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Abstract 

In a previous paper (Nandedkar and Bhagavat 1970) [4] an analysis of damped oscillations in the plasma has been carried out. 

In the present paper, it is shown that the steady state amplitude of sustained electronic damped oscillations in the plasma in 

presence of an external d.c. electric field is greater than that in the case of the eigen-frequency damped oscillations when the 

applied d.c. electric field is removed. In both the cases, the steady state amplitude exists well inside the screening sphere. The 

amplitude being measured with respect to an ion at the center of the screening sphere. Ultimately an expression for the 

frequency of sustained electronic damped oscillations, in the weakly ionized plasma in presence of a low damping is 

developed. Further electron collision frequency term, in the low density plasma, is considered to be different in the presence 

and in the absence of the applied d.c. electric field. The collision frequency being smaller in the previous case, than in the later 

case. Moreover the distribution of electronic free paths is not neglected while determining the damping force constant part in 

the equation of motion of the electron in the absence of the applied d.c. electric field unlike in the case when sustained damped 

oscillations exist. Knowing the electron density, collision frequency and frequency of damped oscillations in the plasma in the 

presence of the external d.c. electric field experimentally, the values of charge to mass ratio of an electron and classical radius 

of a gas molecule viz., that of air are determined. In the end it is illustrated that, how the present model of weakly ionized 

plasma leads to the similar expression for the plasma frequency due to Tonks and Langmuir (Tonks and Langmuir 1929) [5] 

and to the similar expression for the complex dielectric constant of plasma basically due to Appleton and Chapman (Appleton 

and Chapman 1932) [6] as the limiting cases.  
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1. Introduction 

For General Reference to plasmas refer to Loeb 1955 [1], 

Von Engle 1965 [2] and Delcroix 1965 [3].  

In a previous paper (Nandedkar and Bhagavat 1970) [4] an 

analysis of frequency of damped oscillations in a plasma is 

carried out. In the presence of an average local electric field 

〈E�〉	due to an ion at a neighbour electron in the plasma, there 

results the electronic damped oscillations of eigen-frequency 

f� in the steady state; whereas with an external d.c. electric 

field E�	  electronic damped oscillations of frequency f
  are 

detected (Bhagavat and Nandedkar 1968) [7]. Both f� and f
 

type of electronic damped oscillations are shown to exist 

inside the screening sphere surrounding the given ion. In 

either case, the damping force is provided by electron 

collisions in the plasma. The eigen-frequency damped 
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oscillations are not sustained as such in the practice, when 

the effect of relative polarization of electron-ion pairs in the 

plasma, is considered. The frequency f
  of the sustained 

electronic damped oscillations is a function of electron 

density N� in the plasma and the applied d.c. electric field  

E�	  In this analysis, it has been shown that how f
  varies 

with electron density N�  and E�	 , in accordance with the 

experimental results. 

In the present paper a more detailed study of f
 is carried out. 

It is considered that the steady state amplitude R
 

(Nandedkar and Bhagavat 1970) [4] of the eigen-frequency 

damped oscillations in the presence of 〈E�〉 is not the same as 

the steady state amplitude R
	 of the damped oscillations of 

frequency  f
. But the amplitudes R
 and R
	 are shifted with 

respect to each other in the screening sphere, R
	  being 

greater than R
. 

Then electron-molecule collision frequency in the weakly 

ionized plasma at ambient temperature T is further 

considered. 

While treating the electron collision frequency in the plasma 

in presence of 〈E�〉	when sustained damped oscillations do 

not exist, it is assumed that as 〈E�〉	  has not an preferred 

direction, since electron-ion pairs are randomly oriented in 

the plasma, so that the average thermal velocity of an 

electron at ambient temperature T which is thermal 

equilibrium temperature of the plasma, is to be considered in 

general with a three dimensional electron gas model. 

Whereas in the case of the electron collision frequency in the 

plasma in the presence of the d.c. electric field	E�	, when 

sustained damped oscillations exist, it is assumed that as E�	 
has a preferred direction (which is the direction of 

application of E�	 in the plasma, so that the average thermal 

velocity of the electron at thermal equilibrium temperature T, 

is to be considered with a one dimensional electron gas 

model. 

Further an expression for f
 is derived in terms E�	 and R
	. 
Then f
 and f� are compared. 

Afterwards the role electron collision frequency in 

determining the value of damping constant in the differential 

equation of motion of the electron leading to f�  and f
 

respectively is considered. In the case of f�  when 〈E�〉	 is 
randomly oriented, then the distribution of free paths of the 

electrons is to be considered, whereas in the case of f
, when 

E�	 is present in a given direction, then the distribution of 

free paths of the electrons is to be neglected, while 

considering the electronic motion in the presence of 

respective fields. 

Then using the expression for f
 derived in terms of E�	 and 

R
	, the value of e/m�, i.e. the ratio of charge to mass of an 

electron is obtained from experimentally obtained values of 

f
  and N�  with the known value of E�	 . Further 

experimentally obtained value of electron collision frequency 

in the presence of E�	 . is used to find the value of the 

classical radius of a gas molecule, viz., that of air in the 

plasma. 

Ultimately in Section of the ‘Discussions and Conclusions’ it 

is shown that how the present model of weakly ionized 

plasma leads to the similar expression of plasma frequency 

due to Tonks and Langmuir (Tonks and Langmuir 1929) [5] 

and, to the similar expression for complex dielectric constant 

of the plasma basically due to the Appleton and Chapman 

(Appleton and Chapman 1932) [6] - as the limiting cases. 

The Method of Analysis of this research-paper consists of 

following sections for this article:  

1. Introduction 

2. Determination of R
	 in terms of R
 

3. The electron collision frequency in the plasma 

4. Comparison of f� and	f
 

5. Behaviour of the electron collision frequency in the 

determination of the values of f�� / m� and f���/m� 

6. Charge to mass ratio of an electron and classical radius of 

a gas molecule 

7. Measurement of the phase constant β� 

8. Experimental work 

followed by, 

9. Discussions and Conclusions  

The above sections of the article are illustrated one after the 

other in this article. 

2. Determination of ��� in 

Terms of �� 
Consider a quasi-stationary plasma with equal densities of 

electrons and ions. The plasma is in thermal equilibrium at 

ambient temperature T and it is weakly ionized. Density of 

electron-ion pairs in the plasma is N�. Here N� is the density 

of electrons or ions in the plasma. 

If R
 be the average separation of an electron from an ion in 

the plasma, then the volume (4π/3) R
�  occupied by an 

electron-ion pair, is given by: 

��
� R
� = N���,                                 (1) 

where the case of spherical symmetry with respect to the ion 
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in the plasma is considered. From eqn. (1), R
 is given by 

R
 = � ����
�/� N���/�	,                           (2) 

here R
  is measured with respect to the center of the 

screening sphere of radius, 	R� , given by (Nandedkar and 

Bhagavat 1970) [4]:  

R� = √!
"#$ = � %&"'()	�*�

�/!	,                       (3) 

where, 

k,$ = �!()�*-&"' �
�/!,                              (4) 

here k,$  is a factor inversely proportional to R� . ./  is the 

permittivity of free space. e is the charge of an electron or 

ion. k Boltzmann constant. R
 lies well inside the screening 

sphere of radius R�, i.e. 

