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Abstract 

This research paper describes a development to eliminate phase lag permitting a single commercially available sensor (Global 

Positioning System, GPS receiver) to provide full-state knowledge (including angular acceleration), eliminating the need for 

accelerometers, rate gyros, and other sensors. GPS position data is used to provide full-state estimates using high gain 

observers, and two topologies (Gopinath and Luenberger) are examined and compared, and example preferred design choices 

are discussed. Observer gain tuning is illustrated and assertions are evaluated via simulations. A major weakness of feedback 

state observers if phase lag (90 degrees per unit of system order) so in particular, novel methods are introduced to achieve near-

zero phase lag state estimation at all frequencies. 
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1. Introduction 

The basic idea is to provide knowledge of a spacecraft’s 

attitude, attitude rate, and angular acceleration using only 

position measurement via the global positioning systems 

(GPS) without having exceedingly noisy state estimates. The 

lofty goal is to replace high cost on-board attitude sensors 

with low-cost GPS antennae and specialized algorithms. [1] 

Table 1. Typical accuracies of objects sensed. 

Reference object Typical accuracies 

Stars 1 arc second 

Sun 1 arc minute 

Earth (horizon) 6 arc minutes 

RF beacon 1 arc minute 

Magnetic field 30 arc minutes 

Global Positioning System 6 arc minutes 

Anyone interested in angular state identification would 

benefit from this development, but in particular the focus 

remains spacecraft developers and operators. Customers 

include government agencies (e.g. the National Aeronautics 

and Space Administration, NASA; the Department of 

Defense, DoD; the Department of Energy, DoE; etc.), but 

additionally several commercial companies develop and 

operate spacecraft for non-governmental purposes (e.g. 

Lockheed-Martin, Hughes, Orbital Sciences, etc.). Typical 

attitude knowledge requirements vary for disparate spacecraft 

missions. The requirements drive the choice of sensor. The 

sensor choice comes with penalties in weight and power, 

both of which are premiums for space missions. Some 

examples of typical design solution choices are listed in 

Table 1 from [2] and Table 2 from [3]. 

1.1. Prior Research 

NASA Goddard's Navigator team developed a new receiver 

that allows spacecraft to quickly acquire GPS navigational 

signals in weak-signal areas. Seeing an opportunity to help 

lower mission costs, the NASA Navigator team, led by 

Goddard engineer Luke Winternitz, used Research and 



2 Timothy Sands:  Phase Lag Elimination at All Frequencies for Full State Estimation of Spacecraft Attitude  
 

Development (R&D) funding to develop algorithms and 

hardware for a prototype spacecraft GPS receiver that would 

allow spacecraft to acquire and track weak GPS signals at an 

altitude of 100,000 km (62,137 miles); well above the GPS 

constellation, roughly one quarter of the distance to the 

moon. Winternitz and his team from NASA are currently 

developing the next-generation Navigator receiver; one that 

can acquire the GPS signal even if the spacecraft carrying the 

receiver is located at lunar distances. Such a capability would 

reduce mission operational costs because ground controllers 

could track spacecraft via GPS rather than with expensive 

ground stations. [4] 

Table 2. Typical system accuracy and characteristics. 

Sensor Accuracy Characteristics and Applicability 

Magnetometers 
1o at 5000km 

5o at 200km 

Attitude measured relative to Earth’s local magnetic field. Magnetic field uncertainties and 

variability dominate accuracy. Usable only below ~6000km. 

Earth Sensors 
0.05o at GEO 

0.1o at low altitude 
Horizon uncertainties dominate accuracy. Highly accurate unites use scanning. 

Sun Sensors 0.01o Typical field of view ±1300 

Star Sensors 2 arc sec Typical field of view ±160 

Gyroscopes 0.001 deg/hr Normal use involves periodically resetting the reference position 

Directional Antenna 0.01o to 0.05o Typically 1% of beamwidth 

 

Table 3. Typical hardware component weight and power. 

