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Abstract 

In one of the previous works, using the theory of explosion and the laws of conservation of mass, momentum and energy, the 

author managed to solve the system of equations for the spherical detonation model. The possible existence of a stationary 

mode at the beginning of the transition of a blast wave to detonation was proved, and a new formula appeared that determines 

the speed of a spherical detonation wave in reacting gases. This served as a powerful incentive for further studies of the 

detonation process. The proposed article is a logical continuation of the previous works. The main attention in the article is 

drawn to the fact of instability of the normal spherical detonation and instability of the Chapman-Jouguet regime, when the 

radius of the wave front considerably exceeds the critical one. The author studies the reasons for the increase in the speed of a 

spherical detonation wave during its transition to plane wave at large distances from the center of the explosion. The possibility 

of transition of a normal spherical detonation to a more stable state, with a higher energy level, in the form of a flat stationary 

detonation is indicated. It is assumed that two stationary states exist, that is, two energy levels for the stationary detonation, 

which makes it possible to explain the phenomenon of pulsating detonation in gaseous media. 
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1. Introduction 

Spherical detonation is a frequent occurrence in reactive 

gaseous media, which is always accompanied by an 

explosion. To study the basic laws of spherical detonation, 

the author used a strong small-volume explosion in a 

detonating gaseous medium. The model of the transition of 

strong detonation into the Chapman-Jouguet regime is 

presented in works [1, 2] and developed on the basis of the 

point explosion theory. In essence, the transition to normal 

spherical detonation is the final stage of a point explosion in 

a reacting gaseous medium, if this is facilitated by the energy 

potential of the reaction and the physicochemical 

environmental conditions. The possibility of the stationary 

regime of spherical detonation follows from the law of 

conservation of energy and is one of the fundamental results 

of previous studies [1, 2]. But the study of spherical 

detonation does not end there. This article discusses other, 

equally important consequences, resulting from the laws of 

conservation of energy, momentum and mass. Together, they 

provide an opportunity to analyze the causes of instability of 

a normal spherical detonation and an increase in its speed 

with an unstoppable propagation of a spherical wave in 

space. In this regard, the task was to study spherical 

detonation at more remote distances from the center of the 

explosion. The author set himself the goal of investigating 

the instability of stationary spherical detonation in gases, the 

transition of a spherical wave to a plane at infinity, and the 

energy consequences of such a process. It should be noted 
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that the mode of normal spherical detonation is poorly 

studied in modern gas dynamics, and in the scientific 

literature is covered only in the works of the author [1-5]. At 

present, some problems in this field are quite accurately 

solved by numerical methods [6, 7]. For many researchers, 

approximation formulas are also a common method for 

determining the speed of a spherical detonation wave [8, 9]. 

At considerable distances, when the current front radius is 

much larger than the critical one (� � �� , Figure 1), the 

Eyring dependence is often used: 
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where � is the current value of the radius of a spherical wave, 

� is constant, �� is the velocity of the plane wave, � is the 

velocity of the spherical wave. Formula (1) indicates the 

instability of a normal spherical detonation and an increase in 

its speed in a remote region of propagation, but does not 

provide information on the causes of this phenomenon. 

2. Theoretical Part 

2.1. The Change of the Wave Velocity in the 

Detonating Medium 

The author continues to consider a strong explosion of small 

volume in a detonating gaseous medium and a model for the 

transition of a blast wave into a wave of normal (stationary) 

detonation. But if earlier the main attention was paid to the 

initial stage of this process, that is, the formation of normal 

spherical detonation, which occurs at a distance of a critical 

radius ��  from the center of the explosion (Figure 1), then 

now we will be interested not only in initial, but also in 

remote distances, when current radius is much larger than 

critical. 

 

Figure 1. Scenario of continuous transformation of a blast wave into a wave 

of normal detonation.  

Figure 1 shows the radii: R	 - the radius of the charge, R
- 

the initial threshold, R�- the final threshold for the transition 

of a strong detonation into the Chapman-Jouguet mode. 

