
 
Physics Journal 

Vol. 2, No. 2, 2016, pp. 127-139 

http://www.aiscience.org/journal/pj  
 

 

* Corresponding author 

E-mail address: dpn@ee.iitb.ac.in 

Analysis of Radiation from Photosphere of the 
Sun 

D. P. Nandedkar* 

Department of Electrical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India 

Abstract  

In the present paper an analysis of the continuous radiation from photosphere of the Sun at equilibrium temperature of it is 

carried out. The radiation is assumed due to quantum jumps of the electron, in a high density ionized semi-gaseous type 

material of the photosphere of the Sun, from its amplitude states considering types of damped frequency oscillations and eigen 

frequency damped oscillations analogous to that exit in a low density plasma with electron-molecule collisions (Nandedkar 

2016) [8]. Damped and eigen frequency damped oscillations of the electron result due to density fluctuations of the charge-

carriers with opposite signs in the body of the photosphere due to nuclear processes going deep in the core of the Sun. The 

density fluctuations alternatively builds up and withdraws a d.c. electric field in the body of the photosphere. The necessary 

damping for the type of damped oscillations mentioned, is provided by electron-ion collision type interaction at equilibrium 

temperature of the photosphere. The minimum value of the amplitude the electron takes which can be quantized in the field of 

the neighbouring ion and in the absence of the d.c. electric field when eigen-frequency damped oscillations result, govern the 

minimum value of the wavelength of radiation from the continuous spectrum of the photosphere. In general the wavelength is 

shown to be a function of the average density of the charge-carriers. Thus lower limit of the electron density corresponding to 

an intermediate value of the chromosphere, brings an upper limit for the radiation-wavelength of the radiation spectrum of the 

photosphere. The continuous radiation from photosphere of the Sun corresponds to electron density N�	variations in the range 4.774(2)	x	10
�	m��	 ≥ 	N�	 ≥ 	1	x	10��	m��  which corresponds to wavelength λ  of radiation in the range 0.2476(8)	x	10��	m	 ≤ 	λ	 ≤ 	 8.984(9)	x	10��	m. However recently the solar spectrum is photographed up to a wavelength 

of about 0.2099 x 10�� m which can be explained due to a mixture of a doubly charged ion and a singly charged ion in right 

proportion with one of electrons in each cases be considered, then the average distance of the electron from the ion can tend to 

lower down the minimum value of radiation wavelength. 
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1. Introduction 

The Sun’s energy arises from nuclear processes deep in its 

interior and flows outward in a relentless stream. The 

temperature of the center is over 10 million degrees Kelvin; 

at the surface direct measurements indicate a temperature of 

about 7000	� K, (where 	0 K is Degree Kelvin). Thus Sun 

consists of a central hot core terminating in a surface having 

temperature of about 7000	�K. The surface of this central hot 

core is termed as the photospheres’ surface. 

At the surface of the Sun, however a series of remarkable 

phenomenon occurs. The temperature continues to drop in 

the first few hundred kilometers outwards, but then rises 

through a series of steps to a plateau at a temperature over 1 

million degrees Kelvin. The entire change takes place in a 

few thousand kilometers. The million degree outer envelope, 
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called the corona, is a tenuous region stretching irregularly 

outward all the way to the earth, 149 million kilometers away 

– refer to Shklovsky 1963 [1].  

The transition region between corona and photosphere 

appears during eclipse as a bright red ring around the Sun, 

and is therefore termed as chromosphere. When the 

chromosphere is examined closely, it is seen not to be a 

homogeneous layer but a rapidly changing filamentary 

structure. The term ‘burning prairie’ has been used to 

describe it. Numerous short-lived jets called ‘spicules’ are 

continuously shooting up to heights of several kilometers. 

The red color of the chromosphere is due to dominance of 

radiation in the red H� line of Hydrogen – refer to Thomas 

and Athay 1962 [2]. 

The solar corona and chromosphere contain terrestrial 

ionized gases, where electron and ion densities are equal. In 

the solar corona the electron and ion densities are equal. In 

the solar corona the electron density varies from about 10�� 

m�� 
to 10�� m��,

 
whereas in the chromosphere the electron 

density can go as high as 10��  m��  (Ginzburg 1964 [3]; 

Zirin 1966 [4]). The transition region between the 

photosphere, the chromosphere and the corona are not 

distinctly sharp.  

 
Fig. 1. Distribution of energy in the solar spectrum. 

The photosphere may be defined as the outer surface of the 

Sun as seen in white light radiation. The photosphere 

represents a fairly uniform surface roughened by granulation. 

Its density is rather high, so that collisions help set-up 

equilibrium at a temperature of about 7000 0K. Best of all, 

only the few hundred kilometers of the photosphere can be 

seen. Physically the photosphere includes the region of upper 

chromosphere. 

Next question is that whether the photosphere of the Sun 

radiates like a black Body – refer to De Jager 1965 [5]. For 

this the distribution of emittance in the spectrum of the Sun 

has to be studied. This has been, done by various workers 

like Plaskett and Wilsing etc. The results are discussed by 

Brill and Bernheimer exhaustively. For these results treatises 

in Astrophysics can be consulted. The results are illustrated 

in the books like those of Shah and Srivastava (Shah and 

Srivastava 1958 [6] & Kraus 1966 [7]) and are summarized 

in the following paragraph.  

The full curves (Fig. 1) represent the observed values of 

emission for the different wavelengths, the upper curve for 

radiation from the central part of the disc, the lower for the 

integrated radiation from the disc. The broken curves 

represent blackbody radiation for the temperatures 7000 0K, 

6000  0 K and 5000  0 K. It is seen that the energy curve 

deviates considerably from that of a black body. Taking the 

curve for central radiation, it is found that from the long 

wavelength side to about the wavelength λ =0 .78 x 10��m, 

the curve can be made to coincide with the curve of 6000 0K, 

but between this wavelength, and the wavelength of 

maximum emission (λ = 0.4680 x 10�� m), the emission lies 

between 6000
0 

K and 7000
0 

K. From the wavelength of 

maximum emission, the fall is too steep, and the curve can 

under no circumstances be made to agree with that for any 

black body radiation at any temperature. This rapid fall on 

the violet side is certainly to be ascribed to greater 

diminution of ultraviolet light by scattering in the atmosphere 

of the sun, as well as by terrestrial atmosphere. Below the 

wavelength λ = 0.295 x 10��m the solar spectrum entirely 

disappears though even for a temperature of 5000  0K , it 

ought to be continued to the wavelength λ = 0.2 x 10�� m. 

This total absorption has been traced to a layer of ozone 

which is formed in the upper layers of our atmosphere. 