Component Weight (kg) Power (W) 

Earth Sensor 2 to 3.5 2 to 10 

Sun Sensor 0.2 to 1 0 to 0.2 

Magnetometer 0.1 to 1.5 0.2 to 1 

Gyroscope 0.8 to 3.5 2 to 20 

Processors 5 to 25 5 to 25 

David Quinn [5] invented a GPS system for navigation and 

attitude determination, comprising a sensor array including a 

convex hemispherical mounting structure having a plurality 

of mounting surfaces, and a plurality of antennas mounted to 

the mounting surfaces for receiving signals from space 

vehicles of a GPS constellation. His invention includes a 

receiver for collecting the signals and making navigation and 

attitude determinations. There may alternatively be two 

opposing convex hemispherical mounting structures, each of 

the mounting structures having a plurality of mounting 

surfaces, and a plurality of antennas mounted to the mounting 

surfaces. 

 

Figure 1. Block diagram of the hemi-dodecahedron antenna array and 

receiver. [5]. 

Recently, flight results from the Radio Aurora Explorer 

(RAX) satellites, RAX-1 and RAX-2, which are CubeSats 

developed to study space weather, demonstrated a 

multiplicative extended Kalman filter is used for attitude 

estimation. On-orbit calibration was developed and applied to 

compensate for sensor and alignment errors, and attitude 

determination accuracies of 0.5° 1–σ have been demonstrated 

on-orbit. It is noteworthy that multiplicative extended 

Kalman filtering is at the high-end of computational 

requirements. Simpler approaches are valuable for space 

missions, where every pound to orbit can be quite expensive. 

In this paper, simpler estimation approaches will be 

evaluated, including Gopinath-styled and Luenberger-styled 

observers. 

1.2. Distinctiveness of This Development 

NASA Goddard’s Innovative Technology Partnerships Office 

Home currently invites companies to license a new method 

for low-noise attitude rate determination that uses Global 

Positioning System (GPS) signals and eliminates the need for 

heavy and expensive gyroscopes and star trackers [7]. 

Currently methods use the Doppler differences [8] among 

GPS signals to calculate highly accurate attitude rates, 

offering a low-noise, lightweight, and lower cost method for 

determining attitude rate for satellites and potentially for 

aviation and marine vehicles. 

This development will seek to accomplish similar results 

(low-noise, lightweight, and lower cost) without using 

Doppler information. Since gyroscopes and star trackers are 

extremely expensive, this technology can result in a major 

reduction in cost and has the potential to significantly reduce 

weight as well as enable navigation control by a single/few 

GPS receiver(s). 

Current GPS devices estimate attitude rates using a phase-

locked loop process, which is very noisy and requires data to 

go through a low-pass filter in order to be meaningful. This 

filtering, however, limits high-frequency rates that the system 

can handle. The goal is to not use the GPS receiver rate 
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estimates, while obtaining angular position, angular rate, and 

perhaps angular acceleration with only GPS position and 

attitude data and simple algorithms (requiring less computation 

than say Kalman Filtering), and simultaneously reduce noise. 

Lastly and perhaps most importantly, observer gain tuning 

for two topologies will be introduced to achieve near-zero 

phase lag estimation at all frequencies. 

2. Materials and Methods 

2.1. Relevant Sensor Technologies 

There are reasons for current engineers maintaining classical 

attitude sensor suites on a spacecraft even when a GPS receiver 

is added. [6], [10] In this case the classical sensors may be 

allowed to be of modest quality only, as subsequent fusion of 

their data with those from the GPS receiver may restore the 

accuracy of the final estimate again to an acceptable level. 

Hence, low-cost attitude sensors combined with a low-cost GPS 

receiver can still satisfy non-trivial attitude reconstitution 

accuracy requirements. Several different options are available 

for determining the spacecraft attitude commonly used today. 

Several examples are listed below. [2] 

2.1.1. Magnetometers 

In flux gate magnetometer, alternating current is passed 

through one coil, and a perm alloy core is alternately 

magnetized by electromagnetic field. The corresponding 

magnetic field is sensed by second coil. The distortion of the 

oscillating field is a measure of one component of the Earth’s 

magnetic field. Three magnetometers are required to 

determine Earth’s magnetic field vector. 

 

Figure 2. Sun Sensor [2]. 