R
 <	< 	√2/k,$ 	.                               (5) 

Here R
  is interpreted as the steady state separation of an 

electron of the plasma from the neighbouring ion reached 

when an average electric field due to the ion acts on the 

electron in the presence of (i) a damping force (i.e. due to 

electron collisions) against the motion of the electron 

proportional to its velocity and (ii) a restoring force 

proportional to the displacement of the electron, in the 

vicinity of R
. The displacement of the electron in presence 

of this average electric field, say 〈E�〉, inside the screening 

sphere, deviates the plasma from the condition of neutrality, 

so the second force mentioned comes into the picture. In this 

case a low damping is considered. The ion lies at the center 

of the screening sphere mentioned. 

Electric potential ϕ� at distance r due to the ion at the center 

of the screening sphere is given by (Nandedkar and Bhagavat 

1970) [4], 

ϕ�= ϕ	 exp (-k,$ r),                     (6) 

where k,$  is given by eqn. (4) and ∅	  is the Coulomb’s 

potential at distance r given by 

∅	 = �
��5&6,                                    (7) 

where e is the charge of the ion. 

When, 

r <	< 	 √!"#$,                                       (8) 

then eqn. (6) gives: 

∅� = ∅	 = �
��-&6	,                               (9) 

i.e. well inside the screening sphere, the electric potential due 

to the ion is merely Columbian. 

Electric field E8 due to ∅� at distance r, using eqn. (9) is given 

by, 

E8 =	−	�:∅;:6 � = �
��-&6*	.                   (10) 

For the plasma under consideration, the average value of E8 
i.e. 〈E8〉 over a sphere of radius r is given by: 

〈E8〉 = < =>��6* :6?&
< ��6* :6?&

 , 

i.e. 

〈E8〉 = � �5&� @ 6
A��/�B6CD = � �-&� �

A��/�B6*,            (11) 

where it is assumed that (for instance, refer Nandedkar and 

Bhagavat 1970) [4], 

√! "#$E
(#$  << r,                                 (12) 

where N,$ is the number of electrons in the screening sphere. 

When r → R
, such that, 

√!/"#$
(#$ 	<	< 	R
 	<	< 	 √!"#$	,                  (13) 

then, 〈E8〉 → 〈E�〉 . 
Using eqn. (11) and (1), the value of 〈E�〉	is given by 

〈E�〉 = � �-&� FG
A��/�BFGC = N� � �-&� R
	.             (14) 

Thus within the range of distance of interest, inside the 

screening sphere, the value of electric field due to the ion at 

the center, varies inversely as the square of the distance and 

the ultimate value of the electric field	〈E�〉 - given by eqn. 

(14), is reached when R
 is attained.  

Now suppose a uniform d.c. electric field E�	 be applied to 

the plasma. Ion being much heavier as compared to the 

electron, the ionic motion in comparison to the electronic 

motion is neglected in the presence of E�	. Unlike the ionic 

field inside the screening sphere, which decreases as the 

square of the distance from the center of the sphere is 

increased, E�	  remains everywhere the same inside the 

screening sphere. Hence the steady state separation R
	 
measured with respect to the ion at the center of the 

screening sphere in the presence of E�	  is different than 

which is in the case of 〈E�〉. In this present case of E�	, the 

damping force acts on the motion of the electron due to 

electron collisions and a restoring forces acts on the electron 

due to its displacement in the screening sphere. However, the 

damping force in the present case is different than the one 

considered in the presence of	〈E�〉. But here also, as before, 
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the case of low damping is considered. In the presence of E�	 
and the above mentioned damping and restoring forces, the 

value of R
	 is attained by the electron.  

If the conditions inside the screening sphere with 〈E�〉 and 

with E�	 are different, then the displacement of the electron 

in the presence of E�	  in the sphere is constrained in 

comparison to that in the presence of 	〈E�〉 . Let the 

constrained displacement of the electron with respect to the 

center of the screening sphere where the ion lies, be denoted 

by r	  in the presence of the applied d.c. electric field E�	 . 

When R
  and R
	  in the presence of 〈E�〉  and E�	 
respectively are to be compared, then let the non-constrained 

displacement of the electron in the presence of E�	  be 

denoted by rHI  with respect to the ion at the center of the 

screening sphere. 

In the case when rHI tends to zero, which means that E�	 and 

〈E�〉 both tend to zero, i.e., neutral gas is formed in the limit, 

then r	 also tends to zero. 

Any Change of the value (R
	  - r	 ) with respect to rHI  is 

considered to be proportional to (R
	 - r	) itself, l.e., 

:AFGJ�6JB
:6KJ 	α	 − 	AR
	 − r	B	,             (15) 

the negative sign outside the bracket on left hand side of 

eqn.(15) denotes that (R
	 - r	) decreases as rM	 is increased. 

Eqn. (15) can be rewritten as follows: 

:AFGJ�6JB
:6KJ = − AFGJ�6JB

FG ,                       (16) 

where (1/R
 ) is the constant of proportionality. R
  is the 

value with which R
	 is to be compared. R
 is given by eqn. 

(2). 

Integration of eqn. (16) gives, 

AR
	 − r	B = A	exp �− 6KJ
FG�,            (17) 

where Ac is a constant of integration as mentioned before. 

When 

rM	 → 0,                                      (18a) 

then 

r	 → 0.                                         (18b) 

Thus using eqns. (18a) and (18b), eqn. (17) gives, 

A	 = R
	 .                                      (19) 

Substituting the value of Ac from eqn. (19) in eqn. (17), eqn. 

(17) gives: 

r	 = R
	 @1 − exp �− 6KJ
FG�D.                      (20) 

The value of Roc in terms of Ro is obtained when r	 and rM	 
simultaneously tend to Ro and then eqn. (20) gives, 

R
	 = FG
S���T�A��BU	.                                 (21) 

Using eqn. (2), eqn. (21) gives, 

R
	 = @ A�/��BV/C���T�A��BD N���/�.                        (22) 

Coming to eqn. (21), the value of Ro/Roc is given by the 

following expression, viz., 

FG
FGJ = S1 − expA−1BU = 0.6321.            (23) 

Eqn. (23) indicates that when R
 and R
	 in the presence of 

〈E�〉 and EZI  respectively, are compared then R0 is 63.21% 

smaller than Roc. Here R0 and Roc both exist inside the 

screening sphere. 

3. The Electron Collision 
Frequency in the Plasma 

In the present plasma model, it is assumed that electrons, 

ions and neutral molecules are in thermal equilibrium at 

ambient temperature T of the plasma. In the presence of an 

electric field in the plasma, when the electron undergoes a 

drift motion, then it encounters collisions with neutral 

molecules on its way. In the weakly ionized plasma at 

ambient temperature T, electron-molecule collisions are 

much larger than electron-ion collisions. So only electron-

molecule collisions are considered here. 

To study the electron collision frequency, the knowledge of 

average thermal velocity of the electron at equilibrium 

temperature T of the plasma is required. 

The average thermal velocity of the electron is treated in two 

cases. In the first case a three dimensional electron gas model 

is considered whereas in the second case a one dimensional 

electron gas model is chosen at the equilibrium temperature 

T of the plasma. 

