
 

 

International Journal of Mathematics and 

Computational Science 
Vol. 1, No. 2, 2015, pp. 55-58 

http://www.publicscienceframework.org/journal/ijmcs  

 

 
* Corresponding author 
E-mail address: nvnovikov65@mail.ru 

New Method of the Approximation of  
Hartree-Fock Wave Functions 

N. V. Novikov* 

Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia  

Abstract 

A new method of the approximation of the solution to the Hartree-Fock equation for many-electron atoms and ions is proposed. 
The method is based on the increase in the accuracy of the approximation of wave functions corresponding to different shells. 
This makes it possible to reach the accuracy that is close to the error of the numerical solution. More than 14000 wave 
functions of the ground and excited states of atoms and ions with the number of electrons ranging from 2 to 18 are obtained. 
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1. Introduction 

Hartree-Fock atomic wave functions are independent-
particle-model approximations to the nonrelativistic 
Schrodinger equation for stationary states [1, 2]. The Pauli 
principle is imposed through the use of Slater determinants, 
and for an N-electron system, the Hartree--Fock equations 
yield N Hartree--Fock spin orbitals.  

In the conventional Hartree--Fock approximation, the spin 
orbitals are expressed as products of a radial function times a 
spherical harmonic times a spin function.  Radial functions 
are taken to depend only on the quantum numbers  n and l, 
and the total wave function is required to be an eigenfunction 
of the total orbital and spin angular  momentum; the form of 
the spin orbitals guarantees that L, S and parity are good 
quantum numbers.   

Hartree--Fock wave functions for atoms may be computed 
numerically by standard methods [3]. Multi Configuration 
Hartree Fock (MCHF) program [4] allows obtaining the 
numerical solution of the nonrelativistic Hartree--Fock 
equation for ground and excited states of atoms and ions. 
MCHF program is very efficient for treating correlation in a 

large variety of systems. MCHF calculation of total energy 
takes into account the hyperfine structure and relativistic 
effects. Progress in atomic transition probability calculations 
has been made offering the possibility of separate and 
independent optimization of the initial and final 
configuration spaces. The disadvantage of numerical wave 
functions is that nontrivial software is required for their using.  

Roothaan-Hartree-Fock wave functions [5, 6] are 
approximations to conventional Hartree-Fock wave functions 
in which the radial atomic orbitals are expanded as a finite 
superposition of primitive radial functions. These wave 
functions offer some advantages over their numerical 
counterparts as they can be readily incorporated into a variety 
of codes for atomic calculations, and also for molecular and 
solid-state calculations by density-functional methods. The 
Roothaan-Hartree-Fock atomic wave functions are useful as 
starting points for relativistic calculations and in atomic 
structure calculations for atomic physics and quantum 
chemistry.  

The method for analytically approximating the numerical 
solution of the Hartree--Fock equation by means of the 
combination of Slater orbitals was used for the wave 
functions of the ground states of negative ions with the 
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nuclear charges Z≤16 [7] and atoms with the nuclear charges 
Z≤54 [8] and Z=55 [9] and 55≤Z≤92 [10] and Z≤54 [11] and 
ions with Z≤18 [8]. The paper [8] is cited more than 3000 
times. However, using this method for approximating the 
wave functions of the excited states of atoms and ions leads 
to a significant increase in the estimation error. 

The aim of this paper is to propose a new method for 
obtaining the wave functions in the Hartree--Fock 
approximation, which makes it possible to represent the wave 
functions of the excited states of atoms and ions in the 
analytical form and carry out the calculation for the lower 
excited states of atoms and ions with the nuclear charges 
Z≤18. 

2. Traditional Approximation 
Method 

We let the function φnl(r), where n is the principal quantum 
number of the electron, l is its orbital number, and r is the 
radial variable, denote the numerical solution of the radial 
Hartree--Fock equation.  The function φnl(r) must satisfy the 
orthogonality conditions: 

< φnl(r) │ φn’l(r) > = δnn’.                          (1) 

Because of the error of the numerical solution to the Hartree-
Fock equation, this equality holds only approximately:  

< φnl(r) │ φn’l(r) > = ηn’,                         (2) 

where │ηn’│ << 1 for n’< n and ηn’ = 1 for n’= n. 

