
 

 

International Journal of Mathematics and 

Computational Science 

Vol. 1, No. 2, 2015, pp. 30-36 

http://www.publicscienceframework.org/journal/ijmcs  

 

 

* Corresponding author 

E-mail address: ashrafbalabel@yahoo.com 

Application of Level Set Method for Simulating 
Kelvin-Helmholtz Instability Including Viscous 
and Surface Tension Effects 

Ashraf Balabel* 

Mechanical Engineering Dept., Taif University, Taif, Hawiyya, Kingdom of Saudi Arabia 

Abstract  

In the present paper, the hydrodynamic instability known as Kelvin-Helmholtz instability is numerically investigated with the 

application of the level set method. First, the classical Kelvin-Helmholtz instability, which is concerned with the topological 

changes of interface separating two immiscible, incompressible and inviscid fluids (normally liquid/gas) in irrotational and 

relative motion, is predicted. Further, as in real flow, the effects of viscosity and surface tension are included. The numerical 

strategy is based on the solution of Navier-Stokes equations over a regular and structured two-dimensional computational grid 

using the control volume approach in both phases with a separate manner. The kinematic and the dynamic boundary conditions 

between the two phases are applied on the interface. The transient evolution of the interface due to the different surface forces 

is predicted by the level set method. The obtained results showed that the roll-up mechanism starting at the interface is largely 

affected by the different flow regimes considered. The inclusion of the viscous force can lead to a weakened roll-up 

mechanism. Moreover, the finite surface tension force can prevent the roll-up mechanism compared with classical Kelvin-

Helmholtz instability. 

Keywords 

Kelvin-Helmholtz Instability, Level Set Method, Numerical Simulation, Surface Tension, Two-Phase Flow 

Received: March 7, 2015 / Accepted: March 20, 2015 / Published online: March 23, 2015 

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license. 

http://creativecommons.org/licenses/by-nc/4.0/ 

 

1. Introduction 

Many of industrial and engineering applications encounter a 

large number of two phase flows; e.g. atomization of liquid 

jets [1], droplet dynamics [2], bubble flow [3], and other 

multiphase flow systems [4].  

The nonlinear stability of an interface between two 

incompressible, inviscid and irrotational fluids containing a 

velocity discontinuity remains a considerable challenge to 

mathematicians and numerical analysts. Helmholtz [5] was 

the first to remark on the instability of those interfaces. 

Kelvin [6] has discussed the conditions under which a plane 

surface of water becomes unstable. As a result of the velocity 

discontinuity presented initially in the flow, a vortex flow is 

produced and the motion of the interface is subjected to a 

well-known Kelvin-Helmholtz instability (KHI). 

The basic mechanism of KHI development is in the existence 

of a uniform velocity shear between two different fluids. In 

most cases, the surface tension and viscosity are neglected in 

order to simplify the theoretical and numerical calculations 

and, consequently, KHI is considered as a fluid instability 

that a lighter fluid is superposed on a heavier one. The 

including of the gravity force or the density stratification, 

without any uniform shear considered, leads to the well 

known cases of Rayleigh-Taylor Instability or Richtmyer-

Meshkov Instability. 
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The attention of KHI has received is due to in part to their 

importance as models of free shear layers in high Reynolds 

number flows. This, in turn, determines the rate of mixing in the 

flow. On the other hand, and based on the experimental 

observation, the interfacial roll-up is a prelude to drop formation 

in free surface flow evolution. The motion of the interfaces 

subjected to the vortex flows is widely investigated by means of 

different numerical methods; see for example [7, 8].  

In real systems, the interface is a layer with a finite thickness; 

in addition, viscosity or surface tension affects the interface 

evolution. The effect of viscosity on the evolution of KHI can 

be seen in suppressing the short-wave disturbance and in 

thickening the vortex sheet. It means that the roll-up was 

weakened by viscosity effects and the viscosity force acts as 

a regularization effect on the roll-up of vortex sheets. 

The singularity formation is one of the most interesting 

phenomenons in the simulations of free surface flows and it 

is considered disastrous from the stand point of the numerical 

computations. In the absence of the surface tension, an 

appearance of a saw-tooth-like instability in the interface 

profiles has been observed. This instability prevents the 

simulations from proceeding to the late time highly nonlinear 

phase of the motion as singularities can form on the interface 

in finite time [7].  

However, the inclusion of the surface tension effect was 

found to prevent the appearance of the numerical instability 

but only for finite times. Thereafter, locally irregular 

behavior eventually reappeared and resisted subsequent 

attempts at numerical smoothing. These irregularities are 

developed on the interface profile where some form of 

coherent roll-up might be expected. Although several 

numerical and/or physical mechanisms are discussed that 

might produce irregular behavior of the discretized interface 

in the presence of the surface tension term, the basic cause of 

this instability remains unknown. 