Case 1: 

Taking a three dimensional electron gas in the plasma at 

equilibrium temperature T, the number of electrons having 

velocity components between we and w� + ∂w� , θ� + ∂θ�, 

and ∅�+ ∂∅� where w� varies from 0 to ∞, θ� varies from 0 

to π and ∅� varies from 0 to 2π in a system of spherical polar 

coordinates, can be given by using methods of gas-kinetics 

(for instance refer Max Born 1963) [16]:  

ψ�Aw�, θ�, 	∅�B ∂w� ∂θ� ∂∅� = 

A�w�!exp �−_)`)*
!"' � ∂w�	sinθ� ∂θ� ∂∅�,          (24) 
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where A� is a constant for the given system of the electron 

gas. Here m� is the mass of an electron. 

The average value of the thermal velocity of the electron, 

i.e.,	v� in the electron-gas defined by eqn. (24) is given by: 

v� = < < < `)e)A`),f),∅)B*g∅)h&
πi)h&

jk)h& :`) :f) :∅)
< < < e)A`),f),∅)B :`) :f) :∅)*g∅)h&

πi)h&
jk)h&

.    (25) 

Using eqn. (24), eqn. (25) gives: 

v� = < < < w��exp �−_)`)*
!"' � ∂w�	sinθ� ∂θ� ∂∅�!�

∅)l/
�
f)l/

m
`)l/
< < < w�!exp �−_)`)*

!"' � ∂w�	sinθ� ∂θ� ∂∅�!�
∅)l/

�
f)l/

m
`)l/

 

or, 

v� = < `)C�T�n�o)k)**pq r:`)jk)h&
< `)*�T�n�o)k)**pq r:`)jk)h&

.                       (26) 

Solving the integrals involved in eqn. (26), (for instance refer 

Max Born 1963) [16], eqn. (26) gives, 

v� = � s"'�_)�
�/!

.                                  (27) 

Equation (27) gives, the average thermal velocity of an 

electron in the plasma at equilibrium temperature T, 

considering a three dimensional electron-gas model. 

Case 2:  

Now consider a one dimensional electron-gas in the plasma 

at equilibrium temperature T. The number of electrons in 

such an electron-gas, having velocity components, say 

between w�T and w�T + ∂w�T, where w�T varies from 0 to ∞ 

along x axis of a system of rectangular co-ordinates, can be 

given by using methods of gas-kinetics (for instance refer 

Max Born 1963) [16]: 

ψ�TAw�TB ∂w�T = A�Texp �−_)`)t*
!"' � ∂w�T,    (28) 

where A�T is a constant for the given system of electron-gas 

under consideration. 

The average value of thermal velocity of an electron, i.e. v��  
in the electron gas defined by eqn. (28), is given by, 

v�� = < `)te)tA`)tB :`)tjk)th&
< e)tA`)tB :`)tjk)th&

.                   (29) 

Using eqn. (28), eqn. (29) gives: 

v�� = < `)t�T�n�o)k)t**pq r :`)tjk)th&
< �T�n�o)k)t**pq r:`)tjk)th&

.              (30) 

Solving the integrals involved in eqn. (30), (for instance refer 

Max Born 1963) [16], eqn. (30) gives, 

v�� = � !"'�_)�
�/!

.                          (31) 

Equation (31) gives, the average thermal velocity of an 

electron in the plasma at equilibrium temperature T, 

considering a one dimensional electron-gas model. 

3.1. The Electron Collision Frequency in the 

Presence of the Average Ionic Electric 
Field 〈uv〉 

The average ionic electric field 〈E�〉 acting on the electron in 

the plasma is not in a specific direction, but on the other hand 

it is randomly oriented. Thus while considering the collisions 

of the electron in the presence of the drift due to 〈E�〉 the 

average thermal velocity corresponding to a three 

dimensional electron-gas model, i.e. v� given by eqn. (27) is 

used. 

If size of the electron is much smaller than the size of a gas 

molecule, then the closest distance the electron can approach 

the molecule is the classical radius R_ of the molecule. The 

order of the classical radius R_ as given by gas-kinetics, for 

any type of a gas molecule is 10��/ m. 

Now imagine a cylinder in the plasma of length w	 and radius 

of cross-section of the cylinder as R_. Volume occupied by 

the cylinder is AπR_! w	B	. If N_ be the number density of the 

gas molecules in the plasma, then the cylinder under 

consideration contains AN_πR_! w	B number of gas molecules. 

In the simple picture of electron-molecule collisions, it is 

assumed that, a single electron while travelling through the 

cylinder, mentioned already, along length w	 with the average 

thermal velocity v�would make collisions with all the gas 

molecules present therein. As such the number of electron 

collisions would be equal to the number of gas molecules 

present therein i.e. AN_πR_! w	B. These many collisions, the 

electron, would make in time (w	 /v�). Hence the number of 

collisions the electron makes with neutral molecules in one 

second, which is the electron-molecule collision 

frequency	ν=, is given by, 

ν= = A(o�Fo* zJB
AzJ/{)B .                             (32) 

Here it is assumed that the number density N�  of the 

electrons in the plasma is very much smaller than the number 

density N_  of the gas molecules. Equation (32) can be 

rewritten as follows, viz., 

ν= = N_πR_! v�	                                (33) 

Substituting the value of v� from eqn. (27) in eqn. (33), eqn. 

(33) gives, 

ν= = N_πR_! � s"'�_)�
�/!

.                      (34) 
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Equation (34) gives electron-molecule collision frequency in 

the plasma in the presence of 〈E�〉. 
3.2. The Electron Collision Frequency in the 

Presence of an Externally Applied d.c. 
Electric Field u|� 

The externally applied d.c. electric field E�	  acting on the 

electron in the plasma, has a fixed one direction, say along x-

axis, which is the direction of application of the field. So, in 

the determination of the electron collision frequency with gas 

molecules, in the presence of the drift of the electron under 

E�	 , the average thermal velocity corresponding to a one 

dimensional electron gas model, i.e. v��  given by eqn. (31) is 

used. 

Hence replacing v�  by v��  in eqn. (33), electron-molecule 

collision frequency g= in the present case, is given by: 

g= = N_	π	R_! v�� .                        (35) 

Using eqn. (31) for the value of v�� , eqn. (35) gives, 

g= = N_	π	R_! 	� !"'�	_)�
�/!

.                   (36) 

Equation (36) gives electron-molecule collision frequency in 

the plasma in the presence of E�		. 
Comparing eqns. (34) and (36), it is seen that, 

g= < ν=.                                           (37) 

Thus, in the presence of the drift of the electron under 

directed E�	 , the electron suffers less number of collisions 

with gas molecules as compared to its drift under randomly 

oriented field 〈E�〉. 

4. Comparison of ~� and 	~�  
To study ��, consider the differential equation of motion of 

the electron in the plasma, in the screening sphere with the 

ion at its center, under the action of the average ionic electric 

field 〈E�〉 given by eqn. (14). The following forces act on the 

electron, viz.,  

(i) a damping force against the motion of the election 

which is proportional to its velocity given by – f�′ 	(∂r/∂t) 

and  

(ii) a restoring force which is proportional to its 

displacement r given by –	f!′ 	r. The displacement of the 

electron in the screening sphere measured with respect 

to its center in the presence of 〈E�〉 tries to disturb the 

condition of neutrality. To maintain a plasma neutrality 

f!′ 	 comes into the picture. 