Recently by using V2 –rockets spectrographs have been 

carried up to heights of 110 kilometers, i.e. above the ozone 

layer, and the solar spectrum photographed to wavelength λ 

= 0.2099 x 10��  m. It is therefore fairly certain that the 

radiation reaching us from the Sun differs widely in quality 

from black body. The temperature of the Sun, which is a star 

of G 0 – class is given values ranging from 5980  0 K to 

6200 0K by various workers. But the actual temperature of 

the photosphere is probably in the neighborhood of 7000 0K. 

Plaskett investigated the intensity distribution of the light 

emitted from the center of the disc and finds that between 

wavelength λ =0.38 x 10�� m to wavelength λ = 0.76 x 10�� 

m, the radiation is identical to that given by a black body at 

6700 �K. Wilsing obtains a temperature of 6740 �K. But the 

fact that a certain part of the emission curve can be made to 

coincide with the black body can hardly justify the 
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conclusion that the Sun emits like a black body. However, 

although the loss for each wavelength due to passage through 

the Sun’s atmosphere is not definitely determined, even then 

the emission could not be black because the surface is open 

and contains large proportion of electrons. 

In this analysis of photospheres’ radiation from the Sun, it is 

assumed that the photosphere is made up of high density 

terrestrial ionized semi-gaseous type material where electron 

and ion densities are equal. The charged particles of the 

ionized semi-gaseous type material are in thermal 

equilibrium at temperature T (=7000	�K) of the photosphere. 

Electron-ion collisions in the photosphere helps establishing 

the thermal equilibrium. 

The nuclear processes going deep inside the core of the Sun 

builds up a difference of charge densities of the charge 

carriers with opposite signs in the body of the photosphere. 

This in turn develops a junctional potential difference across 

which the difference of charge densities exits. And hence it 

gives rise to a d.c. potential difference across which the 

difference of charge exists. And hence, this gives rise to a d.c. 

electric field E�  in the body of the photosphere. When the 

difference of the charge densities of the charge carriers with 

opposite signs vanishes in the course of time, then E�  also 

vanishes. Thus fluctuations in the density of charge carriers 

with opposite signs, alternatively builds up and withdraws E�  in the body of the photosphere.  

Then the electron in the vicinity of an ion alternatively takes 

the positions R"  and R" in the presence and in the absence 

of E�  (refer to Nandedkar 2016 [8]). Quantization of the 

electron in the vicinity of the ion gives rise to absorption and 

emission of radiation due to electronic jumps from state R"  

to state R" and vice versa at equilibrium temperature T of the 

photosphere. The frequency of radiation thus obtained is a 

function of the electron density in the photosphere. In the 

distribution of emittance of radiation as a function of the 

frequency at temperature T, upper limit of the frequency can 

be obtained due to the minimum number of the quantum state 

of the electron in the vicinity of the ion available. Whereas 

the lower limit of the frequency is governed by the minimum 

value of the electron density available near photosphere 

which is arbitrarily chosen to be 1 x 10��  m��  – a value 

intermediate to the chromosphere as the transition between 

photosphere and corona is not very sharp. 

Further the radiation from the photosphere thus emitted has 

to pass through dielectric medium provided by the material 

of photosphere in general. Moreover, the radiation also 

passes through the solar atmosphere. This again introduces 

its own absorption. The total absorption can be assumed to 

produce the full line curve (Fig. 1), for the radiation curve for 

T = 7000	�K with lower cut-off wavelength corresponding to 

the state of minimum quantum number for the electron 

available in the vicinity of ion in the photosphere. 

Everywhere in this research-paper, wavelength of radiation 

emitted from photosphere of the Sun corresponds to the free 

space wavelength, considering absorption and emission of 

radiation due to electronic jumps from state R"  to state R" 

and vice versa at equilibrium temperature T of the 

photosphere. 

2. Electron Charge Density 
Fluctuations in the 
Photosphere  

In the presence of a d.c. electric field E�  (which is randomly 

oriented) developed under favorable conditions due to charge 

density fluctuations in the photosphere as mentioned in Secn. 

1, the differential equation of motion of an electron in the 

vicinity of an ion can be written down (for instance refer to 

Nandedkar 2016 [8], [9] and [10]) as follows:  

m� #$%
#&$ + f��) #%#& + f
�)r = e	E� 	,	                (1) 

or, 

#$%
#&$ +	 ./0120 	#%#& +	 .$0120 	r = 	 �

20 	E� 	,                (2) 

where m�	is the mass of an electron of charge e. f��) #%#& is the 

damping force due to electron-ion scattering, f
�)r  is an 

electric restoring force due to quasi-bound nature of the 

electron with respect to the ion. r gives the displacement of 

the electron measured with respect to the ion. 
#%
#& and 

#$%
#&$	are 

the velocity and acceleration of the electron at time t under 

consideration. Further, 

f��)/m� = ν�)	,                               (3) 

and 

f
�)/m� = ω"
 ,                             (4) 

here ν�)  is the (actual) collision frequency of electron-ion 

scattering at average temperature T of the Photosphere for 

quasi-free: quasi bound electron model of ionized semi-

gaseous type material of photosphere in presence of E� 	, and ω"	is the angular frequency of electronic damped oscillations 

such that, 

ω"
 ≫	(ν�)/2)
,                            (5) 

is the assumption. 

Using eqns. (3) and (4), eqn. (2) gives, 

#$%
#&$ +	ν�) #%#& +	ω"
	r = 	 �

20 	E� 	       (6) 
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Here E�  is considered a randomly oriented one. 

Steady state solution of eqn. (6), in the presence of electron-

ion scattering phenomenon denoted by	ν�), gives, 

r � R" 	= 
�
20 

789:;$	  ,                             (7) 

where R" 	 is the final position of the electron from the ion in 

the presence of E�  . 
When E�  ceases under favourable conditions due to charge 

density fluctuations in the photosphere as mentioned in Secn. 

1, then the differential equation of motion of the electron in 

the vicinity of the ion can be written down (for instance refer 

to Nandedkar 2016) [9] as follows:  

#$%
#&$ +	ν�) #%#& +	ω<
	r = 	 �

20 	〈E)〉	,            (8) 

where 〈E)〉	is the average value of electric field due to the ion 

at distance R"	given by, 

R"	 = ?(3/4π)A 	N���/� ,                    (9) 

where R"	 denotes average separation of an electron from the 

neighbouring ion. Here 〈E)〉 is reached in the limit when E�  
ceases to act. ω< in eqn. (8), gives eigen angular frequency of 

the damped oscillations which are not sustained (for instance 

refer to Nandedkar 2016) [8]. The value of r considered in 

eqn. (8) is in the vicinity of R"	where 〈E)〉 can be treated as 

constant. 