According to [8], there is no published analytic study that has 

demonstrated that the surface tension effect removes the ill-

posedness of the vortex sheet motion in both the linear theory 

and the nonlinear case. Furthermore, a saw-tooth-like 

instability that appeared in the solution, generally growing 

rather more rapidly in cases involving finite surface tension 

term. After greater values of time, the interface did not roll 

up smoothly but rather developed irregularities on the 

interface.  

According to the experimental complexity of such problem, 

exact measurements of the interface shapes are not available; 

however, the theoretical as well as the numerical treatments 

of the Kelvin-Helmholtz instability have encountered some 

constraints related to the nature of the problem as it includes 

a transient, non-uniform free surface flow with large spatial 

and temporal gradients.  

As a result of the huge development in the numerical 

simulation of two-phase flows, carefully executed 

simulations in such context can virtually replace experiments 

[9]. In general, the numerical predictions of two-phase flow 

dynamics have been limited in accuracy partly by the 

performance of three key elements, viz.: development of the 

computational algorithm, interface tracking methods, and 

turbulence prediction models [10]. 

A variety of numerical methods have been recently 

developed and validated to two-phase flow. However, an 

efficient and complete numerical method is not available. An 

extended review of numerical techniques applied for two-

phase flow including adv/disadvantages can be found in [11].  

More recently, the author has developed a new numerical 

method, known as Interfacial Marker Level Set Method 

(IMLS), for predicting the complete dynamics of two-phase 

flows. This numerical method is validated and its accuracy is 

estimated through the performing of a wide range of 

industrial and engineering applications [12-18]. This method 

is also further applied in the present paper and shortly 

explained in the following sections. 

2. Computational Domain 

Consider the two-dimensional motion of two immiscible, 

incompressible, inviscid fluids of equal density separated by 

an interface. The rectangular coordinates (x,y) have been 

chosen, with the x-axis horizontal and aligned with the initial 

mean level of the interface, and the y-axis vertical to it. The 

interfacial shape is assumed to be periodic in the x-direction 

with wavelength. The motion of the two fluids can be 

described in terms of the motion of a single wavelength of 

the interface. The fluid above the x-axis moves at a uniform 

velocity U, and below at uniform velocity of equal magnitude 

but in the opposite direction, as shown in Fig.(1). 

 

Figure 1. Configuration of the surface discontinuity 

At time=0, the surface configuration can be considered as:  
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where a is the disturbance amplitude.  

3. Mathematical Formulations  

The governing equations for incompressible two-phase flow 

are mathematically expressed by the conservation equations 

of the mass and momentum at each point of the flow field. 

These equations can be written in the primitive variables 

formulation in form of continuity equation and Navier-Stokes 

equations, respectively, as follows: 

0=⋅∇ iu                                   (1) 

( ) iiiiii upuu
t

u 2i ∇+−∇=






 ⋅∇+
∂
∂ µρ              (2) 

where ρ, u, p, µ are the density, velocity vector, pressure and 

viscosity of the fluid. The subscript i denotes the liquid phase 

(i=1) and the gas phase (i=2), respectively. It is known that, 

for two–phase flows, the pressure and velocity field are 

caused by the external gas stresses in the tangential and 

normal directions. Therefore, the dynamic balance between 

both phases can be obtained by solving the complete set of 

the governing equations in the gas phase for the velocity and 

pressure for the gas phase surface and using these values as 

boundary conditions for solving the interior of the liquid 

phase to specify the exact level of pressure and velocity 

components inside it. The obtained normal velocity 

component at the liquid interface is then used to obtain the 

topological changes and deformation of the droplet surface 

via the level set method. 

The fact that there is no pressure transport equation 

necessitates the consideration of the continuity equation as a 

means to obtain the correct pressure field. This is done by a 

proper coupling between the pressure and velocity field 

through the Poisson equation for pressure:  

( )






 ⋅∇+
∂

∂⋅−∇=∇ iiii uu
t

u
p i2 ρ                  (3) 

The Poisson equation is solved by means of the Successive 

Over-Relaxation method in each phase to obtain the pressure 

level inside the considered phase.  

In our algorithm, the implicit fractional step-non iterative 

method is applied to obtain the velocity and pressure filed by 

presuming that the velocity field reaches its final value in two 

stages; that means 

c

n uuu +=+ *1
                                   (4) 

whereby, 
*u  is an imperfect velocity field based on a 

guessed pressure field, and cu  is the corresponding velocity 

correction. Firstly, the 'starred' velocity will result from the 

solution of the momentum equations. The second stage is the 

solution of Poisson equation for the pressure: 

*u
t

pc ⋅∇
∆

=∇ ρ2                               (5) 

where cp  will be called the pressure correction. Once this 

equation is solved, one gets the appropriate pressure 

correction, and consequently, the velocity correction is 

obtained according to: 

cc p
t

u ∇∆−=
ρ

                                  (6) 

This fractional step method described above ensures the 

proper velocity-pressure coupling for incompressible flow 

fields.  