2.1.2. Sun Sensors 

A transparent block of material with known refractive index, 

n, is coated with an opaque material (Figure 2). Light passes 

through a slit etched in the top onto receptive areas etched in 

bottom. Light from the sun passes through the slit, forming a 

line over the photodetectors. The distance from the centerline 

is measured by the sensed pattern, which determines angle. 

With index of refraction, n, the angle to sun is determined 

using Snell’s Law. Photodetectors may provide digital 

(coarse) or analog (fine) outputs. 

 

Figure 3. Static Horizon Sensor [2]. 

2.1.3. Earth’s Horizon Sensor 

Static horizon sensors typically use infrared sensing to reduce 

optical error in a manner depicted in Figure 3. The field of 

view is larger than the entire earth’s edge (limb), so the 

sensor provides orientation with respect to the nadir. 

 

Figure 4. Scanning Horizon Sensor [2]. 

Scanning horizon sensors use spinning assemblies to identify 

light and dark areas (of infrared) on the focal array. The 

width of light area identifies spacecraft roll angle. 

2.1.4. Star Sensors 

These instruments have narrow fields of view, and must have 

a low angular velocity to compare stars to a star-location 

catalog to identify the target. The x and y location of the 
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star’s image on focal plane determines angles to the star. One 

example is the Goodrich star tracker (Table 4). 

 

Figure 5. Goodrich star tracker. 

2.1.5. Gyroscopes 

Mechanical Gyroscopes use the body-axis moment equation 

(aka “Newton-Euler’s Moment equation) to be derived in 

Section 2.5.1, which turn out to be nonlinear relationships in 

all three axes. 

 

Figure 6. Mechanical gyroscope. 

Simplifying assumptions include a constant nominal spin rate 

about the z-axis with small perturbations in angular velocity 

about the other two axes. Assuming the moment of inertia 

about the spin axes is relatively maximal, while the other two 

moments of inertia are equal to each other also helps. Then 

linearization produces expressions for perturbations in angular 

acceleration of the input and output axes. This motivates me to 

later seek a development that also can produce angular 

acceleration (in addition to position and rate) to eliminate any 

justification for needing the gyroscope, which is relatively 

expensive and also prone to mechanical failure. 

Two-degree-of-freedom gyroscopes place a free gyroscope 

on a gimbaled platform. The gyro essentially “stores” 

reference directions in space, and then angle pickoffs on the 

gimbal axes measure pitch and yaw angles. 

Large angle feedback may be used with gyroscopes to 

produce a rate gyro, analogous to a mechanical spring 

constraint, while large angle rate feedback may be used to 

produce an integrating gyro, analogous to a mechanical 

damper restraint. 

Optical gyros use Sagnac interferometry to measure 

rotational rate. When no rotation is present, photons traveling 

in opposite directions complete the circuit (Figure 7) in the 

same time. When a rotational rate is present, travel lengths 

and times are different, and a simple equation relates the time 

of arrival of light to the rotational rates that are present. 

 

Figure 7. Optical gyroscope. 

2.2. Global Positioning Systems [3], [4]  

The Global Positioning System (GPS) is a U.S.-owned 

spacecraft constellation that provides users with positioning, 

navigation, and timing (PNT) services. This system consists 

of three segments: the space segment, the control segment, 

and the user segment. The U.S. Air Force develops, 

maintains, and operates the space and control segments. 

GPS positioning works on two basic mathematical concepts. 

The first is called trilateration, which literally means 

positioning from three distances. The second concept is the 

relationship between distance traveled, rate (speed) of travel 

and amount of time spent traveling, or: 

Distance = Rate × Time                       (1) 

The first concept, trilateration, is the focus here. It centers 

around finding your position on the Earth by knowing the 

location of orbiting GPS satellites and the distance from 

those satellites to your location on the planet. However, there 

is no way to actually take a yardstick, tape measure, etc., and 

measure the distance from your location up to the satellites. 

The trick lies in the fact that GPS satellites are always 

sending out radio signals. 

In GPS positioning the rate is how fast the radio signal 

travels, which is equal to the speed of light (299,792,458 
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meters per second). Time is determined by how long it takes 

for a signal to travel from the GPS satellite to a GPS receiver 

on earth. With a known rate and a known time we can solve 

for the distance between satellite and receiver. Once we have 

the distance from at least 3 satellites, we can determine a 3 

dimensional position on or above the surface of the earth. 