The differential equation of motion of the electron of charge 

e is given by 

m� :
*6
:�* + f�� :6:� + f!�r = e〈E�〉,                      (38) 

here ∂
2
r / ∂t

2
, ∂r / ∂t

 
and r are the acceleration, velocity and 

displacement of the electron at time t. The value of r 

mentioned in eqn. (38) is considered in the vicinity of R
 

where 〈E�〉 can be considered as a constant. 

Equation (38) can be rewritten as follows:  

:*6
:�* + �V$

_)
:6
:� + �*$

_) r = �
_) 〈E�〉.                    (39) 

Here, it is considered that,  

�V$
_) = ν=,                                   (40) 

where ν=  is electron-molecule collision frequency in the 

presence of 〈E�〉 given by eqn. (34).  

Using eqn. (40), eqn. (39) gives:  

:*6
:�* + ν= :6:� + �*$

_) r = �
_) 〈E�〉.                       (41) 

Complementary function (c.f.) of eqn. (41) is given by:  

:*6
:�* + ν= :6:� + �*$

_) r = 0.                           (42) 

In the case of low damping, when 

�*$
_) >	> 	 ���! �

!
,                                  (43) 

then, the solution of eqn. (42), is given by:  

r	.�. = 	exp @�− ��
! t�D �C��� exp�i	ω�	t� + 	D���exp	A−	i	ω�	tB�, (44) 

where i = √−1 and C���and D���  are finite constants of the 

displacement, and 

f� = ��
!� = �

!� � �*
$
_)�

�/!
,                    (45) 

where f� is the eigen-frequency of damped oscillations in the 

case of low damping as indicated by eqn. (43). ω�  is the 

angular frequency corresponding to f� . 
Using eqn. (45), eqn. (41) gives:  

:*6
:�* + ν= :6:� + ω�!r = �

_) 〈E8〉	.                        (46) 

Particular integrand (p.i.) of eqn. (46) is given by, 

r�.�. = �
_)

〈=;〉
ω�* .                                     (47) 

Hence total solution of eqn. (46), using eqns. (44) and (47) is 

given by,  
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r = r	.�.+ r�.�. 
or, 

r = @exp �− ��
! t�D �c���exp�iω�t� + D���exp�−iω�t�� +�

_)
〈=�〉
ω�* .                                     (48) 

Equation (48) denotes a damped simple harmonic motion of 

the displacement of the electron with a time constant of 2/ν= 

over the displacement of value �Ae/m�B�〈E�〉/ω�!��	.  
In the steady state, when  

r → R
,                             (49a) 

then 

t > > 2 / ν= ,                                  (49b) 

gives the boundary condition. With this boundary condition 

eqn. (48), in the steady state gives:  

R
 = �
_)

〈=;〉
ω�* .                                      (50) 

The constants C��� and D��� are chosen such that r always lies 

in the vicinity of R
 , where 〈E�〉	is constant. 

 Substituting the value of 〈E�〉/ R
 from eqn. (14) in eqn. (50), 

eqn. (50) gives: 

ω�! = �()�*_)-&�,                                    (51) 

and then eigen-frequency of damped oscillations is given by,  

f� = ω�
!� = �

!� �()�
*

_)-&�
�/!

.                      (52) 

Thus in the presence of the average ionic electric field 〈E�〉	at 

Ro , the electron has an intrinsic tendency to give damped 

eigen-frequency oscillations in the vicinity of R
  with the 

time constant of (2/ν= ) where ν=  is the electron-molecule 

collision frequency in this case.  

Coming to eqn. (46), the electric field 〈E�〉 on the electron 

can be considered as due to the relative polarization of 

electron-ion pairs in the plasma with respect to free space, in 

the neighbourhood of distance Ro. Thus,  

〈E�〉 = P� / ϵ/,                                   (53) 

where the polarization P� is given by,  

P� = Ne e r .                                     (54) 

Using eqns. (53) and (54), eqn. (46) gives: 

:*6
:�* + ν= :6:� + ω�!r = ()�*

_)-& r.                       (55) 

Using eqn. (51), eqn. (55) gives, 

:*6
:�* + ν= :6:� = 0,                        (56) 

which means the intrinsic damped oscillations denoted by 

eqn. (48) are not sustained as such, when the steady state 

approaches. 

Now to study f
, suppose an external d.c. electric field E�	 in 

a given direction be applied to the above mentioned plasma 

model. To consider the differential equation of motion of the 

electron under the action of E�	, the following forces acting 

on the electron are to be taken into account, viz., 

(i) a damping force against the motion of the electron 

which is proportional to its velocity ∂r/∂t given by, – 

f�′′(∂r/∂t) and  

(ii) a restoring force which is proportional to its 

displacement r given by – f!′′r. The displacement r of the 

electron in the screening sphere measured with respect 

to its center in the presence of E�	  disturbs the space 

charge existing there and then to maintain overall 

charge neutrality of the plasma, f!′′  comes into the 

picture which tries to restore the original conditions.  

The differential equation of the motion of the electron in the 

present case becomes, 

m� :
*6
:�* + f��� 	  ∂r

∂t
+f!��r = e	E�	.                  (57) 

Equation (57) can be rewritten as follows: 

:*6
:�* + �V$$	

_)
:6
:� + �*$$

_) r = �
_) E�	.                 (58) 

Here it is considered that,  

�V$$	
_) = 2g=,                               (59) 

where g= is the electron-molecule collision frequency in the 

presence of E�	 as given by eqn. (36). 

Using eqn. (59), eqn. (58) gives: 

:*6
:�* + 2g= :6:� + �*"

_)	= 
�
_) E�	.                    (60) 

Solution of the complementary function of eqn. (60), is given 

by:  

r	.�. = SexpA−g=tBUSA�
� expAiω
tB + B�
′expA−iω
tBU,  (61) 

in the case of low damping when ,  

Af!"/m�B >	> 	 g=! .                                (62) 

In eqn. (61), A�
′  and B�
′ are the finite constants of the 

displacement of the electron, and  



74 D. P. Nandedkar:  Determination of the Charge to Mass Ratio of an Electron and Classical Radius of a Gas Molecule  

Using the Knowledge of Electronic Damped Oscillations in Plasma 

f
 = ω&
!� = �

!� Af!"/m�B�/!,                 (63) 

in the case of low damping mentioned by eqn. (62). f
 is the 

frequency of damped oscillations in the presence of E�	 and 

ω
  is the corresponding angular frequency of the damped 

oscillations.  