Using the results of previous studies [1, 2], we present the 

basic formulas for the velocity of a blast wave at the moment 

of transition to the Chapman-Jouguet mode: 
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this implies the final formula starting from (2) 
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(Figure 1). In these expressions, the following notation is 

used: � - energy of combustion of mole of combustible gas; 

� - specific coefficient of burnt gas; �- the molar mass of the 

mixture; �- adiabatic index for a given gas mixture; �	 - the 

initial explosion energy of a charge of radius �	; �- current 

sphere radius;  	–the initial density of the gas mixture before 

the explosion. The values of the radii �
, ��, �� are selected 

based on energy considerations. If � ! �
 , then �	 � "; if 
� ! ��, then �	 ! "; when 

� ! ��  the inequality is fulfilled �	 $ " , where  "  is the 

energy of the burnt gas [10] covered by the blast wave. 

Formula (4) determines the wave velocity for the stationary 

mode of spherical detonation 

1constDD s ==                              (5) 

which is called the Chapman-Jouguet regime [11]. In the 

ideal case [2] such a mode can be established already when 

� � ��, where �� � �	. In a real situation, the process of 

forming stationary detonation stretches in space and time; 

therefore, to transfer the blast wave to normal spherical 

detonation, it is necessary to select the transition 

segment %��; ��& , where ��  is the initial and ��  is a final 

threshold of such a process (Figure 1). 

Let us turn to a graphical representation of the wave velocity 

as it moves away from the center of the explosion. The 

system's energy is replenished, so the speed depends not only 

on the initial energy of the explosion, but also on the burned 

gas. Considering the transition of the blast wave to the 
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Chapman-Jouguet regime (Figure 1) and the motion of the 

wave to infinity, we divide the entire space behind it into 

three parts: 1) < �
; 2) �
 ≤ � < ��; 3) � � ��. In the first 

area, the energy of the burnt gas is minimal. Only the laws of 

a point explosion [12] are valid here and the speed of the 

wave is determined by the initial energy of the explosion �	 

using the formula 
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which is obtained from (2), neglecting the first term of the 

expression in brackets. The recorded ratio is analogous to the 

expression of velocity for a point explosion in an inert gas 
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For the same values of �	, formulas (6) and (7) differ only in 

the coefficients reversed to the variable r raised to a fractional 

power. The plots of the shock wave velocity versus the 

distance to the center of the explosion are shown schematically 

in Figure 2 for the two cases mentioned: 1- explosion in a 

chemically inert gas mixture; 2- explosion in a reacting gas 

mixture, taking into account the transition of a strong 

detonation to a stationary one. If we consider the segment 

�
 ≤ � < ��, then it is more complex, since to determine the 

velocity in reacting gaseous media, it is necessary to take into 

account two components of the energy [1, 2]. 

 

Figure 2. Decrease of the wave velocity with distance from the center of the 

explosion: 1- explosion in a chemically inert mixture; 2- in a detonating 

mixture. 

UEE += 0                             (9) 

where �	 is the energy of the explosion, " is the energy of 

the burnt gas. The wave velocity is calculated from relation 

(2), which turns into expression (4) as � → ��. Thus, formula 

(4) must be applied in the third region, at � ≥ ��, when the 

stationary mode of spherical detonation is established. Here 

the initial energy of a point explosion does not manifest 

itself, that is, it is neglected. This part of the space 

corresponds to the inequality 

 

Figure 3. Schematic variation of the speed of a spherical detonation wave 

with a strong explosion in a detonating gaseous medium. 

�	 ≪ ", which can be used to find the point �� on the number 

line. The condition is already satisfied when �� ≈ *3 ÷ 4.��, 

because energy is proportional to the volume and when 

�� = 3�� it increases by 27 times compared to �	, and when 

�� = 4�� - by 64 times. In Figure 2 accepted designation 

�� = 4��. It is logical to ask what happens next, outside the 

transition zone [��; ��], since the process of propagation of a 

detonation wave does not stop there, and whether formula (4) 

is applicable at infinity. Unfortunately, it should be noted that 

the wave speed increases with increasing charge diameter [8]. 