This development will utilize this position measurement and 

relate it to the angle measurement via rigid body dynamics, 

and then expand to angular velocity, and angular acceleration 

utilizing classical state observers. Alternatively, the attitude 

output of the GPS receiver [5] may be directly fed into the 

state observers. This later approach was critically evaluated 

in simulation and frequency response analysis in the next 

section. 

2.3. Details of This Development 

Equation of motion and observer tuning are provided next, 

and later implemented in MATLAB/SIMULINK which is 

depicted at the end of the article in Figure 20. 

2.3.1. Equations of Motion [9] 

Notice by using the definition of angular momentum in a 

body frame, we can reveal a rigid-body spacecraft’s angular 

velocity by knowing the position-rate of a point on the rigid 

body and knowing the fixed relationship of that point to the 

body’s center of mass. 

H� � lim�→	∑ �ρ�
 � �Δm
r�
���
��                  (2) 

H� � � �ρ� � V�� dm                         (3) 

V is the velocity of dm V� is the velocity of the body 

Taking the limit as N→ ∞ in our calculations of the system of 

particles the resultant external torque with respect to B: H� � � V� � P � M�. If M� � 0 and V� � 0	or B is the CM or V� ∥ V$  then HB is constant, and thus, Conservation of 

Angular Momentum. 

 

Figure 8. Rigid-body spacecraft. 

Another form of the angular momentum principle is in [9] 

equation 18.22: M� � H� � � % � H� proves to be a much 

more useful form and bestows one relationship between 
velocity through linear momentum and angular velocity 
through angular momentum. By defining the centroidal 

moment of inertia, we reveal the body’s angular velocity. 

&' � � �(' � % � ('�) *+                           (4) 

&' � � �, � - � .�) *+                                  (5) 

&' � � /�, ∙ .�- 1 2, ∙ -3.4) *+                     (6) 

&' � � 5�(' ∙ ('�%67787792�3
1 2(' ∙ %3('67787792:3

;) *+            (7) 

where a ∙ b � ∑ 2a
b
3>
��  

After a few math steps, we arrive at 

&' � � ?5@': � A': 1B'@' 1B'A'1B'@' B': � A': 1@'A'1B'A' 1@'A' B': � @':; C
%D%E%FGH) *+  (8) 

Then, defining the centroidal moment of inertia: 

IJ'K ≡ 	� ?5@': � A': 1B'@' 1B'A'1B'@' B': � A': 1@'A'1B'A' 1@'A' B': � @':;H) *+  (9) 

Resulting by substitution in the following: 

&' � IJ'KM%N                                   (10) 
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The rotational motion law is often referred to as Newton-

Euler, and it may be paraphrased as: “the summed torque 

vector [3x1] acting on a body is proportional to its resultant 

angular acceleration vector [3x1], and the constant of 

proportionality is the body’s mass inertia matrix [3x3].” 

Newton-Euler also only applies in a non-moving, inertial 

frame. The equations needed to express the spacecraft’s 

rotational motion are valid relative to the inertial frame 

(indicated by subscript “B/i” often assumed) and may be 

expressed in inertia. The motion measurement relative to the 

inertial frame is taken from onboard sensors expressed in a 

body fixed frame. 

&OOP�  =	QRSOOPRT UV=	QRSOOPRT UW � X%OOPYW/V � M&OOPNWwhere M&OOPNW � I[K ∙ X%OOPYW/V (11) 

∑M\OPNW/V → X]YW � X&Y� � I[KX%� Y � X%Y � I[KX%Y    (12) 

With proper initialization, the angular velocity can be 

integrated to provide angular position, but should not be 

differentiated to seek angular acceleration. Differentiation is 

inherently a noisy process and numerically differentiating 

noisy-measurements amplifies the noise, and thus angular 

acceleration obtained this way would be garbage. Other 

methods are used including various forms of Kalman 

Filtering and a simpler approach, state observers. Two kinds 

of state observers are evaluated here, both high gain 

observers: Gopinath-styled observers and Luenberger-styled 

observers per [14]. 