Using eqn. (63), eqn. (60) gives: 

:*6
:�* + 2g= :6:� + ω
!r = �

_) E�	.              (64) 

Solution of particular integrand of eqn. (64), is given by: 

r�.�. = �
_)

=�J
ω&* .                              (65) 

Hence total solution of eqn. (64), using eqns. (61) and (65), 

is given by: 

r = r	.�. + r�� 
or, 

r = Sexp	A−g=tBUSA�
� expAiω
tB + B�
′exp	A−iω
tBU +�
_)

=�J
ω&* .                                    (66) 

Equation (66) denotes a damped simple harmonic motion of 

the displacement of the electron with the time constant of 

(1/g=) over the displacement of value SAe/m�BAE�	/ω/!BU. 
In this case, the steady state approaches, when 

t > > 1/ g=,                                  (67a) 

and then, 

r → R
	,                                 (67b) 

where Roc is given by eqn. (22). With the boundary condition 

given by eqns. (67a) and (67b), eqn. (66) in the steady state 

gives:  

R
	 = �
_)

=�J
ω&* .                                  (68) 

Substituting the value of R
	 from eqn. (22) in eqn. (68), ω
 

is given by the following relationship, viz., 

ω/ = @����T�	A��BA�/��BV/C � �
_)D

�/! E�	�/!N��/�.        (69) 

Whence the frequency of damped oscillations is given by, 

f
 = ω&
!� = �

!� �@����T�	A��BA�/��BV/C � �
_)D�

�/!
E�	�/!N��/�.    (70) 

Experimentally f
  is found to be proportional to E�	�/!  and 

N��/�  (Bhagavat and Nandedkar, 1968) [7], as predicted by 

eqn. (70). f
  is called the frequency of sustained damped 

oscillations.  

Now f� and f
 can be compared as follows:  

Equation (52) gives eigen-frequency of damped oscillations, 

viz., f� . These damped oscillations are, however, not 

sustained as such in the practice. Equation (70) gives the 

frequency of damped oscillations, viz., f
 . These damped 

oscillations are sustained in practice. The intrinsic electronic 

damped oscillations characterized by frequency f�  and the 

sustained electronic damped oscillations characterized by 

frequency f
 , both have the respective steady state amplitude 

that exists well inside the screening sphere. The amplitude in 

either case, is measured with respect to the ion at the center 

of the screening sphere. The steady state amplitude of the 

intrinsic damped oscillations, R
  is 63.21% of the steady 

state amplitude of the sustained damped oscillations, viz., 

R
	 . However, the damping force per unit mass per unit 

velocity of the electron, i.e. f�′  / m�  which comes in the 

differential equation of the motion of the electron, viz., given 

by eqn. (39) determining f� , is equal to the electron collision 

frequency, i.e. ν= [eqn. (40)], whereas the damping force per 

unit mass pre unit velocity of the electron i.e. f�′′/m� which 

comes in the differential equation of the motion of the 

electron, viz., given by eqn. (58) determining f
 is equal to 

twice the electron collision frequency, i.e. 2 g= [eqn. (59)].  

5. Behaviour of the Electron 
Collison Frequency in the 

Determination of the Values 

of ~��  /  ¡ and ~��� /  ¡  
In the case of the eigen-frequency damped oscillations f�′  / m�  = 	ν	=	 , whereas in the case of the sustained damped 

oscillations f�′′ /m�  = 2g= , where 	ν	=  and g=  are given by 

eqns. (34) and (36) respectively. The significance of f�′  / m� = 

ν= and f�′′/m� = 2g= in the respective cases, is illustrated as 

follows: 

5.1. Role of the Electron Collisions in the 

Determination of ~�′  /  ¡ 
Now consider the differential equation of motion of the 

electron in the plasma in the presence of the damped 

oscillations of eigen angular frequency ω�, given by eqn. (46) 

i.e. 

∂!r
∂t! + ν=

∂r
∂t + ω�!r = e

m�
〈E8〉	. 

where, 

ν= = f�� / m�. 

which is given by eqn. (40). In equation (46) the 
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displacement of the electron from the ion at the center of the 

screening sphere is considered in the vicinity of Ro where 

〈E�〉  is constant. But before attaining the steady state, the 

electron is assumed to have made sufficient oscillations, 

since for low damping,  

ω�! >	> 	 Aν=/2B!,                        (71) 

[refer eqns. (43) and (45) ] and during that time have collided 

with neutral gas molecules so, ν= in eqn. (46) comes into the 

picture. Multiplying eqn. (46) by N� e, it can be written down 

as follows:  

_)
()�*

:�$
:� + _)��

()�* j� + :�$ :�
�()�*/_)ω�*� = 〈E�〉,     (72) 

where £′= ∂(Ne e r) /∂t is the corresponding electron current 

density.  

Now consider an imaginary cube (of unit dimensions) of a 

series L�′  – C�′  – R�′  (Inductance-capacitance-Resistance) 

circuit to which a potential difference of 〈V�〉  is applied 

across the parallel faces, when J’ is the current flowing. The 

differential equation of current in this case is given by: 

L¦�	 :§$:� + R¦� 	J� + :§$ :�
©ª$ = 〈V�〉.                 (73) 

Comparing eqns. (72) and (73), the equivalent resistivity R�′  

of the plasma is given by, 

R¦� = _)��
()�* .                              (74) 

R�′  can also be imagined to be coming into the picture as 

explained in the following steps, in terms of the distribution 

of the free paths of the electrons in the plasma.  

5.1.1. Distribution of the Free Paths of the 

Electrons in the Plasma  

The collisions that determine the free paths of the electrons 

in the plasma are random events. This being true, some free 

paths would be long and others would be short. On the 

basic of a random motion of the electrons, an expression 

can be obtained for ‘distance distribution’ of electronic free 

paths. 

If one electron makes an average of ν= collisions per second 

with neutral gas molecules in the plasma and has an average 

thermal velocity v� = �s"'
π_)�

�/!
 at equilibrium temperature T 

of the plasma, then the average number of collisions made in 

a unit length of travel would be a� = ν= / v� and the probable 

number of collisions made by this electron in travelling a 

distance ∂x� would be a� ∂x�. Let N' be the total number of 

electrons present in the plasma. Assume n' be the number of 

electrons that have travelled a distance x�  without having 

collisions. The number of these electrons having collisions 

between x�  and x�+ ∂x�  would be proportional to n'  itself 

and the length of the path, or the change in n'  due to 

collisions is given by  

∂n' = - a� n' ∂x�,                               (75) 

where a� is the constant of proportionality and negative sign 

indicates that ∂n'  decreases as ∂ x�  increases. Eqn. (75) 

gives the number of electrons having free paths between x� 

and x�+ ∂x� , numerically.  

Equation (75) can be integrated to give:  

n' = A' exp (-a� x�),                          (76) 

where A' is a constant of integration. At x�= 0, since there 

are no collisions as such, n'  = N' . With this boundary 

condition eqn. (76) gives,  

n' = N' exp(-a� x�).                      (77) 

The electron-molecule collision frequency can be related to 

the electron-molecule mean free path λ�  by the following 

procedure.  

If ∂N'  be the number of electrons having a free path of 

length between x� and x� + ∂x� , then the expression for the 

electronic mean free path viz., λ� is given by,  

λ� = < T) :(q
(q

(q/ .                        (78) 

As, 

∂N' = |∂n'| = a�n' ∂x� = a�N'expA−a�x�B ∂x� , (79) 

so eqn. (78) gives: 

λ� = < T)­)(q	�T�A�­)T)B :T)
(q = �

­)
m
/ .          (80) 

Thus the distribution of electronic free paths is given by eqn. 