There are formulas for approximation and the most well-

known of them is the already mentioned Eyring formula. The 

formula gives approximate results, but they are quite 

satisfactory. Here it is not the accuracy that is important, but 

the law according to which the speed of a spherical wave 

increases at a remote distance (Figure 3). Why this happens we 

will try to find out a little later, and now we just state the 

change in the speed of a normal spherical detonation, as well 

as its ability to go at infinity to a more stable state in the form 

of a flat stationary detonation. Indeed, as � → ∞, the spherical 

detonation wave is converted into a plane one, its speed again 

becomes constant 

2constDD n ==                         (10) 

but the speed value is greater 

sn DD >                                   (11) 

compared to the previous case (Figure 3). 
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2.2. Features of Normal Spherical 

Detonation 

The features of stationary spherical detonation follow from 

the previously proposed model [1, 2] of the transition of a 

strong detonation to the Chapman-Jouguet regime, which is 

based on the theory of a point explosion in a reacting gaseous 

medium. We note only some of them: 

1. The formation of a normal spherical detonation begins at a 

distance  ��  from the center of the explosion, when the 

initial energy of a point explosion becomes equivalent to the 

energy of the reacted gas swept by the blast wave (Figure 1). 

2. In the process of spherical detonation, the energy of the 

system increases in proportion to the volume of the ball, 

that is �~�1, where � − is the current value of the radius 

of the sphere, which is the front of the blast wave. 

3. The laws of conservation of mass and momentum in a 

point explosion indicate that the entire mass of gas is 

collected in a thin layer and moves in the form of a "gas 

piston", the leading front of which is called the shock 

wave. A cavity with a minimum amount of reacted 

substance is formed in the center of the explosion. 

4. The law of conservation of energy requires equality of 

pressures at the front of a spherical detonation wave and 

behind its front. 

Let us stop here for a detailed clarification of the situation. 

Figure 4 is a pressure diagram for the stationary mode of 

spherical detonation: P	  is the pressure ahead of the wave 

front, P
 is the pressure at the front, P4 is the pressure behind 

the front (Jouguet point), d is a segment representing the 

chemical reaction zone. If the last condition of the listed 

features is written by the formula 

1PPc α=                                 (12) 

where 56  is the pressure behind the wave front, 5
 is the 

pressure at the front (Figure 4), it will run when 

1=α                                      (13) 

 

Figure 4. Pressure diagram for the stationary mode of spherical detonation. 

 

Figure 5. Pressure diagram for stationary flat detonation. 

In the case of spherical normal detonation, the energy 

conservation law [1, 2] gives an unexpected result for 7. We 

see the equality of pressures, the pressure on the inner wall of 

the “gas piston” (reaction zone) is the same as on the wave 

front. In classical detonation, where a plane wave is 

considered, the situation is different, since 7 < 1 Figure 5. 

To be precise, in the flat stationary detonation regime [13] 

there are relations 
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when 
:с

:�
≫ 1, where  	 is the density of the medium ahead of 

the front, 9 is the Mach number. From here, using (12), we 

obtain the real value 7 for a plane detonation wave, 

2

1=α                                     (16) 

Thus, the model of the transition of a blast wave into a 

detonation wave reveals the specific energy advantages of a 

normal spherical detonation, which are hidden in the laws of 

a point explosion and in an optimal spherical wave form. 

These factors, in particular 3 and 4, contribute to the rapid 

achievement of the critical temperature necessary to start the 

reaction. Recall the ideal gas equation. With its help, we 

obtain the ratio for the temperature in the reaction zone, 

R

P
T

c

c
c ρ

µ
=                                  (17) 

here   с  is the density of the medium in the reaction zone 

(point Jouguet), �  is the universal gas constant, �  is the 

molar mass of the mixture. Analyzing the dependence of 
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temperature on pressure and density at the interface with the 

reaction products for two cases of detonation (Figure 4, 

Figure 5), based on the results obtained, it can be argued that 

there is a higher temperature just behind the spherical wave 

front. Consequently, in the case of normal spherical 

detonation, the critical temperature according to (17) is 

reached faster and easier, with lower energy costs, that is, 

with lower values of the shock wave velocity. The point 

explosion model ceases to operate in the transition zone of 

Figure 1, where �
 is the initial, and �� is a final threshold of 

such a transition, but the advantages created by a point 

explosion for normal spherical detonation are retained for a 

long time due to the geometric waveform. We are talking 

about the transition of a spherical detonation wave to a plane 

one at large distances from the center of the explosion. As 

soon as the relevant parameters 56  and  6  in (17) associated 

with the radius of curvature of the front change, and this is 

possible already when � ≥ *7 ÷ 10.��, the speed begins to 

increase (Figure 3) in order to maintain the temperature in the 

reaction zone and thereby preserve the detonation process 

itself. The mechanism of self-regulation, which is always 

inherent in the detonation process, works, and we see the 

detonation wave striving to recover lost energy possibilities. 