2.3.2. Equations of State Estimation 

Luenberger-styled observers (henceforth simply referred to as 

Luenberger observers) are a simple method to estimate velocity 

given position measurements. Additionally, the Luenberger 

observer may be used to provide estimates of external system 

disturbances, since the observer mimics order of actual systems 

dynamic equations of motion. When used the Luenberger 

disturbance observer bestows robustness to system parameter 

variations, which will be evaluated shortly. 

2.3.3. Observer Gain Tuning 

For desired observer eigenvalues λ1=12.5, λ2=50, λ3=200, 

desired motion controller gains (tuned for disturbance rejection) 

λc1=6, λc2=25, λc3=100, and current regulator gain λi=800, the 

general form of the characteristic equation may be equated to the 

specific observer forms, controller form and current regulator 

form revealing gains [20]-[22]. Tuning was identical for the two 

observer topologies to permit apples-to-apples comparison 

(Figure 20) of effects on estimation accuracy. Observer 

robustness is assessed by implementing error in the known 

inertia matrix. Thus, the known inertia matrix [J] will be 

different than the estimated inertia matrix /[̂4. 

 

Figure 9. Luenberger-Styled Observer. 

2.3.4. Luenberger Tuning (Actual Current) 

This method uses the actual current from the spacecraft 

actuator circuit (rather than modeled or predicted current) to 

provide the feedforward element of the observer. The 

actuator circuit is assumed to be a DC brushless motor 

actuating a momentum exchange device (e.g. reaction wheel, 

control moment gyroscope, etc.). In a DC brushless motor, 

the armature is fixed, while permanent magnets rotate, while 

an electronic controller commutates the electromagnetic 

force providing a rotating field. 
 

Figure 10. DC Brushless motor [2]. 
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This position would normally include the actual current or 

control, u in typical observer designs (recalling that observer 

design is a dual process of controller design). Utilizing the 

reference input and actual circuit moment, you can produce 

an estimate of remaining disturbance (normally fed back to 

feedback controllers to handle). 

C.E.= (s+λ1)(s+λ2)(s+λ3) = Jp
^

s3+ bo s2s + Kso s + Kiso  (13) 

bo = Jp
^

( λ1+ λ2+ λ3)                           (14) 

Kso =Jp
^

([ λ1( λ2+ λ3)+ λ2 λ3] Kiso = Jp
^

( λ1 λ2 λ3)  (15) 

Gopinath Tuning: 

_̀2a3_2a3 � 2bcdaefbceafbcg3hijke�ljmlnj�oij2pjmpnj3kqc fqnrqrsja2tujfvuj3wŝjtujagf�ŝjvjfbnxbd�aefbnxbeafbnxbg   (14) 

Equating coefficient of ‘s’ and solve for gains: 

(s+λ1)(s+λ2)(s+λ3)= Jp
^

s3 + (Jp
^

Rp
^

+Ke
^

K1)s2 + Ke
^

K2s + Ke
^

K3  (17) 

KT1 = 
Jp
^

Lp
^

(λ1+ λ2+ λ3)-Jp
^

Rp
^

Ke
^

                          (15) 

KT3 = 
Jp
^

Lp
^

Ke
^

 ( )λ1λ2λ3                    (16) 

KT2 = 

Jp
^

Lp
^

(λ1 λ2+ λ3)-Jp
^

Rp( )λ1(λ2+ λ3)+ λ2 λ3

Ke
^

    (17) 

Motion Controller used for simulation comparison: 

(s+λc1)(s+λc2)(s+λc3) =Jp
^

s3+ ba s2s + Ks s + Kis    (18) 

Current regulator: (s+λi) = Lps+Ra               (19) 

 

Figure 11. Gopinath-Styled Velocity Observer. 

Observer estimation frequency response functions were 

calculated and plotted first for ±20% estimated-inertia error 

then for the case of ±20% error in estimate of Ke=Kt (Figure  

& Figure 2). Notice first that for all cases of zero-error, both 

observers exactly estimate the angular velocity of motion. 

Overall, the Gopinath-styled observer (referred to as simply 

“Gopinath” for brevity) performed poorer than the 

Luenberger-styled observer indicating the Luenberger 

observer is less parameter-sensitive with respect to inertia, 

Ke, and Kt. 