3.1. Interfacial Boundary Conditions 

The boundary conditions at the interface, or jump conditions, 

are comprised of the dynamic and kinematic conditions. In 

the case of two immiscible fluids, referring to Fig.2, the 

dynamic stress balance at the liquid interface Γ may be 

written in the following general form: 

 
Figure 2. Normal and tangential velocity components of an arbitrary 

interface 

( )t[- I 2 D]p n nµ σκ σ− ⋅ = − +∇          (7) 

where I is the identity matrix, p is the pressure, µ is the 

dynamic viscosity, σ is the surface tension coefficient, and D 

is the rate of deformation tensor. The bracket means the jump 

of the stresses along the fluid interface Γ, the unit normal 

vector n is taken from fluid 2 to fluid 1, t∇ denotes the 

gradient in the local free surface coordinates, and t is an 

arbitrary vector perpendicular to the normal of the interface. 

The curvature of the interface κ is computed from the 
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following equation:  

n⋅∇=κ                                              (8) 

The normal and tangential velocity components are Vn and Vt 

respectively. It is clear that, the effect of the surface tension is 

to balance the jump of the normal stress along the fluid 

interface. The second term on the right hand side of the 

dynamic stress equation, Eq.(7), is the stress due to the 

gradient on surface tension in the local interface coordinates 

or the so-called Marangoni effect, usually important when a 

temperature gradient is applied parallel to the interface, e. g. 

thermocapillary convection.  

In contrast to the previous two-phase numerical methods, in 

which the interfacial jump conditions are embedded naturally 

on the momentum equations by applying CSF model [19], 

the jump conditions between the two fluids are treated here 

as a boundary conditions enforced explicitly at the interface 

Γ. Taking the projections of the jump conditions in the 

directions normal and tangential to the interface, considering 

a constant surface tension, one obtains the following two 

equations in the normal and tangential directions, 

respectively:  

σκµ =⋅⋅∇− ])(2[ nnup                              (9) 

0])()([ =⋅⋅∇+⋅⋅∇ ntutnu µµ                  (10) 

It is noticed from the above equations that surface tension 

effects are included in the normal stress balance, while the 

equality of the shear stress is satisfied in the tangential 

direction. In the special case of inviscid flow with constant 

surface tension coefficient the above equations are reduced to 

the Young-Laplace equation which determines the pressure 

jump across the interface. 

In addition to the equality of the dynamic interfacial stresses 

described above, the kinematic conditions should also be 

considered. When there is no mass transfer through the 

interface, the kinematic conditions is satisfied by assuming 

the continuity of the normal velocity components, i.e.  

gnln VV )) =                                  (11) 

In addition to that, the liquid gas interface requires equality 

of dynamic stresses, especially shear stresses, on both sides 

of the interface, i.e.  

gl ττ =                                          (12) 

The system of the above equations and the prescribed 

boundary conditions should be solved simultaneously to 

determine the flow field in the two fluids. The normal 

velocity components are then used for the advection of the 

interface by solving the appropriate equation of the level set 

function. 

3.2. Level Set Function 

The level set method is a type of capturing methods where a 

defined phase function φ, is smoothed over the entire 

computational domain. The level set function at any given 

point is taken as the signed normal distance from the 

interface with positive on the liquid phase (i.e. φ>0), and 

negative on the gas phase (i.e. φ<0). Consequently, the 

interface is implicitly defined as the zero level set of the level 

set function.  

The transport equation of the level set function can be 

described by the following equation: 

0=∇⋅+
∂
∂ φφ

u
t

                              (13) 

where u is the velocity vector. The geometrical properties of 

the interface, (normal vectors and curvature), can be defined 

as: 

n , n
ϕ κ
ϕ

∇= = ∇ ⋅
∇

                         (14) 

The original work of level set method in two-phase 

numerical simulation is referred to [20]. A review of such 

works can be found in the cited review [16].  

3.3. Computational Methodology  

In order to solve the above system of equations, the 

prescribed control volume formulation presented by [21] has 

been implemented. However, according to the complexities 

introduced by the staggered grid system in two-phase flow 

calculations and the need to track the liquid surface, a non-

staggered grid system is applied here, which requires the use 

of a single cell network for all variables and a collocated 

specification of variables at the centre of each cell.  

