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symmetric exact solutions of Einstein’s equations. One of these solutions, Schwarzschild uniform density solution is 

unphysical. In this paper, we have demonstrated that field equations for static spherically anisotropic spacetimes can be 

reduced to Riccati type differential equations. Moreover, we have presented three new techniques for finding static spherically 

symmetric anisotropic solutions of Einstein’s equations. Using one of these techniques, a class of new solutions is generated. 

The solution is realistic and physically acceptable. 

Keywords 

Radial Pressure, Tangential Pressure, Energy Density, Isotropic Solution, Anisotropic Solution, Hydrostatic Equilibrium, 

Polytrope Index 

Received: June 1, 2020 / Accepted: November 25, 2020 / Published online: December 11, 2020 

@ 2020 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. 

http://creativecommons.org/licenses/by/4.0/ 

 

1. Introduction 

Einstein’s equations describing static spherically symmetric 

perfect fluid distribution provide a system of three 

independent differential equations [1-8] for four unknown 

functions, namely the pressure function p(r), the energy 

density ρ(r)  and two metric functions. Therefore, additional 

information in the form of an equation of state or 

specification of one of the two metric functions is needed in 

order to solve the system. Evidently the solution generating 

techniques mentioned above needs one solution generating 

function, called the source function. On the other hand 

Einstein’s equations describing static spherically symmetric 

anisotropic fluid distribution provide a system of three 

independent differential equations [9, 10] for five unknown 

functions, namely the radial pressure rp (r) , tangential 

pressure tp (r) , energy density ρ(r)  and two metric 

functions. Thus generation of such solutions needs two input 

functions. However instead of specifying two input functions 

anisotropic solutions can be generated by specifying one 

input function and an additional ansatz e.g. conformally flat 

condition, a known isotropic/ anisotropic solution [11-15] 

etc. 

In Section-2, we have derived the field equations governing 

static spherically symmetric an anisotropic fluid 

distribution in the form needed for our future purpose. In 

Section-3, techniques for generating static spherically 

symmetric anisotropic solutions are reviewed. The 

techniques are illustrated with the help of examples. In 

Section-4, new techniques for generating static spherically 
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symmetric anisotropic solutions are presented. In Section-5, 

a class of new solutions is generated using the new 

techniques. In Section-6, we discuss on the properties of the 

solution. Finally in Section-7, some concluding remarks are 

given. 

2. Einstein’s Field Equations 
for Static Anisotropic Fluid 
Spheres 

The line element for space-time describing static spherically 

symmetric geometry in curvature coordinates can be written as 

2 ( ) 2 ( )2 2 2 2 2 2 2
( sin )

r r
ds e dt e dr r d d

φ θ θ φΛ= − + + +  (1) 

For the metric (1) Einstein’s tensor Gαβ  is given by 

( )
2

2 2
00 2

1 2
e

G e re
r

φ
− Λ − Λ ′= − + Λ  

( )
2

2

2

2
1rr

e
G e

rr

φΛ
− Λ ′

= − − +  

2 2 2( )G r e
r r

θθ
φφ φ φ− Λ ′ ′Λ ′′ ′ ′ ′= + + − Λ − 

 
 

2sinG Gφφ θθθ=  

For an anisotropic fluid nonzero components of energy-

momentum tensor are given by 

2
00T e

φρ=  

2
rr rT p e

Λ=  

2
tT p rθθ =  

2sinT Tφφ θθθ=  

where rp  and tp  are radial pressure and tangential pressure 

respectively. Einstein equations 8G Tαβ αβπ=  provide the 

following three independent equations, 

2

2 2

1 1 2
8 ( )e

rr r
πρ − Λ ′Λ= − −                        (2) 

( )
2

2

2

1 2
8 1r

e
p e

rr

φπ
− Λ

− Λ ′
= − − +                 (3) 

2 28 tp e
r

φπ φ φ φ− Λ ′ ′− Λ ′′ ′ ′ ′= + − Λ + 
 

          (4) 

From (3) and (4) we obtain the equation 

2
12 2

8 ( )
2

e
p p er t

r r r

φ
π φ φ φ

− Λ′ ′Λ −− Λ ′′ ′ ′ ′− = − − + + Λ + +
 
  
 

  (5) 

Equation (5) can be expressed as 

( ) ( )2 32 r r 2 1 r ( )
y y

r(r w) r(r w)

w w w w r

w w

′ ′′+ − − + Π
′ − =

′ ′+ +
            (6) 

where 

2
y e

− Λ= , w eφ=  and ( ) 8 ( )r tr p pπΠ = −  

Mass function m(r) is given by 

2( ) (1 )
2

r
m r e− Λ= −                               (7) 

In terms of the mass function equation (2) can be written as 

2
( ) 4m r rπ ρ′ =                                 (8) 

Equation (6) can be solved for y(r) if w(r) and ( )rΠ are 

specified. Density ρ  and pressures rp  and tp  can be found 

by putting these in equations (2) – (4). 