(77), using eqn. (80), as follows:  

n' = NT exp(- x�/λ�).                           (81) 

5.1.2. Alternative Derivation of �®′   

If the electrons start with zero velocity in presence of 〈E�〉 
after each collision, then the distance s� they travel in time t� 

with constant acceleration f�, is given by,  

s� = �)�)*
! .                                       (82) 

The average velocity v�� of an electron between collisions is,  

v�� 	= �)
�) = �)�)

! .                              (83) 

The average drift velocity v�  is the average over a large 

number of such free paths of varying length and duration, 
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since the electrons are distributed at random in the plasma.  

The average of s� over a wide range of electronic free paths 

x� is considered with a variable time t�= x�/ v� given by the 

ratio of the free path x� to the average thermal velocity v� of 

the electron.  

 Now, the acceleration f�  of the electrons in presence of 

〈E�〉	is given by, f� = e 〈E�〉/ me. So, eqn. (82) gives:  

s� = �〈=;〉
!_) �T){)�

!
.                                      (84) 

Further the average of se i.e. 〈s�〉 is given by, 

〈s�〉 = < s� :(q(q
(q/ ,                                   (85) 

where ∂N' / N' is the proportion of the electrons having free 

paths of lengths between x� and x�  + ∂x�  as given by eqn. 

(79).  

Substituting the values of se and ∂N'/N', eqn. (85) gives:  

〈s�〉 = e〈E�〉2m�λ�v�!¯ x�! exp n− x�
λ�r ∂x�

m

/
	, 

which gives  

〈s�〉 = �〈=;〉λ)*
_){)*  .                                   (86) 

The average drift velocity is taken as the average distance 

divided by the average time τ� between the collisions. If a 

large number of collisions take place in the plasma, then τ� is 

given by: τ�	= λ�/v�. So that, 

〈v�〉 = 〈�)〉
τ) = �〈=;〉

_) �λ)°)� ,                    (87) 

where, 〈v�〉 is the average drift velocity of the electron in the 

presence of 〈E�〉. 
If ν=  is the collision frequency of electrons with gas 

molecules, then by gas kinetics, ν= is given by: ν= = v�/λ�. 

Thus eqn. (87) gives, 

〈v�〉 = �〈=;〉
_)�� .                                          (88) 

If N� is the electron density in the plasma, then the average 

drift current density 〈j�〉  corresponding to 〈v�〉  due to the 

electrons is given by: 

〈j�〉 = N�e〈v�〉 = ()�*
_)±² 〈E�〉 ,                    (89) 

using eqn. (88).  

Thus, the equivalent resistivity R¦′  of the plasma, using eqn. 

(89), is given by,  

R¦� = 〈=;〉
〈��〉 = �_)±²

()�*� .                           (90) 

Eqn. (90) is the same as eqn. (74). 

Thus,  

��� / m� = ν= , 

of eqn. (40) assumed in eqn. (46) means that in the 

presence of the random 〈E�〉  while considering the 

equivalent resistivity of the plasma, the distribution of 

electronic free paths at the collisions comes into the 

picture.  

5.2. Role of the Electron Collisions in the 

Determination of ~�"/ ¡  

Consider the differential equation of motion of the electron in 

the plasma in the presence of damped oscillations of angular 

frequency ω/, i.e. eqn. (64) 

:*6
:�* + 2g= :6:� + ω/!r = �

_) E�	 , 
where 

2g= = f���/m�. 

is given by eqn. (59). 

Now consider the differential equation of motion of an 

electron in the plasma in the presence of an external d.c. 

electric field E�	  as given in a previous paper (Nandedkar 

and Bhagavat, 1970 [4], i.e.  

:*6
:�* + 2g :6:� + �*

_) r = �
_) E�	 ,             (91) 

where, ∂
2
r / ∂t

2
, , ∂r / ∂t and r, are the acceleration, velocity 

and displacement of the electron at time t. 
�*
_) is the restoring 

force per unit displacement of the electron and g is 

previously assumed value of electron-molecule collision 

frequency. In the case of low damping, 

�*
_)> > g!  

,                                      (92) 

and then, 

ω/ = � �*_)�
�/!

 ,                                (93) 

gives the angular frequency of damped oscillations as 

assumed before. 

Using eqn. (93), eqn. (91) gives:  

:*6
:�* + 2g :6:� + ω/!	r	 = �

_) E�		.            (94) 

Comparing eqns. (94) and (64), it is found that,  
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2g= = 2g ,                                  (95) 

where g is given by (Nandedkar and Bhagavat 1969) [9]:  

g = N_π �,!�
! � s"'�_)�

�/!
                     (96) 

here N_  is the number density of gas molecules in the 

plasma at equilibrium temperature T. D gives previously 

assumed value of the diameter of the gas molecule. Here k is 

Boltzmann constant and m� is the mass of the electron. 

Comparing eqns. (36) and (96), i.e.  

N_³	R_! n2kTπm�r
�/!

≡	N_π nD2r
! n8kTπm�r

�/!	, 
it is found that : 

R_ = D/√2 ,                              (97) 

i.e. the actual classical radius of the gas molecule is 1/√2 

times the diameter of the gas molecule assumed previously.  

In a previous paper (Nandedkar and Bhagavat 1970) [8], it is 

shown that the d.c. resistivity R¦  of the plasma in the 

presence of E�		is given by:  

R¦ = _)(!�)
()�*  ,                                 (98) 

where m� is the mass of an electron of charge e and N� gives 

the electron density in the plasma. Here g is given by eqn. 

(96). 

Using eqn. (95), the modified value of the d.c. resistivity of 

the plasma i.e. �R��_in the present case is given by:  

(R¦)_ = _)(!��)
()�*  ,                                (99) 

where g= is given by eqn. (36).  

Thus, 

f���/m� = 2g= 

of eqn. (59) means that in the presence of the unidirectional 

E�	  while treating the d.c. resistivity of the plasma, the 

distribution of electronic free paths at the collisions is not 

considered.  

6. Charge to Mass Ratio of an 
Electron and Classical 

Radius of a Gas Molecule  

The frequency of sustained damped oscillation f
 is given by 

eqn. (70) i.e.,  

f
 = �
!� @�

���T�(��)
(�/��)V/C � �

�
_)
�D�/! E�	�/!N��/� . 

Using eqn. (70), the values of charge to mass ratio of an 

electron i.e. 
�
_)

 is given by: 

�
_)

= ¶ !	 ·��¸C

���T�(��)¹
�&*

=�J()V/C
 .                      (100) 

Further, eqn. (95) gives: 

g= = g ,                                         (101) 

where (Nandedkar and Bhagavat 1969) [9],  

g	= ν/2,                                      (102) 

here ν is the electron-molecule collision frequency assumed 

in the beginning (Bhagavat and Nandedkar 1968) [7].  

Thus,  

g= = g = ν/2 ,                                   (103) 

using eqns. (101) and (102).  

If p is the pressure of the gas at which the plasma at ambient 

temperature T is obtained, then simple kinetic theory of a gas 

gives:  

p = N_kT ,                                      (104) 

where N_  is the number density of gas molecules in the 

plasma.  