Steady state solution of eqn. (8), in the presence of electron-

ion interaction denoted by ν�) , is given by, 

r � R"	= 
�
20 

〈71〉:B$	 .                          (10) 

In eqn. (7) and (10), R" 		and R"	 denote the position of the 

electron with respect to ion, where electronic damped 

oscillations asymptotically exit, provided damping is low. R" 		 and R"	 denote the steady state asymptotic positions of 

the electron with respect to the neighbouring ion in 

respective cases.  

Relationship between R"	 and R" 	 in the presence of 〈E)〉 and E�  respectively can be obtained as follows: 

In the vicinity of the ion, the value of electric field due to the 

ion varies inversely as the square of the distance in 

accordance with Coulomb’s law and the ultimate value of 

average electric field 〈E)〉 is reached when R"	 is attained by 

the electron in presence of ω<. Whereas in in the case of d.c. 

electric field E�  which remains everywhere the same in the 

vicinity of the ion, and R" 	  is the value attained by the 

electron in the presence of ω" . 

If the conditions in the vicinity of the ion with 〈E)〉 and with 

E�  are different, then the displacement of the electron in the 

presence of E�  is constrained in comparison to that in the 

presence of 〈E)〉 . Let the constrained displacement of the 

electron with respect to the ion be denoted by r  in the 

presence of d.c. electric field E� . When R"	  and R" 	in the 

presence of 〈E)〉  and E�  respectively, are to be compared, 

then the non-constrained displacement of the electron in the 

presence of E�  be denoted by rC  with respect to the ion. 

In the hypothetical case of E�  and 〈E)〉 both tending to zero, 

the value of rC  and r 	would also tend to zero. 

Any change of the value of (R" 	- 	r ) with respect to rC  is 

considered to be proportional to (R" 	- 	r ) itself, i.e., 

#
#%D9	(R" 	- 	r ) α - (R" 	- 	r ) .                 (11) 

The negative sign outside the bracket on the left hand side of 

eqn. (11) denotes that (R" 	- 	r ) decreases as rC  is increased. 

Eqn. (11) can be rewritten as follows: 

#
#%D9	(R" 	- 	r ) = - 

(E;9	�		%9)E;	  ,                     (12) 

where 1/R"	 is the constant of proportionality. R"	 is the value 

with which R" 	 is to be compared. R"	 is given by eqn. (9). 

Integration of eqn. (12) gives that, 

(R" 	- 	r ) = A  exp G−	%D9E;I	,                    (13) 

where A  is a constant of integration. As mentioned before in 

the limit when, 

rC  � 0,                                    (14a) 

then, 

	r  � 0 .                                  (14b) 

Thus, using eqns. (14a) and (14b), eqn. (13) gives: 

A =	R" 	.                                  (15) 

Substituting the value of A  from eqn. (15) in eqn. (13), eqn. 

(13) gives that, 

	r 	= R" 	[1- exp G−	%D9E;I].                  (16) 

The value of R" 	in terms of R"	is obtained when,	r  and rC  

simultaneously tend to	R"	, then eqn. (16) gives, 

R" 	 =	 E;���JK	(��)	.                      (17) 

From eqn. (17), the value of R"  / R" 	 is given by the 

following relationship, viz., 

E;E;9 = 	1 − exp 	( − 1) = 	0.6321(2)	,           (18) 
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and eqn. (18) indicates that when R" and R" 	in the presence 

of 〈E)〉  and E�  respectively are compared then R"  is 

63.21(2)% smaller than R" 	. 
The derivation assumes that the effects of the charges outside 

the sphere of radius R" or R" 	 under consideration, have no 

interference.  

Here R" 	and R" are the alternate positions with respect to the 

neighbouring ion, the electron takes when E�  is developed 

and vanished successively during the process of the 

appearance of the gradient of the charge densities of the 

carriers with opposite signs and disappearance of that gradient 

respectively. Thus, due to the process of fluctuations in charge 

densities of charge-carriers with opposite signs in the body of 

the photosphere, the electron with respect to the neighbouring 

ion takes alternatively the positions of R" 	and R". 

3. Quantization of the Electron 
in the Vicinity of the Ion  

The ion is considered to be much heavier as compared to the 

electron. The electron in the vicinity of the ion is in the 

central force field of the ion. In the presence of the central 

force field, the electron acquires a potential energy V� (r), 

which depends on the radial distance r of the electron from 

the ion. If E� be the total energy of the quasi-bound electron 

with respect to the ion, then [E�  - V� (r)] gives the kinetic 

energy of the electron under consideration. If p�  is the 

momentum of the electron corresponding to the kinetic 

energy [E� - V�(r)], then, 

K0$
	20 =	 [E� 	− 	V�(r)],                   (19) 

The time independent (Schrödinger) wave equation of the 

electron of momentum p� associated with a matter wave of 

(D’ Broglie) wavelength λ2� of value, 

λ2� = h/p� ,                                (20) 

where h is Planck constant, is given by (for instance for 

analogy refer to Nandedkar and Bhagavat, 1970 [11]) – 

(where “Corrigendum/Corrigenda” for [11] is given by 

Nandedkar and Bhagavat 1970 [12]),  

∇2
Ψ�2 + 

�	π$
S$  p�
 Ψ�2	= 0,                        (21) 

where ∇2
 is Laplacian operator in a system of a three 

dimensional co-ordinates with the stationary ion at the origin. 

Ψ�2 gives the amplitude of the matter wave and is the wave 

function of the electron. Using eqn. (19), eqn. (21) gives, 

∇2
Ψ�2 + (2m�/ℏ
) [E� 	−	Ve(r)] Ψ�2	= 0,         (22) 

where, 

ℏ = h/2π .                                (23) 

In the case of spherical symmetry with respect to the ion 

assumed in this analysis, Ψ�2  only depends on r. Thus 

expanding ∇2 
in eqn. (22) in terms of r, eqn. (22) gives, 

�
%$ 

�
�% 	Gr
 	�E0�% I + (2m�/ℏ	
) [E� 	−	Ve(r)]Re	= 0,     (24) 

where R� is the radial part of Ψ�2 . R�  is the radial eigen 

wave function of the electron with eigen energy as E� . 