The problem of the approximation of the function φnl(r) 
consists in finding the function ψnl(r) that is expressed in 
terms of the analytical functions with the least error ∆nl 

∆nl = ∫dr r
2 │ φnl(r) - ψnl(r) │2                 (3) 

and satisfies the orthogonality conditions as well as possible: 

< ψnl(r) │ ψn’l(r) > = ξn’,                   (4) 

where  │ξn’│ << 1   for n’< n and ξn’ = 1 for  n’= n.   

To do this, it is possible to use the expansion ψnl(r) in terms 
of the basis of Slater orbitals: 

ψnl(r) = )(nlC
i

i∑  ),( rS ilni
α ,                (5) 

where Snl(α,r) =  rn-l  exp(-α r) and Ci(nl) are the expansion 
coefficients. 

In what follows, as an example, we consider the 
approximation of the numerical solution to the Hartree--Fock 
equation for the M1 shell of the atom or ion that has 10 
electrons or more.  We first find the parameters of the 

function corresponding minimum energy for the given l: 

ψ1s(r) = )1( sC
i

i∑ ),( rS ilni
α ,                 (6) 

where the parameters Ci(1s),  ni,  and αi  are calculated from 
the minimum of functional (3) with the functions φ1s(r) and 
ψ1s(r). Then, as a test function for the approximation of φ2s(r), 
we chose  

ψ2s(r) = )2( sC
j

j∑ ),( rS jln j
α  - 

< )2( sC
j

j∑ )',( rS jln j
α │ψ1s(r’) > ψ1s(r) ,            (7) 

which, by construction, satisfies the orthogonality condition  

< ψ2s(r) │ψ1s(r) > =0.                           (8) 

The parameters Cj(2s), nj, and αj in (7) are determined from 
the minimum of functional (3) with the functions φ2s(r) and 
ψ2s(r).  Now, as a test function for the approximation of φ3s(r), 
we chose the function  

ψ3s(r) = )3( sC
k

k∑ ),( rS klnk
α  - 

< )3( sC
k

k∑ )',( rS klnk
α │ψ1s(r’) > ψ1s(r) 

- < )3( sC
k

k∑ )',( rS klnk
α │ψ2s(r’) > ψ2s(r),       (9) 

which, by construction, satisfies the orthogonality conditions:  

< ψ3s(r) │ψ1s(r) > =0, 

<  ψ3s(r) │ψ2s(r) > =0.                         (10) 

The parameters Ck(3s),  nk,  and αk  in (9) are determined 
from the minimum  of functional (3) with the functions φ3s(r) 
and ψ3s(r). 

The advantage of this approximation method consists in that 
the set of orthonormalized functions is obtained. However, 
the rounding of the coefficients Сj in (7) and Сk in (9) leads 
to the fulfillment of (10) only with an error ξn’≠0 (4). The 
drawback of this method is that the approximation error ∆nl 
increases rapidly with increasing n. The increase in the 
number of shells in the atom or ion leads to an increase in the 
number of additional conditions imposed on the test function.  

A strong correlation between the parameters Сi(nl) and αi 
exists in expansions (6), (7), (9). The variation in the value of 
one of the parameters in these expansions leads to a change 
in all Сi(nl) and  αi,  which makes it difficult to find the 
minimum of the multiparameter function. In addition, the 
overlap integrals in (7) and (9), which also depend on the 
varied parameters, become a strong perturbation. Such a 
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“feedback” also makes it difficult significantly to perform the 
variation of functional (3) and leads to an increase in the 
error ∆nl. The variation of the parameters Ck(3s) and  αk in (9) 
must not only decrease the deviation of the first term in (9) 
from  φ3s(r), but also decrease overlap integrals (10) in order 
that they remains corrections to the first term in (9).  

This approximation method was used previously [7-11] to 
describe the ground state of atoms and ions and was not 
applied to excited states of many-electron atoms and ions. 