Using eqns. (104) and (36), g= is given by: 

g= = � ¦"'� πR_! �
!"'
�_)

��/! .                  (105) 

From eqn. (105), the value of the classical radius of a gas 

molecule i.e. R_ is given by:  

R_ = �"'_)
!� ��/� ���� �

�/!	.                     (106) 

When a r.f. wave interacts with the present plasma model in 

the presence of a d.c. electric field E�	, then the analysis of 

the curve of the phase constant β� of the wave versus wave 

frequency f, in the vicinity of f
 can be used to determine the 

values of f
 , ν  (or 2g= ) and N�  (Bhagavat and Nandedkar 

1968) [10]. Thus knowing experimentally E�	, f
, N�, g=, p 

and T (Bhagavat and Nandedkar 1968) [7] , the values of 

e/me and Rm can be determined using eqn. (100) and (106) 

respectively.  

7. Measurement of the Phase 
Constant º»  

In the present investigation, the plasma impedance is 
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measured by terminating it on a slab line. The phase constant 

is determined from the reflection coefficient at the boundary. 

The problem of interest is the case of a finite plasma having 

different media on its either side, the boundary of separation 

begin parallel to each other (Fig. 1). Here a uniform plane r.f. 

wave is incident of the plasma (Bhagavat and Nandedkar, 

1968 & Nandedkar and Bhagavat 1969) [10] & [9].  

 

Fig. 1. Reflection and transmission of an electromagnetic wave at the boundary of the finite plasma. 

Consider the standing wave pattern of the transverse 

electromagnetic (T.E.M.) mode in medium (2), i.e. the 

plasma (slab). The reflection coefficient at the boundary x=o 

is exp(-2 γ�d�), where d�  is the length of the plasma slab 

along the x- axis. The input impedance of medium (2) at x = 

0, i.e. ZTl
 is given by,  

ZTl
 = Z
� coth γ�d�	,                       (107) 

where Z
� is the characteristic impedance of medium (2).  

Coming to medium (1), i.e. the air in a slab line in which 

standing waves are formed, the output impedance of the 

medium at x = 0, which is ZTl
, is given by:  

ZTl
	= Z
 �$�	� �­M φ′
���	�$ �­M φ′ ,                            108) 

where 	Z
= the characteristic impedance of medium (1), s’ = 

v_�M  / v_­T  , here v_�M  and v_­T  are the minimum and 

maximum values of the transverse electric voltage in the 

main slab line and φ′ = 2πx
 / λ
, where x
 is the position of 

the first minimum from the boundary x = 0 in medium (1). λ
 

is the r.f. wavelength in the same medium.  

 For the wave in transverse electromagnetic mode,  

γ� Z
� = γ
	Z
 ,                                  (109) 

where γ
 = propagation constant of the r.f. wave in medium 

(1) such that γ
 = iβ
 , here β
 is the phase constant of the r.f. 

wave in medium (1), γ�  = propagation constant of the r.f. 

wave in medium (2) i.e. the plasma, such that,  

γ� = α� + i β� ,                               (110) 

here α� = attenuation constant and β� = phase constant of the 

wave in medium (2).  

Equations (107) to (109), give:  

γ�! �¿ÀG =
����$ �­M φ′
�$�	� �­M φ′ ,                              (111) 

where, γ� d� ≤ 0.3.  

If  

β�! �	� 	α�! 	, 1 �	� 	 Á�!	and	tan!φ′ �	� 	 Á�! ,  (112) 

then imaginary part of eqn. (111) gives:  

β� = ¶ !π

λG�¿ cot
!πTG
λG
¹
�/!

 .                  (113) 

From experimental values of x
 and λ
  , the phase constant 

β
�
 can be evaluated. 

8. Experimental Work  

The experimental set up consists of a V.H.F./U.H.F. oscillator 

type ΓCC-12 (U.S.S.R. make), a slab line, a detector unit and 

a plasma slab (Fig. 2). The slab line is type Лᴎ-3 (U.S.S.R. 

make) of 75 ohms characteristic impedance. The detector 

unit consists of a capacitive probe with a magnetic coupling 

to a diode type ДK-ᴎI, III-60 and a selective amplifier [serial 
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number 32, model number 794 (U.S.S.R. make). 

The plasma-slab (Fig. 3) consists of two nickel electrodes 

sealed in a pyrex glass tube. Near the anode two stainless 

steel meshes are fitted parallel to the electrodes. The central 

conductor is fixed with the help of polystyrene spacers. The 

gas used, in the plasma slab is air. The slab is connected to 

the main line with appropriate adapters. Discharge of air at a 

pressure of 2 x 10
-1

 torr is obtained in the plasma slab at 

ambient temperature of 300	/K (where	/K is Degree Kelvin). 

Thermocouple gauge is used for the pressure measurement. 

The low pressure is obtained with the help of a rotary oil 

pump (Edwards High Vacuum Ltd., No. W 2293, U.K. 

make).  

 

Fig. 2. Experimental set up for measuring the plasma load characteristics. 

 

Fig. 3. The plasma-slab. 

Table 1. Determination of e/m� and R_. 

u|� = 16 x �ÃÄ v/m 

Å¡ Æ or 2g or 2Çu ~� e/ ¡ �  

x �Ã��Ä x �Ã�È x �Ã�É x�Ã��� x �Ã�Ã 

( �Ê) (Ë���) (c/s) (C/kgm) (m) 

3.803 2.511 333 1.7202 1.0744 

4.923 2.537 348 1.7238 1.0799 
6.776 2.537 367 1.7235 1.0799 

10.14 2.519 393 1.7279 1.0761 

Table 2. Determination of e/m� and R_. 

Å¡ = 10.14 x �Ã�Ä	 �Ê 

.	u|� Æ or 2g or 2Çu ~� e/ ¡ �  

x �Ã�Ä x �Ã�È x �Ã�É x�Ã��� x �Ã�Ã 

(v/m) (Ë���) (c/s) (C/kgm) (m) 

10 2.533 315 1.7761 1.0791 

12 2.564 340 1.7244 1.0857 

14 2.557 370 1.7504 1.0842 
16 2.519 393 1.7279 1.0761 

Mean value of e/m� obtained from Tables 1 and 2 = 1.7352 x 10�� C/kgm. 

Mean value of R_ obtained from Tables 1 and 2 = 1.0799 x 10��/ m. 

 

The discharge current is varied from 5 mA to 20 mA. The 

potential difference across the stainless steel meshes is varied 

from 50 volts to 80 volts with the help of an external power 

supply. Measurements of the reflection coefficient are made 

in the frequency range 312 Mc/s to 396 Mc/s.  

 

Fig. 4. Phase constant β
�
 versus frequency f at various electron densities 

with the field parameter E�	 = 16 x 10! v/m across the plasma column of 

ionized air. 
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Fig. 5. Phase constant β� versus frequency f at various d.c. fields across the 

plasma column of ionized air with the electron density N� = 10.14 x 

10�!	m�� as a parameter. 

Various curves for β
�

 versus f are drawn (figs. 4 and 5). 

From these, values of f
 , N� and g=  are determined for E�	 

and  N�  as parameters, respectively. Variation of f
  versus 

N�
�/�

and E�	
�/!

 as well as of g= with N� and E�	 are shown in 

figs. 6 to 9.  

 

Fig. 6. Variation of f
 with N�
�/�

. 