Equation (6) can be rewritten as 

( )2 2 2 2 2 2 22 r r r 1 r (r) r r r
u u

r(r 1) r(r 1)

φ φ φ φ φ φ

φ φ

′′ ′ ′+ − − ′′ ′ ′Π + + −
′ + =

′ ′+ +
   (9) 

where 
m

u
r

= . Equation (9) can be regrouped as 

2
2

2

2 ( ) 2 1

1 21 2

ru u r r ru u

r( u)r ( u)
φ φ φ

′ ′− − Π − +′′ ′ ′= + −
−−

       (10) 

Equation (10) is a Riccati type differential equation of the 

form 

2
v (r) P(r) Q(r)v v′ = + −                               (11) 

where 

v φ ′= , 

22 ( )

2 1 2

ru u r r
P(r)

r ( u)

′ − − Π=
−

,
2 1

1 2

ru u
Q(r)

r( u)

′ − +=
−

 (12) 

3. Review of Solution 
Generating Techniques  

Einstein equations governing static spherically symmetric 

perfect fluid distributions provide three independent 

differential equations for four unknown functions. Solution 

of such a system of equations depends on the specification of 
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a single generating function. Whereas specification of a 

generating function provides a solution, there is no guaranty 

that the resulting solutions will be a realistic one. Lake [6] 

has given a prescription for obtaining realistic solutions 

where he has shown that, the necessary condition for the 

resulting solution to be realistic is that the input function 

should be a monotonically increasing function of r with a 

regular minima at r = 0. The formalism has been extended to 

the case of static anisotropic fluid spheres by Herrera et al [9] 

which depend on two input functions. To see how it works let 

us rewrite equation (6) in the following way, 

2 6 4 2 1
y 2 y ( )

2 2

z
z r

z r zr z r

   ′′ + + − + = − + Π   
   

  (13) 

where 
1

( ( ) )z r dr
rw e

−
= ∫  

Equation (13) is a first order linear differential equation in 

y(r) which depends on two functions z(r) and ( )rΠ . In 

closed form solution of (13) can be written as 

4( 2 )
22(1 )6 2

8

4( 2 )
22

z dr
r zz r e

r dr c
r

y
z dr

r zz e

 +∫ + Π − +∫
 
 
 =

+∫
    (14) 

If ( )rΠ = 0, solution (14) coincides with that of [6]. The 

input function ( )rφ  in [6] is related to z(r) by 

1
( ) ( )r z dr

r
φ = −∫ . 

Specifications of two input functions can be reduced to one 

provide that one additional ansatz is given. For example, if 

we consider conformally flat anisotropic solutions then 

conformally flat condition imposes the restriction 

( )
2

2

2

1
0

e

r r

φφ φ φ
− Λ′ ′− Λ −′′ ′ ′ ′+ − Λ + + =           (15) 

Equation (15) has the solution 

( )( )cosh re Cr e drφ Λ= ∫  or, ( )( )1
( ) cosh rz dr Cr e dr

r

Λ− =∫ ∫  (16) 

From (16) we obtain 

2
( ) tanh

e e
z r dr

r r r

Λ Λ 
= +   

 
∫                  (17) 

Putting (15) in (5) we obtain  

2 2

2 3

2 1
( ) 2

e e
r r

r r

− Λ − Λ ′Λ −Π = +  
 

 = 
2

2

1 e
r

r

− Λ ′
 −
  
 

   (18) 

Any specification of z(r) determines ( )rΛ  through equation 

(17). Then ( )rΠ is determined by (18). Thus the system is 

completely determined a single generating function is 

specified. 

Following the prescription given by Herrera et al [9] any 

static spherically symmetric anisotropic solution can be 

generated by specifying two input functions z(r) and ( )rΠ . 

