00004  4.00002  8.00024  8.00008 

4f  -0.5 1 6.33e-2 1 5.68e-2 1 5.72e-2 1 5.71e-2 1 5.71e-2 

  2 6.12e-3 2 3.44e-4 2 9.87e-6 2 1.68e-9 2 3.93e-10 

  3 7.02e-5 3 8.06e-11 3 8.61e-21 3 7.71e-70 3 1.72e-75 

  ⋮   4 1.04e-30 4 4.99e-81 4 1.51e-551 4 2.29e-598 ⋮
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f  0x  SM  DM  GM  GRM  GLM  

  8 1.90e-125 5 2.20e-90 5 5.63e-322     

  9 6.63e-250 6 2.09e-269       

ρ    1.99998  2.99997  4.00000  8.00003  8.00007 

5f  2.5 1 6.08e-2 1 4.34e-2 1 3.19e-1 1 3.45e-1 1 3.45e-1 

  2 6.33e-2 2 5.35e-2 2 2.70e-2 2 4.65e-4 2 3.44e-4 

  3 6.45e-2 3 6.74e-2 3 6.39e-6 3 4.98e-25 3 2.42e-26 

  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  4 8.76e-193 4 1.45e-203 

  14 9.47e-149 10 6.90e-76 5 5.62e-78     

  15 6.21e-296 11 9.24e-225 6 1.48e-308     

ρ    2.00000  3.00000  4.00000  7.99983  7.99989 

 1.5 1 1.08e-1 1 9.43e-2 1 9.54e-2 1 9.55e-2 1 9.55e-2 

  2 1.22e-2 2 1.17e-3 2 1.03e-4 2 1.44e-10 2 8.99e-11 

  3 1.75e-4 3 3.38e-9 3 1.01e-16 3 2.07e-81 3 5.53e-83 

    ⋮  ⋮  4 9.01e-65 4 3.69e-648 4 1.13e-660 

  8 6.63e-119 5 1.20e-75 5 7.42e-257     

  9 5.10e-237 6 3.72e-225       

ρ    2.00000  3.00000  4.00000  8.00000  7.99999 

7f  1.5 1 5.33e-2 1 7.82e-2 1 1.32e-1 1 1.35e-1 1 1.35e-1 

  2 4.45e-2 2 5.09e-2 2 2.50e-3 2 4.61e-6 2 3.25e-6 

  3 2.75e-2 3 5.65e-3 3 1.02e-9 3 1.32e-40 3 5.20e-42 

  ⋮  ⋮  ⋮  ⋮  4 2.98e-35 4 5.94e-317 4 2.21e-328 

  11 1.08e-142 7 8.43e-122 5 2.14e-137     

  12 1.00e-283 8 2.00e-362 6 5.64e-546     

ρ    2.00000  3.00000  4.00000  8.00000  7.99999 

8f  1.2 1 2.16e-1 1 2.15e-1 1 2.15e-1 1 2.15e-1 1 2.15e-1 

  2 1.06e-3 2 8.24e-5 2 6.15e-7 2 2.61e-12 2 1.93e-13 

  3 2.56e-8 3 2.12e-14 3 4.47e-29 3 1.19e-99 3 7.39e-110 

  ⋮  ⋮  4 3.59e-43 4 1.25e-117 4 2.27e-798 4 3.36e-881 

  7 8.10e-147 5 1.75e-129 5 7.63e-472     

  8 1.50e-294 6 2.03e-388       

ρ    2.00000  3.00000  4.00000  8.00000  8.00000 

 

6. Conclusions 

We proposed a new derivative-free fourth-order method (GM) 

which is optimal order of convergence in the sense of 

Kung-Traub conjecture. Making use of the new technique, we 

obtain other two eighth-order methods which are an optimal 

method without derivative functions. Higher order methods 

can also be constructed using the proposed method, such as 

sixteenth-order methods. The convergence of the method is 

proved in the paper. Illustrative numerical examples are 

shown in this paper to demonstrate the efficiency of the new 

methods in terms of its efficiency of index and computational 

efficiency index. The proposed methods are capable of 

solving various nonlinear equations and can achieve good 

convergence. 
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