Coulomb force acting on the electron due to the ion of charge 

e at distance r is given by, 

Fc = G �$
�πU;%$I	.                             (25) 

Thus the potential energy V�(r) of the electron is given by, 

V�(r) = V F %
∞

 dr = −	 �$
�πU;% .                   (26) 

Using eqn. (26), eqn. (24) gives, 

�$E0�%$  + 


% 	�E0�%  + [(2m�/ℏ	
) E� +	(2m�/ℏ	
)	G	 �$

�πԑ;	%I]	R� = 0	. (27) 

Now consider first discrete state where E� is negative for the 

quasi-bound electron with respect to the ion in the ionized 

semi-gaseous type material of the photosphere. Further 

introduce a new eigen value parameter n by means of the 

following relationship, viz., 

E� =	−	 20�Y�
	π$U;$ℏ	$ 	 �C$	.                         (28) 

Using eqn. (28), eqn. (27) gives, 

�$E0�%$  + 


% 	�E0�%  + [−	 20$�Y��	π$U;$ℏ	Y 	 �C$ +	 20�$
πU;ℏ	$ 

�
% ]	R� = 0.   (29) 

Let then introduce a new parameter x, by substituting, 

x = 



C	Z; r ,                                   (30) 

where, 

	A" = 
�	π	ℏ	$U;20	�$  .                                    (31) 

Thus, 

r = n G
	π	ℏ	$	U;20�$ I 	x	.                            (32) 

Using eqn. (32), eqn. (29) gives, 

�$[0(J)�J$ +	
J 	�[0(J)�J 	+ 	G− �
� +	CJI	X�(x) = 	0,           (33) 

where, 

R�(r)	= X�(x)	.                                 (34) 

Here the physically significant limits of x correspond to those 
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of r, viz., zero to infinity. 

An indication of the solution of eqn. (33) can be obtained by 

taking x very large, so that the corresponding asymptotic 

equation is, 

�$[0�J	
�J$ − 	�� 	X�(x) = 	0,                   (35) 

of which the solutions are, 

X�(x) = exp	(x/2)	,                       (36a) 

and, 

X�(x) = exp	(−	x/2).                     (36b) 

Since x may vary from 0 to ∞ , the former of these 

solutions [(eqn. (36a)] will increase as x increases, this 

will lead to a non-acceptable wave function. On the other 

hand, the second solution [(eqn. (36b)] will be 

satisfactory, since it decreases to zero as x (– and hence r), 

the distance of the electron from the positive ion- 

increases to	∞. 

Bearing in mind the asymptotic solution, a possible solution 

to eqn. (33) is, 

X�(x) = exp G− J

I	v7(x)	,                 (37) 

where v7(x) is another function of the variable x. Thus, 

R�(r)	= X�(x) = [exp	 G− J

I]	v7(x) .          (38) 

Using eqn. (38), eqn. (33) gives, 

x 
�$^_(J)�J$ + (2 − x)	�^_(J)�J + (n − 1)	v7(x) = 0 .          (39) 

Now consider the following differential equation: 

x 
�$`_(J)�J$ + (1 − x)	�`_(J)�J + n	u7(x) = 0 .           (40) 

Differentiating eqn. (40) with respect to x gives, 

x 
�$^_(J)�J$ + (2 − x)	�^_(J)�J + (n − 1)	v7(x) = 0	,         (41) 

where, 

v7(x) = 	 ��J 	[u7(x)].                       (42) 

Eqn. (41) is the same as eqn. (39).  

In order to solve eqn. (40), substitute the following power 

series expression for u�(x), viz., 

u7(x) = 	∑ acdx�decdfcdg� 	.                (43) 

Then eqn. (40) gives,  

∑ acd(αi + γi)
		x�decd��fcdg� −	∑ acd 	(αi +fcdg�

γi	�	n)	x�decd	 = 0	.                              (44) 

Equating the lowest power of x to zero, eqn. (44) gives, 

a�αi
 = 0	.                                      (45) 

Since a� ≠ 0 for a non-trivial solution, eqn. (45) gives, 

αi = 0.                                          (46) 

Substituting αi = 0 in eqn. (44), eqn. (44) gives, 

∑ acd(γi)
		xcd��fcdg� −	∑ acd	(γi	�	n)	xcd	fcdg� = 0	. (47) 

Equating to zero the coefficient of j-th term of x in eqn. (47), 

it is found that, 

a<e�	(j + 1)
 = a<(j − n) . 
So that, there results the following recurrence relation, viz., 

a<e� = (<�C)
(<e�)$ a< .                               (48) 

Using eqn. (48), eqn. (43) where αi = 0, gives, 

y = a� n1 − nx + C(C��)
(
!)$ x
 −⋯+	(−1)q C(C��)….(C�qe�)

(q!)$ xq +⋯s, (49) 

where, 

y = u7(x) .                                  (50) 

The expression given by eqn. (49) becomes a polynomial 

when n is a positive integer. Choosing, 

a� = (−1)Cn!                               (51) 

eqn. (49) gives, 

y = LC(x) = (−1)C nxC − C$
�! xC�� + C$(C��)$


! xC�
 +⋯+
	(−1)Cn!s	.                                (52) 

For the positive integer n, LC(x) of eqn. (52) denotes a finite 

polynomial of degree n. And hence eqn. (42) represents 

integerable solution of eqn. (41) or eqn. (39) to the wave 

function of electron, because n is a positive integer. 

Coming to eqn. (42), v7 is given by, 

v7 ≡ �
�J y = �

�J LC(x) = LCv (x) ,           (53) 

using eqns. (50) and (52). Here LCv  is a polynomial of degree 

(n-1). Returning to eqn. (52), eqn. (52) can be alternatively 

represented as follows:  

Consider, 

u7D = �

w)∮ yzDz/

(��y) exp G�Jy��yI 	dz ,           (54) 

where counter is taken to include the origin. Differentiation 

with respect to x can be performed under the integral sign. 



 Physics Journal Vol. 2, No. 2, 2016, pp. 127-139 133 

 

Hence,  

du7D
dx = − 12πi ∮ z�C�	�(1 − z)
 exp G −xz1 − zI dz	, 

and 

d
u7Ddx
 = 12πi ∮ z�Ce�(1 − z)� 	exp G −xz1 − zI dz	. 
On substituting in the left hand side of eqn. (40), it is found 

that, 

�

w)∮ n Jy$

(��y)$ − (��J)y
(��y) + ns yzDz/

(��y)  exp G�Jy��yI dz	. 
But this reduces to, 

− 12πi ∮ ddz ~ z
�C

1 − z exp G −xz1 − zI� dz	, 
an expression which vanishes because the quantity in the 

brackets takes on the same value at the initial and final point 

of the contour. Hence eqn. (54) is a solution of eqn. (40). 

Moreover it is a polynomial as the analysis of the theorem of 

residues shows its relationship to LC(x) can be established by 

computing both u7D(x) and LC(x) for a particular value of x, 

say zero. From eqn. (52), 

LC(0) = n! 
From eqn. (54), 

u7D(0) = 12πi ∮ z�C��1 − z dz
= 12πi ∮ z�C��(1 + z + z
 +⋯…)dz = 1. 