Whereas any specification of z(r) and ( )rΠ  provides a 

solution there is no guaranty that the resulting solution will 

be a realistic one. For a solution to be realistic the weak 

energy condition 0,ρ ≥  0tpρ + ≥ , 0rpρ + ≥  and the 

strong energy condition 0tpρ + ≥ , 0rpρ + ≥ , 

2 0t rp pρ + + ≥ are required to be satisfied. Also regularity 

at r = 0 requires (0) (0) (0) 0r t rp p p′= = = . Lake [10] has 

presented a less general technique for obtaining realistic 

anisotropic solutions which requires the specification of only 

one input function, the density ( )rρ  itself. The technique 

uses the Newtonian equation of hydrostatic equilibrium for 

an isotropic fluid sphere. To see how it works let us suppose 

that ρ  and rp  are related as follows, 

2r

m
p

r

ρ′ = −                                       (19) 

From (3) we obtain 

34

( 2 )

rm r p

r r m

πφ +′ =
−

                                (20) 

where 
2

( ) (1 )
2

r
m r e

− Λ= − . The generalized Oppenheimer- 

Volkov equation can be written as 

{ ( ) }
2

t r r r

r
p p p pρ φ′ ′= + + +                   (21) 

Inserting (19) and (20) into (21) we obtain 

3( )( 4 )

2 2( 2 )

r r
t r

p m r pm
p p

r r m

ρ πρ + +
= − + +

−
        (22) 

Let us recall that equation (2) can be written as 

2
( ) 4m r rπ ρ′ =                          (23) 

Hence any specification of ( )rρ  determines m(r) [hence

( )rΛ ], through equation (23) and rp through equation (19). 
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Knowing m(r) and rp  we get ( )rφ  from equation (20). Thus 

the system is completely determined if density ρ is 

specified. If we choose ρ > 0 then from equations (19) and 

(22) it can be seen that 

0t rp p≥ ≥  

As a result weak and strong energy conditions are 

automatically satisfied as long as ρ > 0. The formalism is 

demonstrated below with the help of two examples. 

(i) Let ρ = b = constant > 0. From (23) and (19) we 

respectively get 

34
( )

3

br
m r

π=                            (24) 

24

3
r

b r
p

π′ = −                             (25) 

From (25) we obtain 

2 22

3
r

b r
p c

π= −                           (26) 

Let r = R be the surface of the fluid sphere so that ( ) 0rp R =  

2 22

3

b R
c

π
⇒ = . Putting the value of c in (26) we get 

2 2 22
( )

3
rp b R rπ= −                     (27) 

Metric function ( )rΛ  is given by 

2
2 2 8

1 1
3

m br
e

r

π− Λ = − = −  

From (20) we obtain ( )rφ , 

3
2( ) 4 (1 2 ) 2

3 8 3 8

r dr r dr
r b bR b

br br
φ π π π

π π

  = + −∫ ∫ − −    

(28) 

Putting (24) and (27) in (22) we obtain 

2
2 2 2 2 4 2 2 2 2 2 2 2 2 4

(4 3 8 ) (4 3 8 )
2

3(3 8 )

b
p r b r br R b r R b rt

br

π
π π π π

π
= − + − − +

−
 
 

 (29) 

To avoid singularities in tp  we must have 

3

8
R

bπ
<  2R M⇒ <  

For this solution we get 

(0) bρ = , 
2 2 22

(0) (0)
3

r t

b R
p p

π= = , 

(0) (0) (0) 0r tp pρ ′ ′ ′= = = . 

(ii) Equation (25) describes a Newtonian polytrope of index 

zero. A Newtonian polytrope of index n satisfies the equations 

2
( ) 4m r rπ ρ′ = , 

2r

m
p

r

ρ′ = −  

with the equation of state 

1
1

n
rp k ρ

+
=                               (30) 

where k is an arbitrary constant. For a polytrope of index n = 

1, equation (30) reduces to 

2
rp k ρ=                                 (31) 

From equation (31) we get 

2rdp d
k

dr dr

ρρ=                              (32) 

From (32) and the second of equations (30) we obtain 

2( ) 2
d

m r kr
dr

ρ= −                         (33) 

From (33) and the first of equations (30) we get 

2 22
0

d d
r r

dr dr k

ρ π ρ  + = 
 

                    (34) 

Solution of (34) is given by 

sin( )
( )

ar
r

ar
ρ α= , ( 2 2

a
k

π= ,α = constant)      (35) 

To find an anisotropic solution let us specify the density 

function ( )rρ  as in (35) with 0α > . Mass function m(r) is 

then given by 

{ }42
( ) 4 ( ) sin( ) cos( )0 3

r
m r x x dx ar ar ar

a

παπ ρ= = −∫   (36) 

Metric function ( )rΛ  is given by 
1 2

log 1
2

m

r

 Λ = − − 
 

. 