While the Luenberger observers diverge very close to the 

maximum tuned bandwidth (even with parameter errors), the 

Gopinath observer diverges at a lower bandwidth when errors 

are present. Since both observers contain a current-

feedforward element, you will see nearly zero-lag properties 

out to the bandwidth of the feedback observer controller. 

Clearly, disturbances (in the form of modeling errors here) do 

not influence low frequency estimation (likely due to the 

addition of integrators in the observer controllers). 

The Gopinath observer was particularly sensitive to errors in 

Kt indicating its reliance on the feedforward estimation path. 

Notice in particular in Figure  & Figure 2 that zero-lag 

estimation occurs even with inaccurate Kt (albeit with non-

zero estimation frequency response at all frequencies). 
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Figure 12. Estimation accuracy for incorrect Ĵz. 

Figure 12 displays a comparison of estimation accuracy 

frequency response functions for incorrect Ĵz . Luenberger 

(blue) Gopinath (red); dotted = -20% error, solid = 0% error; 

dashed = +20% error. Figure 13 displays Comparison of 

estimation accuracy frequency response functions for 

incorrect Kt=Ke. Luenberger (blue) Gopinath (red); dotted = 

-20% error, solid = 0% error; dashed = +20% error. 

 

Figure 2. Estimation accuracy for incorrect Kt=Ke. 

Table 4. Observer Gains. 

Luenberger Gains 

bo Kso Kiso 

Nm/m/s Nm/m Nms 

24.74 7772.3 465090 

Gopinath Gains 

KT1 KT2 KT3 

rad/s Nms /A Nm/A Nms/A 

0.4813 238.7 14285 

2.3.5. Angular Rate Estimation Using Only 

Position 

Time-response simulations were run with identically tuned 

observers with a sample commanded trajectory (rotation 

angle) of θ*(t)=sin(10t). Iterations were run to establish the 

effects of 20% inertia underestimation and the effects of 

sensor noise on command tracking accuracy. Sensor noise 

was modeled as random numbers with zero-mean and unity 

variance. 

Figure 20 displays the methodology for apples-to-apples 

comparison of effects on command tracking. Manual 

switches were used to evaluate a given case with the results 

displayed in Figure 3 and Figure 4. 

General conclusions may be drawn. Nominal feedback 

control handles incorrect-estimation just fine from the 

perspective of control, but not knowledge. This is especially 

since inertia has nothing to do with the feedback control 

strategy (lacking a feedforward strategy). Using the 

Luenberger observer performs nearly as well if actual 

attitude angle θ(t) is used for estimation, while it does not 

perform as well when θ*(t) (commanded angle) is used for 

estimation. This is intuitive, since θ*(t) does not include the 

errors and noises associate with the process, while θ(t) 

includes these errors and noises. In all cases examined, the 

Gopinath observer was inferior to Luenberger observers, 

which reinforces the earlier revelation of parameter 

sensitivity (in the discussion of the estimation frequency 

response functions). In addition to examining the effects on 

command tracking accuracy, estimation accuracy was 

plotted from the simulations to confirm the indications 

garnered from the discussion of Figure  & Figure 2 

(estimation accuracy frequency response functions, FRFs). 

The single case of 20% inertia underestimation with zero-

mean and unity variance sensor noise confirmed that the 

Luenberger observer provided superior estimates compared 

to the Gopinath observer for this sinusoidal commanded 

trajectory. 

Figure 14 displays the Frequency Response Functions (FRF) 

for the motion control system. The red-solid line is tracking 

function, and blue dotted line is disturbance response. Figure 

15 Estimation errors for Ĵz  = 0.8Jp and µ=0, λ2=1 sensor 

noise. Black solid line is Luenberger with θ(s) input; Green 

dotted line is Luenberger with θ*(s) input; red solid line is 

Gopinath with Ιa(s) input; blue dotted line is Gopinath with 

Ι*(s) input. 
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Figure 3. Motion Control Frequency Response Functions. 

 

Figure 4. Estimation errors for Ĵz = 0.8Jp and µ=0, λ2=1 sensor noise. 