3. New Approximation Method 

We propose to refuse to choose the test function with 
conditions (1) taken into account and thereby to decrease ∆nl. 
If the errors ∆nl are rather small, then orthogonality 
conditions (4) are satisfied with the error that is close to that 
of numerical solution (2): 

│ξn’│ → │ηn’│.                                (11) 

For the case of the approximation of the wave function of the 
М1 shell, the test function for the K shell has the same form 
(6), and for the states with higher  energies in absolute value, 
the test functions were chosen in the forms 

ψ2s(r) = (2 )j

j

C s∑  ( , )
jn l jS rα ; 

ψ3s(r) = )3( sC
k

k∑  ),( rS klnk
α .             (12) 

Because any additional conditions are imposed on functions 
(12), then it is possible to obtain small ∆2s and ∆3s such that 
conditions are satisfied (11). 

Based on the proposed method, we calculated the wave 
functions of atoms and ions with the nuclear charge Z≤Zmax, 
where Zmax=18, and the number of electrons Ne (2 ≤ Ne ≤ 18). 
In addition to the ground states, we also took into account the 
states with one excited valence electron in the case where 
there are no vacancies in the inner shells. We considered the 
following excited states: 2s for Z=2, 2p for Z≤4, 3s for Z≤10, 
and 3p for Z≤12, as well as the 3d, 4s, 4p, 4d, 5s, 5p, and 5d 
states for Z≤18. For atoms and ions with one valence electron 
(Ne = 3, 11, 13), the spin in the excited state remains the same 
as in the ground state. Two possible values of the spin for the 
excited states are taken into account in the other cases.  

The approximation accuracy ∆nl in the calculations was as 
follows: ∆1s≤ 3×10-10, ∆nl≤ 10-9 for n=2 and ∆nl≤ 3×10-9 for  
n≥3. This accuracy ∆nl is sufficient for condition (11) to be 
satisfied. In this case, the obtained value of │ξn’│for atoms 
and ions in the ground state turns out to be less than that for 
the wave functions [8, 11]. As a result, more than 14000 
wave functions were obtained: 

Nwf  =  NZ ( Nex  Nnl + Nnl - 1) ,                  (13) 

where Nwf are the number of wave functions,  NZ is the 
number of atoms and positive ions (NZ= Zmax-Ne+1), Nnl is the 
maximum number of shells, and Nex is the number of 
considered excited states.  The value of Nnl ,  Nex, and Nwf    are 
given in the table.  

The results of calculations (the parameters of wave functions) 
are represented in free access [12]. These wave functions are 
useful for atomic calculations [13, 14].  

4. Conclusions 

We have proposed a new method for approximating the 
solution to the Hartree--Fock equation for many-electron 
atoms and ions. The method is based on the increase in the 
approximation accuracy for the wave functions of electrons 
of all shells. This makes it possible to obtain the accuracy for 
the wave functions that is close to that of the numerical 
solution. We were first to obtain more than 14000 wave 
functions of the excited states of atoms and ions with nuclear 
charge Z≤18 and with  the number of electrons ranging from 
2 to 18 in the form of the expansion in terms of analytical 
functions. For atoms and ions with one valence electron (Ne = 
3, 11, 13), the spin in the excited state remains the same as in 
the ground state. Two possible values of the spin for the 
excited states are taken into account in the other cases.  

Acknowledgments 

The author is grateful to Ya. A. Teplova for the useful 
remarks during the discussion of the results of this paper. 

Dependence of the number of atoms and positive ions NZ, the values of the 
parameters Nnl  and Nex, and the number of obtained wave functions Nwf  on 
the number of electrons Ne 

Ne NZ Nnl Nex Nwf 

2 17 2 22 765 
3 16 2 10 336 
4 15 3 21 975 
5 14 3 9 406 
6 13 4 42 2223 
7 12 4 42 2052 
8 11 4 20 913 
9 10 4 42 1710 
10 9 4 42 1539 
11 8 4  8 280 
12 7 5 15 553 
13 6 5 7 234 
14 5 6 30 925 
15 4 6 30 740 
16 3 6 14 267 
17 2 6 30 370 
18 1 6 30 185 
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