Therefore 

LC = n! u7D .	
Using the theorem of residues, it is found, since 

LC = C!

w)∮ yzDz/

��y exp G− Jy
��yI dz	,               (55) 

then 

(−z)��exp G�Jy��yI = 	∑ u7DfCg�  zC = ∑ �D(J)C!fCg� 	zC .        (56) 

On differentiating eqn. (56) with respect to x is seen that, 

(−1)(1 − z)�� G y
��yI exp G�Jy��yI = ∑ �λ�� (J)

λ�! zλ�f
λ�g� 	.         (57) 

Coming to eqn. (53) the polynomial LCv (x), or more correctly 

the polynomial multiplied by a constant G� will be a solution 

of eqn. (39) or (40), so it is possible to write, 

v7(x) = G�LCv (x) .                            (58) 

The complete expression for the function R�(r) is thus seen 

from eqn. (38) to be given by, 

R�(r) = X�(x) = G�exp G− J

I LCv (x)	.          (59) 

Eqn. (59) denotes an acceptable solution since as already 

seen, has a finite number of terms only. The constant G� in 

eqn. (59) can be made equal to the normalization factor by 

the following procedure: 

The normalizing condition for the physically significant 

interval of zero to infinity is, 

V R�(r)	R�	∗ (r)	r
dr = 1f�  .                 (60) 

The factor r
 being necessary to convert the length dr into an 

element of volume. If R�(r) and the complex conjugate of 

Re(r) i.e. R�	∗ (r)	be the same, then eqn. (60) gives, 

V [R�(r)]
r
dr = 1f� 	.                        (61) 

Using eqns. (30) and (59), eqn. (61) gives, 

GCZ;
 I� G�
 V exp(−x) [LCv (x)]
x
dx = 1f� 	.       (62) 

Now consider the integral, 

IC = V [(�exp(−x)��LCv (x))]
	x
dxf� 	.           (63) 

From eqn. (57), there results the following identity: 

� � LCv (x)LC�v (x)n! nv!
f
C�g� zC�C�f

Cg� = exp �− Jy
��y − J�

����(1 − z)
(1 − Z)
 zZ	, 
from which it follows that, 

� � zCZC�
n! nv! � �exp(−x)�x
LCv (x)	LC�v (x)	dxf

�
f
C�g�

f
Cg�

= (zZ)(1 − z)
(1 − Z)
� x
exp �−x − xz1 − z
f

�
− xZ1 − Z� 	dx	. 

Solving the integration, there results the following expression 

for Left Hand Side of above equation, viz., 

(2)! (z	Z)(1 − z)(1 − Z)(1 − z	Z)� 	, 
and by means of binomial expression, this function can be 

expanded to, 

(1 − z − Z − zZ)� 	(rv + 2)!rv!
f
%�g� (zZ)%�e�	. 

Now the coefficient of (zZ)C in this expansion is, 
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�2n	�n!	
�n − 1)! 	. 

But this is equal to IC/(n!)
. Hence, 

IC = V exp(−x)[LCv 	(x)]
x
dx = (
C)(C!)A
(C��)!

f�       (64) 

Using eqn. (64), eqn. (62) gives, 

G� = ~G 

CZ;I

� (C��)!
(
C)(C!)A�

�/
.                        (65) 

Using eqns. (65) and (30), eqn. (59) gives, 

R�C(r) = ~G 

CZ;I

� (C��)!
(
C)(C!)A�

�/
 exp G− %
CZ;I 	LCv G 
%

CZ;I	,      (66) 

where Re (r) is replaced by R�C	(r)which is the acceptable 

eigen function of the electron in n-th quantum state in the 

vicinity of the ion in the ionized semi-gaseous type material 

of the photosphere. 

The corresponding value of eigen energy E�C of the electron 

in n-th quantum state is given from eqn. (28), where E�	is 

replaced by E�C , as follows: 

E�C = −	 20�Y�
	π$ԑ;	$ ℏ	$ 	 �C$ 	= − ��$
��wU;

�
GA$	Z;C$I	.        (67) 

The present analysis shows that n has to be a positive integer 

if 	LCv G 
%
CZ;I function is a finite polynomial of degree (n-1), 

thus making as an acceptable wave function. The minimum 

value of n, this shows has to be unity. Thus, in eqn. (66) or 

(67), 

n = 1, 2, 3 ………….,                            (68) 

which gives quantum number of the electron in the vicinity 

of the ion. The condition n=1 gives ground state of the 

electron in the system under consideration. 

4. Absorption and Emission of 
Radiation by the Electron  

In order to study absorption and emission of radiation due to 

quantum jumps of the electron from distance R" 		to R" with 

respect to the ion, and vice versa, the knowledge of the 

average distance of the electron from the ion in terms of the 

quantum number n is required. This can be obtained as 

follows: 

Coming to eqn. (62) the distribution function P�(x)	to find 

electron at distance x can be given by, 

P�(x) = D�x
�exp	(−x)�	�LCv 	(x)�
,            (69) 

where 

D� = GCZ;
 I� G�
 ,                               (70) 

here in eqn. (69), x is given by eqn. (30). 

Mean value of r [- which is distance of the electron from the 

ion], for this distribution denoted by eqn. (69), is given by, 

r̅ = V �0(J)%�%��V �0(J)�%�� 	.                                 (71) 

Using eqn. (30), eqn. (71) gives, 

r̅ = GD�;$ I V �0(J)J�J��
V �0(J).�J��  .                                (72) 

Substituting the value of P�(x) from eqn. (69) in eqn. (72), 

eqn. (72) gives, 

r̅ 	= GCZ;
 I V JA��JK	(�J)��D� (J)�$�J���
V J$��JK	(�J)���D� (J)�$�J��

	.             (73) 

In order to solve the integrals involved in eqn. (73), consider 

the following general integral, viz., 

IC,2 = � �exp(−x)�LCv (x)L2v (x)	xq�dxf
� 	. 

here qv  is another integer which is either equal to Z or z. 

Furthermore the interest is mainly confined to	IC,C. 
Multiply eqn. (57) in which z� is written for z, by a similar 

one in which z is replaced by 	z
 , then there results the 

following expression, viz., 

� z�λ�z
��
λK! μK! Lλ�v (x)	L��v (x)f

λ�,	��g�
= (z�z
)(1 − z�)�
(1 − z
)�
exp � −xz�1 − z�+ −xz
1 − z
�	. 