Inserting (35) into (31) we obtain 

2
2

2 2

sin ( )
r

ar
p k

a r
α=                      (37) 

Metric function ( )rφ  can be obtained by putting (36) and 

(37) in (20). 
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On the surface r = R of the star ( ) 0rp R = . From (37) we 

obtain 

sin( ) 0aR =  R
a

π
⇒ = . 

Mass M of the fluid sphere is given by 

2

3

4 4
( )M aR R

aa

πα α= = , (since a
R

π= )        (38) 

From (38) we obtain 

2

4M

R a

πα=                                   (39) 

For the Buchdahl bound to hold we must have 2 9a πα> . 

Putting (37) and (36) in (22) we obtain 

5 8

( )

32 ( 2 )
t

I r
p

r a r mπ
=

−
 

where 

4 4 2 2 3 3 2 2 3 2 2
( ) 256 ( ) ( ) 128 ( (3 )0 0 0I r r r a a rπ ρ ρ ρ ρ π ρ ρ ρ= − + + +  

4 ( )( ) 2 ( )( ))0 0 0 0r mρ ρ ρ ρ ρ ρ ρ ρ− − + + − +  

2 2 4 2 2 3 2 2 2
32 (6 2 50 0r a a m r r mrπ ρ ρ ρ− − −  

2 2 2 2 2
13 3 )0m r m mρ ρ ρ+ − +  

6 2 3 2 2
8 (3 4 14 2 )mra a mr r mr mπρ+ + + −  

8 2 2 2
(4 10 )a m r mr m− + −  where 0 (0)ρ ρ= . 

For this solution (0)ρ α= , 
2

2
(0) (0)r tp p

a

πα= = , 

(0) (0) (0) 0r tp pρ ′ ′ ′= = = , 

( ) ( ) ( ) ( ) 0r t rR p R p R p Rρ ′= = = = , ( )
a

R
αρ
π

′ = −  along 

with 

3

2

16
( )

( 8 )
t

a
p R

a a

π
πα

′ = −
−

 

4. New Techniques for 
Generating Solutions 

In this section we provide three different techniques for 

generating static spherically symmetric anisotropic solutions. 

I. Anisotropic Solutions from Known Anisotropic Solutions 

Let us suppose that 0 0( , )u v , where 0
0

( )m r
u

r
=  and 0v φ ′= , 

is a known anisotropic solution. Then 0 0( , )u v  satisfies 

equation (11). Therefore we have 

2
0 0 0 0 0v P (r) Q (r)v v′ = + −                                 (40) 

where 

2
0 0 0

0 2
0

2 ( )

1 2

ru u r r
P (r)

r ( u )

′ − − Π
=

−
, 

0 0
0

0

2 1

1 2

ru u
Q (r)

r( u )

′ − +
=

−
 

Here )(r 0

2 rπ is obtained by using ),( 00 vu  in (3) and (4). 

From (40) we find that )()( 0 rvrv =  is a particular solution 

of the Riccati differential equation 

2
0 0v P (r) Q (r)v v′ = + −                           (41) 

Let 0

1

( )
V v

z r
= +  be the general solution of (41) so that we 

have 

2
0 0V P (r) Q (r)V V′ = + −                       (42) 

Equation (42) can be regrouped as 

( )2 2 2 2 2 2 22 1 ( )0
0 0

1 1

r V r V rV r r r V r V rV
u u

r(rV ) r(rV )

′ + − − ′Π + + −
′ + =

+ +
 (43) 

Therefore 0u u=  is a particular solution of the differential 

equation 

( )2 2 2 2 2 2 22 1 ( )0

1 1

r V r V rV r r r V r V rV
u u

r(rV ) r(rV )

′ + − − ′Π + + −
′ + =

+ +
  (44) 

Putting 0 ( )u u U r= +  in (44) and using (43) we obtain the 

equation 

( )2 2 22 1
0

1

r V r V rV
U U

r(rV )

′ + − −
′ + =

+
            (45) 

Therefore if 0 0( , )u v  is a known anisotropic solution then 

0 0

1
( , )u U v

z
+ +  is also an anisotropic solution where 0

1
v

z
+  

is the solution of (41) and ( )U r is the solution of (45). 