3. Results and Discussion 

The transition of a normal spherical detonation to a flat 

detonation wave is always accompanied by an increase in the 

speed of the spherical wave. As already mentioned, this is 

due to a change in the radius of curvature of the front, more 

precisely, with a change in pressure and density in the 

chemical reaction zone, which directly depend on the radius. 

If this phenomenon corresponds to reality, it should manifest 

itself in any explosive gas mixture to one degree or another. 

The author carried out calculations to determine the speed of 

a spherical detonation wave �=  in some detonating gaseous 

media (Table 1 and Table 2). 

Table 1. The detonation velocity and its parameters for a spherical wave in some gaseous media (5	 = 1>?@; A	 = 293D). 

Gas mixture E  F [GH IJK]⁄  M [GN IJK]⁄  O  PQ [I R]⁄  PS [I R]⁄  T [%] 

2H� + O�  1.4 286.5 0.012 0.66 2550 2830 9.9 

 C�H� + 3O�  1.37 1299.63 0.0305 0.25 2010 2330 13.7 

CHZ + 2O�  1.35 890.31 0.0266 0.33 1997 2257 11.5 

 C1H[ + 5O�  1.36 2260.4 0.034 0.167 2023 2350 13.9 

Table 2. The detonation rate of the hydrogen-oxygen mixture with various impurities (5	 = 1>?@; A	 = 293D). 

Gas mixture M [GN IJK]⁄  O  PQ [I Q]⁄  PS [I Q]⁄  T [%] 

*2H� + O�. + O�  0.017 0.5 1861 2314 19.6 

*2H� + O�. + 4H�  0.0063 0.286 2313 3527 34.4 

*2H� + O�. + N�  0.016 0.5 1919 2407 20.3 

*2H� + O�. + 3N�  0.02 0.33 1401 2055 31.8 

 
The calculations were carried out using formula (4). The 

values of the velocity ��  for plane detonation in the 

corresponding media were taken from the literature [8, 13, 

14], where they were determined practically, by 

measurements. The difference between the submitted speed 

values is indicated by ^ and displayed in percent. The results 

show that in all cases �= < �� , and the minimum difference 

is achieved for the stoichiometric composition of the gas 

mixture. According to the data in Table 1, ^ varies from 9.9% 

in an explosive hydrogen-oxygen mixture, to 13.9% in a 

mixture of propane and oxygen. When determining the 

spherical detonation velocity, the question arises of the exact 

value of the coefficient� in formula (4). Note that in deriving 

this formula, the indicated coefficient is used to find the 

internal energy of an ideal gas in the reaction zone. It is 

believed that the adiabatic index is the same, both for the 

initial state of the mixture before the detonation wave front 

and for the medium in the reaction zone. This condition is 

well satisfied for monatomic and diatomic gases. In general, 

for complex hydrocarbons, the situation is somewhat 

different. This is a medium filled with radicals and 

decomposition products of complex compounds that are 

formed under the action of a shock wave. As a result, for 

these compounds, the value of the coefficient in the reaction 

zone may increase by 0,01 ÷ 0,02, approaching the adiabatic 

index of a diatomic ideal gas [15]. If we take into account 

this amendment, the difference between �� and �=, presented 

in table 1, will be even smaller. The second important point 

to which attention should be paid is that the value of the rate 

of normal spherical detonation in a gaseous medium strongly 

depends on the heat of combustion of a mole of combustible 

gas, the molar mass of the mixture and the specific 

coefficient of the reacted combustible gas. In the case of the 

same heat of combustion, the result is determined by the ratio 

between the molar mass and the specific coefficient. For 

hydrogen-oxygen mixture with various impurities values 

^ are given in Table 2. With a change in the composition of 

the mixture and its molar mass, the difference in speed 

between flat and spherical detonation becomes significant 

(Table 2), ^ increases by two or even three times, compared 
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with initial studies (Table 1). 