Multiply each side of this equation by �exp	(−x)�	xq�  and 

then integrate with respect to x. In view of the definition of IC.C, the result can be written down as follows: 

� z�λ�z
��
λK! μK!

f
λ�,	��g� Iλ�,	�� = 

(z�z
)[(1 − z�)(1 − z
)]�
 	V x��f� exp nx G1 − �
��y/ − �

��y$Is dx	. (74) 

Now, 

�  exp¡−βqx£¤x%¥ 	dx = βq�%¥���  exp¡−tq£¤	tq%¥f
� dtqf

� 	, 
or, 
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�  exp¡−βqx£¤	x%¥ 	dx = βq�%¥��	Γ	¡rq + 1£f
� = βq�%¥��¡rq!£	, 

due to Γ-integrals. 

If, 

βq = (1 − z�)�� + (1 − z
)�� − 1= (1 − z�z
)(1 − z�)��(1 − z
)��	, 
be substituted, then there results the following expression, 

viz., 

∑ y/λ� 	y$§�
λ�!	¨©! Iλ�,	�� = (y/y$)(��y/)¥�z/(��y$)¥�z/(��y/y$)¥�ª/

f
λ�,��g� 	(qv !).  (75) 

Expansion of the denominator on the right by the binomial 

theorem, gives, 

(1 − z, z
)�q��� = �¡qv + λK£!qv! λK	!
λ�	

(z�z
)λ�	 , 
and using this, Right Hand Side of Eqn. (75), gives, 

(1 − z�)q���(1 − z
)q���∑ ¡q�eλ�£!
λ�! (z�z
)λ�e�λ� 	.        (76) 

Thus in the view of eqn. (75), IC,2is simply (n!)
 times the 

coefficient of (z�z
)C of this expression. 

Case a: 

When qv = 2, Eqn. (76) becomes,  

�«(λK + 2)!
λK! ¬

λ�
n(z�z
)λ�e� − z�λ�e
	z
λ�e� − z�λ�e�	z
λ�e

+ (z�z
)λ�e
s	. 

The second and third terms in the bracket in which z� and z
 

appear with different exponents cannot contribute to IC,2; the 

first term contributes when λK = n − 1 , and the last one 

when λK = n - 2. Hence, 

IC,C = (n!)
 ­(n + 1)!(n − 1)! + n!(n − 2)!®	, 
and, 

[IC, n]¯¥�°$ = (C!)A
(C��)! (2n) = V [exp	(−x)][LCv (x)]
x
	dx	f�   (77) 

Case b: 

When qv = 3, the significant parts of eqn. (76) are, 

�¡λK + 3£!
λK!  (z�z
)λ�e� + 4(z�z
)λ�e
 + (z�z
)λ�e�¤	,

λ�
 

where terms with different exponents of z�  and z
  are 

omitted. Consequently, 

[IC,C] = (n!)
 ­(n + 2)!(n − 1)! + 4(n + 1)!(n − 2)! + n!(n − 3)!®	, 
and, 

[IC,C]q�g� = (C!)A
(C��)! (6n
) = V [exp	(−x)[LCv (x)]
x�dx]f� 	.  (78) 

Using eqns. (78) and (77), the value of [	IC, n]q�g�	 [IC, n]q�g
	±  is given by, 

 ¯D,D¤¥�°A ¯D,D¤¥�°$ =
V n�JK	(�J) �D� (J)¤$JA�Js��
V n�JK	(�J) �D� (J)¤$J$�Js��

= 3n	.          (79) 

Using eqn. (79), eqn. (73) gives, 

r̅ = �

A"n
	.                                 (80) 

Thus the average distance r of the electron from the ion is a 

function of n and is given by, 

r	(n)²²²²²² = �

A"n
	.                               (81) 

where A" is given by eqn. (31). 

Using eqn. (81) in eqn. (67), the energy of the electron in n-th 

quantum state is given by, 

E�C = − ��$
��w³´ 	 �

%	(C)²²²²²²²	.                           (82) 

When the electron alternatively takes quantum jumps from 

the positions of R"	 and R" 	 and vice versa by successive 

removal and application of the d.c. electric field due to 

fluctuations in charge densities of the charge-carriers with 

opposite signs in the photosphere, then assume that the 

electron occupies the quantum number, n"  at R"	 = 	r	(n)²²²²²²¤	C;  and, n"  at R" 	 =	  	r	(n)²²²²²²¤	C;9 . Under these 

conditions, 

R"	 � R�C;	 = 
�

 A"	n"
 ,                          (83) 

R" 	 � R�C;9	 = 
�

 A"	n" 
  ,                      (84) 

using eqn. (81). 

Corresponding energies of the electron in these quantum 

states of n"  and n"  i.e. E�C�  and E�C;9  are, using eqn. (82) 

given by, 
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E�C; = 	−	 �	�$
��	π	U; 	� �

E0D;	� 	= 	−	 �	�$
��	π	U; 	G �

E;	I     (85) 

and 

E�C�9 =	−	 �	�$
��	π	ԑ; 	� �

E0D;9	� 	= 	−	 �	�$
��	π	ԑ; 	G �

E;9	I	.      (86) 

When the electron makes quantum jumps from state R"  to 

state R"	 (where R"  > R"	) at equilibrium temperature T of 

the photosphere, then it absorbs a quantum of energy hf of 

radiation of frequency f, such that, 

E�C�9	 −	E�C;  = + hf.                        (87) 

Here + sign on the Right Hand Side of eqn. (87), denotes 

absorption of radiation. 

On the other hand, when the electron makes transitions from 

state R"	  to state R"  at equilibrium temperature T of the 

photosphere, then the quantum of energy hf gets emited, such 

that, 

E�C; −	E�C�9	 =	−hf ,                       (88) 

where the negative sign on the Right Hand Side of eqn. (88) 

denotes emission of radiation. 

The successive quantum jumps of the electron from state R"  
to state R"	and vice versa due to fluctuations in the charge 

densities of the charge-carriers with opposite signs give rise 

to absorption and emission of radiation respectively in 

general of the photosphere. 

The frequency of radiation f can be obtained by eqn. (87), 

using eqns. (86) and (85). Thus, 

f = 
�	�$

��	π	ԑ;	S	 	n �
E� −	 �

E;9s	.                  (89) 

Substituting the value of R"  in terms of R� from eqn. (17), 

eqn. (89) gives that, 

f = 
�	�$ �JK(��)
��	π	U;	S	E; .                            (90) 

Eqn. (90) gives frequency f of radiation as a function of R" 

[– which is the average separation of the electron from the 

neighbouring ion]. 

If c be the velocity of radiation in free space and λ be the 

corresponding wavelength, then, 

f λ = c.                                          (91) 

Using eqn. (90), eqn. (91) gives, 

λ = 
��	π	ԑ;	S	 E�	�	�$ �JK(��) = E;�.
��(¶)	J	��zY	.             (92) 

Substituting value of R" using eqn. (9), eqn. (92) gives that, 

λ = 
?(�/�π)A 	��	π	ԑ;	S	 	�	�$ �JK(��) N���/� = 1.935(8)		x	10�/N��/�     (93) 

The minimum value of λ  i.e. λ2)C  available from 

photosphere corresponds to the minimum value of 	R"	  i.e. (R")2)C given by, 

(R")2)C 	= [R�C	 =	32	A"	n
]	Cg� 

= 
�

 	A"	 = 

�	π	ℏ	$U;20	�$  = = 
�	S	$U;
	π	20	�$	.     (94) 

using eqns. (81), and (31). 

