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Abstract 

In this study, we apply Reduced Differential Transform Method (RDTM) for solving partial differential equations in different 

dimensions with variable coefficients. RDTM is employed to obtain the exact solution of simple homogeneous advection and 

heat-like equations. The RDTM produces a solution with few and easy computation. The method is simple, accurate and 

efficient. 
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1. Introduction  

The importance of research on partial differential-algebraic 

equations (PDAEs) is that many phenomena, practical or 

theoretical, can be easily modelled by such equations. Linear 

and nonlinear PDAEs are characterized by means of indices 

which play an important role in the treatment of these 

equations. The differentiation index is defined as the 

minimum number of times that all or part of the PDAE must 

be differentiated with respect to time, in order to obtain the 

time derivative of the solution, as a continuous function of 

the solution and its space derivatives (Ben Benhammouda et 

al., 2014). Many physical problems are described by 

mathematical models with partial differential equations 

(Kanzari et al. 2012). A mathematical model is a simplified 

description of physical reality expressed in mathematical 

terms (Kanzari et al., 2015; Ben Mariem and Ben Mabrouk, 

2014). Thus, the investigation of the exact or approximation 

solution helps us to understand the means of these 

mathematical models (Kanzari and Ben Mariem, 2014; Ben 

Mariem and Ben Mabrouk, 2014). Several numerical 

methods were developed for solving partial differential 

equations with variable coefficients such us He's Polynomials 

(Mohyud-Din, 2009), the homotopy perturbation method (Jin 

2008), homotopy analysis method (Alomari et al., 2008) and 

the modified variational iteration method (Noor and 

Mohyud-Din, 2008). In this paper RDTM is used to obtain 

the exact solution of simple homogeneous advection and the 

heat-like equations in the forms: 

2. RDTM Method 

The basic definitions of reduced differential transform 

method are introduced as follows: If the function ( , )f x t  is 

analytic and differentiated continuously with respect to time 

t  and space x  in the studied domain, then let: 
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where the t-dimensional spectrum function ( )kF x  is the 
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transformed function.   

The differential inverse transform of ( )kF x  is defined as: 
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If we combine (1) and (2) we can write: 

0 0

1
( , ) ( , )

!

k
k

k
k t

f x t f x t t
k t

∞

= =

 ∂=  
 ∂ 

∑                (3) 

From the above definitions, the concept of the reduced 

differential transform is derived from the power series 

expansion. The fundamental mathematical operations 

performed by RDTM (Keskin and Oturanc, 2010; Sohail and 

Mohyud-Din, 2012 (a); Sohail and Mohyud-Din, 2012 (b)) 

can be readily obtained and are listed in Table 1. 

Table 1. Reduced differential transform. 
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3. Numerical Applications 

3.1. Advection Equation  

Consider the homogeneous advection equation given by 

(Alomari et al., 2008) as: 

( )0, ,0t xf ff f x x+ = = −                     (4) 

,t xf ff= −  now taking the reduced differential transform of 

(2): 
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with 0 ( )F x x= − we can then obtain ( )kF x values 

successively as 1 2 3( ) ( ) ( ) ... ( ) .kF x F x F x F x x= = = = = −  

Using the differential inverse transform (2) we have:  
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equation (6) is a Taylor series that converges to: 
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under 1t <  which is the exact solution (Figure 1). 

 

Figure 1. Example of the advection equation in 1D with three different step 

times and for x = 1.2. 

3.2. Heat-Like Equations 

Consider the one-dimensional initial value problem which 

describes the heat-like equations: 
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Taking the reduced differential transform of (8): 
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where the t-dimensional spectrum function ( )kF x  is the 

transform function. From the initial condition, we can write: 

( )0 ²F x x=                                  (10) 

Substituting (10) into (9) we obtain the following ( )kF x

values successively: 
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Finally the differential inverse transform (8) of ( )kF x gives: 

2 2

0 0

( , ) ( )
!

k
k t

k
k k

t
f x t F x t x x e

k

∞ ∞

= =
= = =∑ ∑              (11) 

which is the exact solution (Figure 2).  

 

Figure 2. Example of the heat-like equation in 1D with three different step 

times and for x = 1.2. 

Consider the two-dimensional initial value problem which 

describes the heat-like equations: 
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Applying the reduced differential transform of (12): 
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where the t-dimensional spectrum function ( , )kF x y  is the 

transform function. From the initial condition, we can write: 

( )0 , ?F x y y=                          (14) 

Substituting  (14) into (13) we obtain the following ( , )kF x y

values successively: 
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By using definition (3), we obtained the closed from series 

solution as 
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which is the exact solution (Figure 3).  

 

Figure 3. Example of the heat-like equation in 2D with a time step of 5s. 

Consider the three-dimensional initial value problem which 

describes the heat-like equations: 
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with initial condition: 

( ), , ,0 0f x y z =                         (17) 

Similarly, by using the RDTM, we obtain the recurrence 

equation: 
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From the  initial condition: 

( )0 , , 0F x y z =                                 (19) 

We have, by substitution: 
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The series solution is given by: 
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which is the exact solution. 

4. Discussion 

In this paper, we presented the reduced differential transform 

method (RDTM) as a useful analytical tool to solve partial 
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differential-algebraic equations (PDAEs). The RDTM 

solution procedure does not involve unnecessary computation 

like that related to noise terms, which is a common problem 

for approximation methods like the HPM or others. This 

property of RDTM greatly reduces the volume of 

computation and improves the efficiency of the method. On 

the one hand, semianalytic methods like HPM, HAM, and 

VIM, among others, require an initial approximation for the 

solutions sought and the computation of one or several 

adjustment parameters (Benhammouda et al., 2014). If the 

initial approximation is properly chosen, then the results can 

be highly accurate. Nonetheless, there is no general method 

to choose such initial approximation. This issue motivates the 

use of adjustment parameters obtained by minimizing the 

leastsquares error with respect to the numerical solution. On 

the other hand, RDTM method does not require any trial 

equation or a procedure for least-squares error minimization. 

As well, RDTM obtains its coefficients using an easily 

computable straightforward procedure that can be 

implemented into programmes. In the end it is very important 

to mention that the treatment of higher-index PDAEs is still 

an open issue in science and requires further research. 

5. Conclusion 

In this study, reduced differential transform method has been 

applied to solving the advection and heat-like equations. The 

method is applied in a direct way without using linearization, 

transformation, discretization or restrictive assumptions. The 

result show RDTM needs small size of computation contrary 

to other numerical methods (classical differential transform 

method (DTM), Adomain method and homotopy perturbation 

method. Hence, this method is a powerful and an efficient 

technique in finding the exact solutions for wide classes of 

problems, also the speed of the convergence is very fast. 
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