2.4. Summary of Observers’ Utility 

We see that classical state observers can effectively produce 

estimates of angular acceleration using a procedure that uses 

proportional-integral estimation (thus noise-smoothing). 

Then the estimates are integrated once and twice for 

estimates of angular rate and position respectively after 

adding a derivative component to estimation. Frequency 

response evaluation demonstrated near-zero lag estimation of 

the full-state using only position & angle data from a GPS 

sensor. 

3. Results – a Preferred Design 

Following from the preceding development, the favored 

design approach is to use a commercial space-rated GPS 

receiver with onboard avionics executing a Luenberger 

observer to produce angular acceleration estimates via 

proportional-integral estimation. This estimate is integrated 

(smoothing noise) and derivative-action is added to the 

estimation of angular velocity. The angular velocity 

estimated is integrated (further smoothing noise) to produce 

angle estimates with demonstrated high-accuracy. 

3.1. Sensors 

GPS receivers have been produced on chips making them 

rapidly useful for spacecraft applications. [13] Specific GPS 

receivers may be chosen to meet pointing requirements, 

electrical compatibility, and other performance 

specifications. The SGR-05U [18], GPS-12-VA [18] and 

Namuru, for example have very low (~1W) power 

requirements, while TOPSTAR 3000D [16] has more 

performance history (e.g. Demeter, Swift Gamma-Ray Burst 

Missions, etc.). 

Table 5. Observer Gains. 

Receiver Accuracy Cost 

SGR-05U 
10m LEO 

$25,900 
1cm/s LEO 

Namuru V2 or 3 2cm LEO $6,600 

TOPSTAR 3000 
10m LEO $13,624 recurring 

100m GEO $13624 non-recurring 

GPS-12-VA 
10m LEO 

$25,900 
0.03 m/sec LEO 

 

Figure 16. SGR-05U GPS receiver. 

3.2. Interface Specifications 

 

Figure 5. Namuru V3.2 GPS receiver. 

One example interface specification is taken from the AMS-

02 spaceflight experiment using the TOPSTAR 3000 [16]. 

Interface hardware includes merely the STR4500 Spirnet 
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communications cable for wireless antenna, the receiver, and 

PC Windows! The only software necessary for that mission 

was the SimpLEX software package, due to the International 

Space Station already having the SPRIRENT software 

system. I recommend utilizing MATLAB/SIMULINK with 

XPC Target or other such operating systems for easy 

implementation of various observers in the single operating 

software if possible; otherwise implement the observers in 

the software system of choice by the space mission. MIL-

STD 1553 is the standard for the bus. “Space qualified” 

receivers comply with ISO9001 and AQAP110. Sample 

functional architecture and receiver diagrams are included in 

Figure 18 and Figure 19. 

 

Figure 18. Functional architecture [14]. 

 

Figure 19. Receiver Diagram [16]. 

3.3. Estimation of Electronics Complexity 

and Costs 

Complexity will be low, while costs will vary by choice of 

hardware and software to meet mission requirements (some 

exterior to mere knowledge requirements, e.g. mission 

requirements). GPS receivers have become mature for space-

use, and furthermore classical state observers are 

ubiquitously known. The prototype observers are already 

built, and the receivers are commercially available. To 

implement this development, simply feed the GPS position 

signal into avionics program implementing the estimated 

full-state in motion controllers expecting good results as 

presented here. 

4. Discussion 

The basic idea is to provide knowledge of attitude, attitude 

rate, and angular acceleration using only position 

measurement via the global positioning systems (GPS) 

without having exceedingly noisy state estimates. The lofty 

goal is to replace high cost on-board attitude sensors with 

low-cost GPS antennae and specialized algorithms. Not only 

have Luenberger and Gopinath estimator topologies achieved 

the objective, enhancing the topologies with feedforward 

elements [15], [20]-[27] yields near-zero phase lag 

estimation at all frequencies. In light of the impacts of phase 

lag, it may be asserted this novel approach should be 

considered the new initial baseline standard to begin design 
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of state estimators, and future research should begin from this 

new baseline seeking further improvements, including 

optimization for various cost functions. 

 

Figure 20. SIMULINK model for error comparison. 
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