The maximum value of N�  i. e. (N�)2¸J  corresponding to (R")2)C can be obtained using eqn. (9) and is given by, 

(N�)2¸J =	G �
�π	I (R�)2)C�� =	 
	π$	¹ºA	»¼	�	½¼³Á 	.       (95) 

Since the transition between photosphere and solar corona in 

which electron density varies from 10��  m��  to 1 x 10�� m��  
as already mentioned in Secn. 1 is quite arbitrary, an 

arbitrary value of the of electron density i.e. (N�)2)C near the 

photosphere, intermediate to the chromosphere, is chosen 

such that,  

(N�)2)C = 1 x 10�� m��                    (96) 

Maximum value of R"  i.e. (R")2¸J  corresponding to 

minimum value of N� i.e. (N�)2)C is given by,  

(R")2¸J =	G �
�π	I�/�	 (N�)2)C��/�

,            (97) 

using eqn. (9). 

Values of range of λ [of eqn. (92)] are defined by, 

λ2¸J	≥ λ ≥ λ2)C	,                             (98) 

for range of R" given by, 

(R")2¸J	≥ R"	≥ (R")2)C	,                  (99) 

where (R")2¸J and (R")2)C are given by eqns. (97) and (94) 

respectively. 

The distribution of N� corresponding to the distribution of R" 

[eqn. (9)] with minimum and maximum values given by 

eqns. (94) and (97) respectively, give rise to the distribution 

of λ  with minimum λ2)C	 and maximum λ2¸J	 values 

determined, at equilibrium temperature T of the photosphere. 

5. Distribution of Emittance 
with Wavelegth in 
Photospheres’ Radiation 
Spectrum  

Monochromatic noise energy density WEλ  at wavelength λ 
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generated by the electrons at equilibrium temperature T of 

7000	�K of the photosphere which is radiation temperature 

of the Sun can be shown to be given by the methods similar 

to those treated in an earlier paper (Nandedkar and Bhagavat 

1970 [11]), as follows: 

WEλ	dλ +	 	�π	 	S	
λ
¿ 	­ �λ

��JK� À9
λdÁ	���	

®,	              (100) 

where WEλ	dλ  is the radiation energy density in the 

wavelength band dλ at λ. Here λ is given by eqn. (92), such 

that [refer to eqn. (98)], 

λ2)C � 	λ	 � 	λ2¸J	. 
where λ2)C and λ2¸J can be determined by eqns. (92). 

Further monochromatic radiation energy density WEλ  at 

wavelength λ, using	eqn. (100), is given by, 

WEλ 	+ 	 	�π	 	S	
λ
¿ 	­ �

��JK À9
λdÁ���	

®	,	                        (101) 

whereas c WEλ  which is emittance of the radiation at 

wavelength λ	is obtained from eqn. (101), as follows: 

c	WEλ 	+ 	 	�π	 $S	
λ
¿ 	 ­ �

��JK� À9
λdÁ	���	

®	.	                  (102) 

Here c	WEλ gives amount of the radiation power crossing the 

unit area normal to the direction of propagation in the 

wavelength interval dλ	between λ and λ	+ λ. 

Equation (101) indicates that WEλ varies with the wavelength 

λ  of the radiation. The wavelength λ	Ki , at which WEλ 

becomes maximum, i.e. �WEλ			2¸J is given by condition: 

�
�λ 	 QλÅ	�exp�hc/λkT	 H 1�	R	λgλ�d + 0	,     (103) 

at which the denominator in the expression of WEλ becomes 

minimum. Eqn. (103) can also be written as follows: 

QH	λÅ� S 
λ
$iÈ� exp�hc/λkT	� 	' 	5	λ�	�exp�hc/λkT	 H

1�R	λ	g	λ�d  = 0.                     (104) 

If, 

S 
	λ�d	iÈ +	θ	Ki	,                                   (105) 

then eqn. (104) gives, 

exp	�H θ	Ki			 '	�θ	Ki	/5	 H 	1 + 0	.       (106) 

The solution of eqn. (106) is, 

θ	Ki	 + 4.965                                    (107) 

Using eqn. (107), eqn. (105) gives, 

	λKi +	 S iÈ 	 �
�.��Å 	+ 	 Q0.4138�6		x	10�	�	mRÈg	¶����É      (108) 

From eqns. (101), (105) and (107), the maximum value of 

WEλ i.e. �WEλ		2¸J is given by, 

�WEλ		2¸J +	 	�π	 	S		λ�d¿ 	n
�

��JK�.��Å���	s	.               (109) 

Thus, 

ÊËλ�ÊËλ		ÌÍÎ 	+ 	  	ÊËλ� 	ÊËλ		ÌÍÎ + 	 ��JK�.��Å���	
	�λ/	λ�d	¿	Q�JK��.��Å/�λ/	λ�d	���R	.  (110) 

where c	WEλ  is the emittance and �c	WEλ		2¸J  is maximum 

value of the emittance of photospheres’ radiation spectrum. 

Eqn. (102) gives emittance of the radiation as a function of 

wavelength of radiation- refer to Fig. 2. 

	
Fig. 2. �c	WEλ	/4Ï versus λ at T = 7000	0K, Q�c	WEλ	/4πR2¸J = 68.90(1) x 

10�
	W-m�
 - rad�
 -m��. Here, 	λKi + 0.4138�6		x	10�	�	m . 

6. Conclusions 

Equation (95) and (96) gives maximum and minimum values 

of average electron density N�	  as a function of average 

distance of the electron from ion [eqn. (9)] which is 

quantized for ionized semi-gaseous type material of the 

photosphere as a function of free space wavelength λ of the 

radiation from the photosphere [eqn. (92)]. 

Limits for values of N�	 are, 

4.774�2		x	10
�	m��	≥	N�	≥	1	x	10��	m��	,  (111) 

using eqns. (95) and (96), for �N�	2¸J and �N�	2)C for upper 

and lower limits of the densities N�	  respectively, where 

�N�	2)C corresponds to an arbitrary value of the of electron 

density i.e. �N�	2)C  chosen near the photosphere, 

intermediate to the chromosphere. 

Now with reference to above limits of N�	 given by eqn. 