II. Anisotropic Solutions from Isotropic Solutions 

Let us suppose that 0 0( , )u v  is a known static spherically 

symmetric isotropic solution i.e. we let 

2
0 0 0 0 0v P (r) Q (r)v v′ = + −                 (46) 
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where 

0 0
0 2

0

2

1 2

ru u
P (r)

r ( u )

′ −
=

−
 and 0 0

0
0

2 1

1 2

ru u
Q (r)

r( u )

′ − +
=

−
  (47) 

Proceeding as in I above we get 

( )2 2 2 2 2 22 1

0 0
1 1

r V r V rV r V r V rV
u u

r(rV ) r(rV )

′ + − − ′ + −
′ + =

+ +
 (48) 

where 0

1

( )
V v

z r
= +  is the general solution of 

2
0 0v P (r) Q (r)v v′ = + −                      (49) 

where 0 ( )P r  and 0 ( )Q r  are given by (47). Therefore 0u u=  

is a particular solution of the differential equation 

( )2 2 2 2 2 22 1

1 1

r V r V rV r V r V rV
u u

r(rV ) r(rV )

′ + − − ′ + −
′ + =

+ +
    (50) 

Let us consider the equation 

( )2 2 2 2 2 2 22 1 ( )

1 1

r V r V rV r r r V r V rV
u u

r(rV ) r(rV )

′ + − − ′Π + + −
′ + =

+ +
 (51) 

where ( )rΠ  is arbitrary. Equation (51) reduces to (50) if 

( ) 0rΠ = . Putting 0 ( )u u U r= +  in (51) and using (48) we 

get the equation 

( )2 2 2 22 1 ( )

1 1

r V r V rV r r
U U

r(rV ) r(rV )

′ + − − Π
′ + =

+ +
          (52) 

Therefore if 0 0( , )u v  is a given isotropic solution, then 

0 0

1
( , )u U v

z
+ +  is an anisotropic solution where 0

1
v

z
+  is 

the solution of (49) and U(r) is the solution of (52). Any 

specification of ( )rΠ  generates a static spherically 

symmetric anisotropic solution. However not all such 

solutions will be realistic. For the resulting solution to be 

realistic 2
( )r rΠ  must satisfy some conditions. 

III. Anisotropic Solutions Satisfying an Ansatz 

For the equation (6), we consider the class of solutions which 

satisfy the ansatz  

)(

))(1(

)(

32

wwrr

rrw

wwrr

wrwrw

+′
Π+=

+′
′′−′+

              (53) 

Equation (53) can be rearranged as 

( ) 0rw w J r w′′ ′− + =                    (54) 

where 2
( ) ( )J r r r= Π . Equation (54) is a second order linear 

differential equation in w(r) and can be solved if J(r) is 

specified. Therefore all such solutions depend on the 

specification of a single generating function J(r). Whereas 

any specification of J(r) generates a solution not all such 

solutions will be realistic. To obtain realistic solutions J(r) 

should be chosen intelligently. Regularity at the origin r = 0 

requires J(0) = 0. 

5. New Solution 

We have found a new solution using technique-III described 

in Section-4. We recall that any specification of J(r) 

determines w = exp ( )φ  through equation (6) and thereby 

generates a solution. Regularity at r = 0 requires J(0) = 0. 

Keeping this in mind we choose 

2 3

2 2
( )

( 1)

a r
J r

ar
=

+
                          (55) 

Inserting (55) into (54) we obtain the differential equation 

2 2 2 2 2 3
( 1) ( 1) 0r ar w ar w a r w′′ ′+ − + + =          (56) 

Under transformation 2
log( 1)x ar= +  equation (56) reduces 

to 

2

2
0

4

d w dw w

dxdx
− + =                            (57) 

Equation (57) has the solution 

2 22( ) ( log( 1)) 11 2 1 2

x

w e c c x e c c ar ar
φ= = + = + + +     (58) 

Solution of equation (6) is given by 

( )2
1

f r dr
y e Ce

−− Λ= = + ∫                          (59) 

where  

2 (1 )
( )