Analyzing the previous material about the instability of 

normal spherical detonation and the possibility of the 

transition of a spherical detonation wave into a plane one, it 

is important to pay attention to the energy consequences of 

such a transition. It is necessary to conclude that there are 

two different stationary states of the detonation phenomenon. 

The first of them is unstable, here we are talking about 

normal spherical detonation, the second is sustainable, this is 

a classic version of flat stationary detonation. If a certain 

value of the energy of the detonation wave is attributed to 

each state, then we can speak of two energy levels �
 and �� 

a stationary detonation (Figure 6). Normal spherical 

detonation corresponds to a lower energy; we denote it �
. To 

study spherical detonation, select a single area (the area is 

equal to one) on the front surface and direct the velocity 

vector along the sphere radius from the central part of the 

selected area. During the transformation of normal spherical 

detonation into a flat platform remains single, but its energy 

of motion increases. Let us suppose that the mass of the 

object under study does not change when changing from one 

state to another, or changes only slightly, then, based on the 

results obtained in Tables 1-2, we find the ratio between the 

energies. Figure 6 feeds a schematic of the energy levels of 

the stationary detonation regimes of two different hydrogen – 

oxygen mixtures:E
 , E�- respectively, the lower and upper 

levels for 2H� + O�; E

` , E�

`  - for *2H� + O�. + O�. 

 

Figure 6. A schematic representation of the energy levels of stationary 

detonation of different compositions of the hydrogen-oxygen mixture. 

In the cases considered in Figure 6. 
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As already noted, the stationary state with energy �
  is 

unstable and is easily replaced by a state  �� . The process 

occurs without authorization, if the energy potential of a 

chemical reaction allows and consists in the transition of a 

normal spherical detonation to a flat one, accompanied by an 

increase in the detonation wave velocity. It is theoretically 

possible that a detonation breaks down and cannot get to the 

second level, that is, a change in the waveform is not 

accompanied by an increase in its speed. Such a wave ceases 

to be a detonation wave. The “engine” of any detonation 

wave is a chemical reaction that gives energy to the whole 

process. If, as a result of a number of reasons, energy ceases 

to be supplied, or is supplied in insufficient quantity, 

detonation, slowing down, goes to the lowest energy level, 

which means that from the stationary state ��, it again falls 

into �
 . It can be assumed that a “restart of the engine” 

occurs here, because spherical normal detonation always has 

the highest energy potential. Thus, the transition from a 

lower energy level to a higher one is repeated. This 

phenomenon is rightly called pulsating detonation and, as we 

can see, it is simply explained — the transition of a 

detonation wave from one stationary state to another (shown 

in Figure 6 by arrows). At the same time, not only the 

velocity value, but also the geometric shape of the detonation 

wave front changes periodically. A spherical wave goes into 

a flat one, and then again into a spherical one. Complex 

configurations of shock and detonation waves are formed, 

which is characteristic of pulsating detonation. 

4. Conclusions 

The work notes the instability of normal spherical detonation 

at large distances from the center of the explosion. A 

schematic graph of the speed of a spherical wave, which is 

initiated by a point explosion in a reacting gas medium, is 

presented. The graph confirms the findings, including an 

increase in the wave velocity as it is removed to infinity. The 

article lists the features of the normal spherical detonation 

taken from the model of the transition of a blast wave to the 

Chapman-Jouguet mode. They make it possible to reveal the 

causes of the instability of the stationary regime for the 

spherical form of detonation. With specific examples of 

reacting gaseous media, an increase in the velocity of a 

spherical detonation wave during the transition to a flat 
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detonation is determined. In each specific case, a quantitative 

assessment is made of the change in the velocity and energy 

of the detonation wave. The concept of the energy level for 

the stationary detonation regime is introduced. The 

possibility of transition of a normal spherical detonation to a 

more stable state, with a higher energy level in the form of a 

flat stationary detonation, is indicated. Thus, it is assumed 

that there are two energy levels of the stationary detonation 

regime in gaseous media. The studies conducted by the 

author prove the existence of an unstable state with a lower 

level of energy and a stable, in the form of flat classical 

detonation, with an upper level of energy. This explains the 

physical nature of the phenomenon of pulsating detonation. 
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