(111), limits of 	R"	 are given by, 
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7.937(3) x 10��� m ≤ 	R"	 ≤ 2.879(4) x 10�� m  (112) 

using eqns. (9) & (95) and (9) & (96), for (R")2)C  & (R")2¸J  , respectively, where (R")2)C  corresponds to an 

average separation of an electron from ion in ionized semi-

gaseous type material of photosphere of the Sun for ground 

state n = 1 given by eqn. (94). 

Further with reference to above limits of 	R"	given by eqn. 

(112), limits of λ	are given by 

0.2476(8)	x	10��	m	 ≤ 	λ	 ≤ 	 8.984(9)	x	10��	m	,  (113) 

using eqn. (92) and values of (R")2)C & (R")2¸J as given by 

eqn. (112), respectively. 

From eqn. (93), it is clear that λ inversely varies as cube root 

of N�	  with limits of λ and N�	  as given by eqns. (113) and 

(111), respectively. 

Further using eqn. (102), value of (c	WEλ)/4π  which is 

radiation emittance per unit solid angle of 4π radians per unit 

wavelength interval of dλ at wavelength λ	, is a function of 

free space wavelength λ due to the photospheres’ radiation 

from Sun and is given [from eqns. (105) and (107)] by, 

( 	ÊËλ)�π =	 	
	 $S	
λ
¿ 	Ð �

��JK(Y.Ñ¼¿λ�d
λ

)���	Ò	,            (114) 

where [refer to eqn. (108)], 

	λKi =	 hckT	 14.965 	= 	 [0.4138(6)	x	10�	�	m]Èg	¶����Ó	
gives value of wavelength at which 

( 	ÊËλ)�π  or c	WEλ  is 

maximum at Photosphere’s radiation temperature of 7000�	K . 

Variation of [( 	ÊËλ)�π ] with λ is shown in Fig. 2. In Fig. 2, the 

limits of λ are given by eqn. (113). Fig. 2 shows variation of (c	WEλ)/4π i.e. radiation emittance per unit solid angle of 4π 

radians per unit wavelength interval of dλ at wavelength λ	, 
is a function of free space wavelength λ  due to the 

photospheres’ radiation from Sun at radiation temperature 

7000
 0

K. Maximum value of [( 	ÊËλ)�π ]  i.e. [( 	ÊËλ)�π ]2¸J  is 

68.90(1) x 10
12 

W-m�
 − rad�
–m�� and this occurs for the 

free space wavelength λ  = 	λKi	of 0.4138(6)	x	10�	�	m  of 

eqn. (108). 

Next eqn. (92) gives variation of R"	 i.e. the average 

separation of an electron from an ion with free space 

wavelength λ of radiation. R"	Increases as λ increases. Limits 

of variations of R"	 of eqn. (112) corresponding to the limits 

of λ mentioned in eqn. (113) are, 

7.937(3) x 10
-11 

m ≤ 	R"	 ≤ 2.879(4) x 10
-6 

m 

Here lower limit of R"	corresponds to eqn. (94), which is 

ground state of n=1 for separation of an electron from ion as 

already mentioned. 

In this analysis quantum jump of the electron from state R"  
to state R"	and vice versa is assumed to absorb and emit 

radiation. Further solar atmosphere introduces its own 

absorption for the radiation. Considering various absorption 

effects in the photosphere, a curve similar to that shown by 

full line in Fig. 1 can be obtained from the dotted curve at 

radiation temperature of 7000 
0
K, with appropriate cut-off 

wavelength λ2)C of value 0.2476(8) x 10
-6 

m as discussed in 

this analysis. 

As mentioned in Secn. 1 of the “Introduction”, recently the 

solar spectrum is photographed up to 0.2099 x 10�� m. 

In the present analysis, a singly charged ion with an electron 

model of the photosphere is discussed. If a mixture of a 

doubly charged ion and a singly charged ion in right 

proportion with one of electrons in each cases be considered, 

then the average distance of the electron from the ion can 

tend to lower down than that given by eqn. (81) for ground 

state. The net result of this quasi-free: quasi-bound electron-

ion model of the ionised semi-gaseous type material of the 

photosphere is then to reduce λ2)C given by eqn. (92) by a 

fraction, i.e. in this approximate analysis new λ2)C  gets 

lower than 0.2477 x 10�� m. 

Again as mentioned before, when the radiation in the free 

space wavelength of interest proceeds, the radiation 

undergoes various types of absorption effects in the solar 

atmosphere. In general a lower limit is ultimately reached for 

the wavelength of the radiation. With present knowledge, the 

detected lower limit of solar radiation is 0.2099 x 10�� m as 

already stated in Secn. 1. 

In short in the present article, an analysis of the continuous 

radiation from photosphere of the Sun at equilibrium 

temperature of T= 7000	� K of it is carried out. The 

radiation is assumed due to quantum jumps of the electron, 

in a high density ionized semi-gaseous type material of the 

photosphere of the Sun, from its amplitude states 

considering types of damped frequency oscillations and 

eigen frequency damped oscillations analogous to that exit 

in a low density plasma with electron-molecule collisions 

(Nandedkar 2016) [8]. Damped and eigen frequency 

damped oscillations of the electron result due to density 

fluctuations of the charge-carriers with opposite signs in the 

body of the photosphere due to nuclear processes going 

deep in the core of the Sun. The density fluctuations 

alternatively builds up and withdraws a d.c. electric field in 

the body of the photosphere. The necessary damping for the 

type of damped oscillations mentioned, is provided by 

electron-ion collision type interaction at equilibrium 
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temperature of the photosphere. The minimum value of the 

amplitude the electron takes which can be quantized in the 

field of the neighbouring ion and in the absence of the d.c. 

electric field when eigen-frequency damped oscillations 

result, govern the minimum value of the wavelength of 

radiation from the continuous spectrum of the photosphere. 

In general the wavelength is shown to be a function of the 

average density of the charge-carriers. Thus lower limit of 

the electron density corresponding to an intermediate value 

of the chromosphere, brings an upper limit for the radiation-

wavelength of the radiation spectrum of the photosphere. 

The continuous radiation from photosphere of the Sun 

corresponds to electron density N�	variations in the range 4.774(2)	x	10
�	m��	 ≥ 	N�	 ≥ 	1	x	10��	m��  which 

corresponds to wavelength λ  of radiation in the range 0.2476(8)	x	10��	m	 ≤ 	λ	 ≤ 	 8.984(9)	x	10��	m. However 

recently the solar spectrum is photographed up to a 

wavelength of about 0.2099 x 10��  m which can be 

explained due to a mixture of a doubly charged ion and a 

singly charged ion in right proportion with one of electrons 

in each cases be considered, then the average distance of 

the electron from the ion can tend to lower down the 

minimum value of radiation wavelength. 
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