( )

w rJ
f r

r rw w

− +=
′ +

                        (60) 

Putting (55) and (58) in (60) we obtain  

{ }( )
{ }

2 2 4 2
2 log( 1) 2 2 11 2

( )
2 2 2 2

( 1) 2( ) (2 1) log( 1)1 2 2 1

c c ar a r ar

f r

r ar c c ar c ar ar c

− + + + +
=

+ + + + + +
 (61) 

Evaluation of ( )f r dr∫  is not easy. So we consider the 
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particular solution of (57) obtained by letting 2 0c = . Then 

we have 

( )2 4 2

2 2

2 2 2 1
( )

( 1)(2 1)

a r ar
f r

r ar ar

− + +
=

+ +
                      (62) 

Integration of (62) is found to be given by 

2

2 2

2 1
( ) log

( 1)

ar
f r dr

r ar

+=
+∫                          (63) 

Putting (63) in (59) we obtain 

2 2
2

2

( 1)
1

2 1

Cr ar
e

ar

− Λ += +
+

                          (64) 

Therefore we get the solution 

2
2 2 2 2 2 2 2 2

( 1) ( sin )1 2 2
( 1)

1
2

2 1

dr
ds c ar dt r d d

Cr ar

ar

θ θ φ= − + + + +
+

+
+

 (65) 

6. Properties of the Solution 

For this solution density and pressure are given by 

2 2 2

3 1 1 2
8

2 3 2 1 (2 1)

k

ar ar
π ρ

  = + + 
+ +  

 

( )2

2 2

3 12
8

1 2 1
r

k ara
p

ar ar
π

+
= −

+ +
 

( )2
2

2 2 2 2

3 12
8

1 2 1 ( 1)
t

k ara a r
p

ar ar ar
π

+
= − −

+ + +
 

where k = - c. Central density and central pressures are given 

by 

3
8 (0) 1

2

kπ ρ = +  > 0 

8 (0) 8 (0) 2r tp p a kπ π= = −  > 0, if k > 0 and a > 
2

k
 

d

dr

ρ
 and 

dp

dr
 are given by 

2

2 3

(2 5)

6 (2 1)

d ar ar

dr ar

ρ
π

+= −
+

 < 0 

2 2

2 2 2 2

( 1)

2 ( 1) 2 (2 1)

rdp ar k ar
a

dr ar a arπ
 + = − + 

+ +  
 < 0 

Therefore both ( )rρ and ( )rp r are decreasing functions of r. 

(0) (0) 0rpρ ′ = = . 

Let r = R be the surface of the fluid sphere. Then ( ) 0rp R = . 

This gives 

1
22 2 2 24 3 1 (4 3 1) 12 (2 1)

26

a ak a ak a k a
R

a k

 − − + − − + − =
 
 

 

If we choose 
24 1

3

a
k

a

−=  then we get { }
1

4(2 1)R a a
−= +  

Let M be the mass of the fluid sphere. Since the interior 

solution must be joined smoothly onto the vacuum 

Schwarzschild solution at r = R we must 

( ) 2
1

R M
e

R

λ− = −  

This implies 
2 2

2 2

( 1)

2 (2 1)

M kR aR

R a aR

+=
+

 

( )
( )

2 24 1 (2 1) 4 1

6 2 (2 1)

a a a a

a a a a

− − + −
=

+ +
 

Buchdahl condition 
4

9

M

R
<  is satisfied if 

( )
( )

2 24 1 (2 1) 4 1
4

32 2 (2 1)

a a a a

a a a a

− − + −
<

+ +
 

{ } 28 2 (2 1) 3(2 1) (2 1) 12 3a a a a a a a a⇔ + + > − + + −  

24 (2 3) (2 1) 3 0a a a a⇔ + + + + >   

which is satisfied for all a > 0. 

Therefore Buchdahl condition is satisfied if a > 0. 

7. Conclusions 

Generation of static spherically symmetric anisotropic 

solution needs the specification of two input functions. 

Proper choice of two input functions for generating a realistic 

solution is not easy. We have described three techniques for 

generating static spherically symmetric anisotropic solutions 

which need the specification of one input function instead of 

two. Using technique III we have found a physically 

acceptable solution. In a future work we hope to find the 

conditions satisfied by an input function so that the resulting 
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solution may be realistic. The content of this work would 

make a useful addition to a physical solutions of Einstein’s 

equations. 
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