 
Figure 3. Calculation stencil for obtaining the intermediate flux velocity at 

cell faces 
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The collocated specifications of flow variables require a 

spatial technique to prevent pressure decoupling between 

adjacent cells. The only drawback of the non-staggered grid 

system is that it requires a high-order approximation for 

calculation of the fluxes and to obtain difference equations 

that can prevent pressure oscillations. In the present study, 

the derivatives at the central point of the control volume are 

approximated using the second-order central difference 

scheme to achieve the best accuracy. The velocity 

components at the control volume faces are calculated using 

the average values of the two-edge points that are calculated 

through the average of the four neighbouring grid points, as 

seen in figure 3. 

3.4. Initial Complex Velocity Field 

In order to start the calculation, a velocity field has to be 

prescribed. The initial velocity field plays a significant role in 

the properly started calculations, and consequently in the 

physical deformation of the interface. In KHI, a complex 

velocity field can be obtained through a distribution of 

vortex-like singularities on the interface [22]. The velocity 

components induced at point p located at the centre of the 

computational domain. 

∑
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where N is the number of the vortices on the interface. In the 

present work only one vortex pole located at the center of the 

computational domain. 

4. Results and Discussion 

In the present section, three different cases with the data 

shown in Table 1 are performed. The first case is performed 

for zero surface tension and zero viscosity fluids, while the 

other cases are performed by including the viscosity and 

surface tension respectively. 

Table 1. Data for the performed test cases 

Property  ρρρρ1/ ρ ρ ρ ρ2 µµµµ1/ µ µ µ µ2222 σ (σ (σ (σ (N////m) Grid ∆∆∆∆x, ∆∆∆∆y ∆∆∆∆t 

Case I 1.0 0.0 0.0 151x151 1e-4, 1e-4 3e-7 

Case II 1.0 1.0 0.0 151x151 1e-4, 1e-4 3e-7 

Case III 1.0 1.0 0.001 151x151 1e-4, 1e-4 3e-7 

4.1. Case I 

The evolution of an initial sinusoidal disturbance with 

amplitude a = 0.06λ is shown in Fig.(4). It is clear that the 

proper initial velocity distribution produces a good behaved 

smooth roll-up and concentration of vorticity at the midpoint 

of the wavelength (x =λ/2). No singularities can be observed. 

The roll-up process agrees well with the previous 

expectations [22, 23], and the interface forms at later times a 

smooth spiral. 

In comparison with the results [24], the proposed numerical 

procedure can properly predict the evolution of the interface 

without any numerical problems. That reveals the 

effectiveness of the numerical method adopted in order to 

obtain a real physical phenomenon.  

     

     

Figure 4. Evolution of KHI for Case I 
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4.2. Case II 

In order to show the effect of viscous force on the evolution 

of the KHI, the previous test case (Case I) is performed, 

however, the viscosity term is included in the governing 

equations with a viscosity ratio between the two fluids equal 

1. The inclusion of the viscosity effect in two-phase 

simulations is normally a challenge task due to the existence 

of the interfacial viscous stresses and the difficulties 

associated with its numerical modelling.  

From Fig. 5, it can be seen that the viscosity acts to thicken the 

vortex sheet and tries to suppress the roll-up mechanism 

observed in the inviscid simulations. The numerical results 

obtained for the viscous simulation predict that viscosity acts 

as a regularization effect on the roll-up of vortex sheets. These 

observations coincide with the previous investigations [24]. 

    

Figure 5. Evolution of KHI for Case II 

4.3. Case III 

In the present section, the effect of the finite surface tension 

on the rolling-up mechanism of the initial wave disturbance 

is presented, while the viscous effects are neglected. By 

including the finite surface tension into the numerical 

simulation, it is observed that the roll-up can occur as shown 

in Fig. 6. However, it can be observed a phenomenon called 

"pinching singularity" in contrast to the roll-up mechanism 

for case I. Moreover, the rolling-up mechanism in case of 

finite surface tension is weakened in comparison with the 

results of Case I. 

    

Figure 6. Evolution of KHI for Case III 

5. Conclusion 

The present paper investigates numerically the known 

Kelvin-Helmholtz instability between two fluids with 

different flow regimes. The numerical simulation is carried 

out by solving Navier-Stokes equations coupled with level 

set method in both fluids. The interfacial boundary 

conditions are well described in both fluids. The results 

indicate that, in case of inviscid simulation the roll-up 

mechanism of the interface separating the two fluids is well 

predicted. By including the viscosity effect in the numerical 

simulation, the roll-up mechanism is weakened. The effect of 

including the surface tension can be seen in observing the 

pinching singularity phenomenon called in contrast to the 

roll-up mechanism for inviscid flow. In general, the applied 

numerical method is seen to be effective and robust in two-

phase flow simulations.  
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