The adjoining Tables [Tables 1 and 2] record the values of 

N�	or	E�	  , ν  or 2g or 2g=  and f
  as determined from the 

curves of β
�

 versus f (figs. 4 and 5) for E�	  and N�  as 

parameters, respectively. Last two columns of each table, 

give the values of e/m�  and R_  as determined from eqns. 

(100) and (106) respectively.  

Further here,  

Corrigenda to papers (Bhagavat and Nandedkar 1968) [10] & 

[7], are given in [11] & [12].  

 

Fig. 7. Variation of f
 with E�	
�/!

 . 

 

Fig. 8. Variation of g= with N�. 

 

Fig. 9. Variation of g= with E�	. 

Whereas Corrigenda to papers (Nandedkar and Bhagavat 

1969 & 1970) [9] & [8], is given in [13]. 

9. Discussions and Conclusions 

Figures 6 and 7 indicate the variation of f
  with N�
�/�

 and 

E�	
�/!

 keeping E�	  and N�  as constant respectively. Fig. 6 

shows a linear relationship between f
 and N�
�/�

. This means 

for a given E�	  , f
  is directly proportional to N�
�/�

 [eqn. 

(70)]. Figure (7) indicates a linear relationship between f
 

and E�	
�/!

. Thus, for a given N�, f
 is directly proportional to 

E�	
�/!

 [eqn. (70)]. Hence the frequency of damped oscillations 

f
 is proportional to E�	
�/!

 and N�
�/�

 as predicted by eqn. (70).  

The experimental values of g= are plotted against N� and E�	 

in figs. 8 and 9, keeping E�	 and N� as constant respectively. 

Electron-molecule collision frequency g=  is found to be 

independent of both N� and E�	  . These values of g=  are in 
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agreement with the kinetic theory data [eqn. (36)]. 

The mean value of the charge to mass ratio of an electron 

viz., e/m� , as obtained by the analysis mentioned in this 

paper, is 1.7352 x 10��  C/kgm [Tables 1 and 2]. The 

presently accepted value of e / m� is 1.7591 x 10�� C/kgm. 

The experimentally determined value of e / m� is less than 

the actual value of e / m� with an error of 1.3586% which is 

due to the experimental limitations.  

The mean value of the classical radius of an air molecule, 

viz., R_  obtained by the analysis given here is 1.0799 x 

10��/m. [Tables 1 and 2]. This is of the same order of the 

classical radius of any type of a gas molecule which is 10��/ 

m as given by gas-kinetics.   

Equation (69) shows that when E�		→ 0, then ω
 = 2 π f
 → 

0, i.e. in the absence of an external d.c. electric field, the 

frequency of the sustained damped oscillations tends to zero.  

However, when E�	  is reduced in the limit, then 〈E�〉	 is 

approached. 〈E�〉	is the average value of the electric field due 

to the ion at the center of the screening sphere at the distance 

R
 = A3/4πB� �⁄  N���/�. This distance acts as the steady state 

amplitude for the electronic damped oscillations of eigen - 

frequency fj. The values of the eigen-frequency f�	 and of the 

corresponding angular eigen-frequency ω
 are given by eqn. 

(52), viz.,  

f� = 1
2πÎ

N�e!m�./Ï
�/!
	, 

and 

ω� = �()�*_)-&�
�/!

,                                  (114) 

[refer to eqn. (51)]. 

The expression for the plasma frequency f�  or the angular 

plasma frequency ω� due to Tonks and Langmuir (Tonks and 

Langmuir 1929) [5] is similar to fj or ωj i.e.  

f� →	 f� = �
!π
�()�*_)-&�

�/!
,                    (115) 

and 

ω� → ω� = �()�*_)-&�
�/!

.                   (116) 

Thus the plasma frequency due to Tonks and Langmuir 

(Tonks and Langmuir 1929) [5] is similar to the eigen-

frequency of damped oscillations, in the case of low damping 

where electron-molecule oscillations are of main importance. 

It is interesting to note that the steady state amplitude of f� 
exists inside the screening sphere of radius 

√!
"#′

=

·ϵ/kT N�e!⁄  [refer eqn. (3)], at the distance of R
 =
	A3/4πB� �⁄ 	N���/�  from the center of the sphere having the 

positive ion. 

Now, come to the case of a complex dielectric constant of the 

plasma. The complex dielectric constant of the plasma, i.e. ϵ� 

in general can be expressed as follows: 

ϵ�=ϵ��	 −	ϵ���,                           (117) 

where .Ñ′	  = real part of the dielectric constant of the plasma, 

and .Ñ′′  = imaginary part of the dielectric constant of the 

plasma.
 

Relative values of .Ñ′	  and .Ñ′′  with respect to the permittivity 

.Ò of the free space, in the case of present plasma model 

biased by a d.c. electric field, are given by (Nandedkar and 

Bhagavat 1969) [9]:  

-¿�
-& = 1 +	 �()�*/_)-&��ω&*�ω*�

�ω&*�ω*�*Ó	A!�B*ω*                 (118) 

and 

-¿"
-& = �()�*/_)-&�A!�Bω

�ω&*�ω*�*ÓA!�B*ω*,                       (119) 

where N� = electron density in the plasma, e = charge of an 

electron, m� = mass of an electron, ω
  = angular frequency 

of damped oscillations, ω = angular frequency of the 

interacting r.f. wave and g = previously assumed value of the 

electron-molecule collisions in the plasma given by eqn. 

(96). 

Using eqn. (95), eqns. (118) and (119) give: 

-¿�
-& = 1 + �()�*/_)5G��ωG*�ω*�

�ωG*�ω*�*ÓA!��B*ω* ,                (120) 

and 

-¿"
-& 	= �()�*/_)5G�A!��Bω

�ωG*�ω*�*ÓA!��B*ω*,                     (121) 

where g= is the electron-molecule collision frequency in the 

plasma given by eqn. (36). 

In the limiting case, when, 

E�	 � 0                                     (122a) 

then, 

ω
 → 0,                                     (122b) 

[as given by eqn. (69)] and, 

()�*
_)-& → ω�! →	ω�! ,                          (122c) 
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[using eqn. (116)], where ω� is the angular eigen-frequency 

of electronic damped oscillations in the case of low damping, 

which are not sustained. ω�  is similar to ω�  i.e. the plasma 

angular frequency due to Tonks and Langmuir (Tonks and 

Langmuir, 1929) [5].  

Further in the limit when E�	 is removed, then the electric 

field 〈E�〉	at distance R
  due to the ion at the center of the 

screening sphere, is left. Then in this limiting case, the 

damping force per unit mass per unit velocity of the electron, 

in the case of ωo (or E�	) i.e. ��′′ /m�  [refer eqns. (58) and 

(63)] and in the case of ωj (or 〈E�〉	) i.e. ��′ / m� [refer eqns.. 

(39) and (45)] tend to each other, i.e. 

��" / m� → ��� / m� 

or, 

2g= → ν=,                                  (122d) 

[as given by eqns. (59) and (40)] . 

Hence in this limiting case when E�	 is removed, eqns. (120) 

and (121) give: 

-Ô$
-Õ = 1 − ω¿*

ω*Ó	��* ,                               (123) 

and 

-Ô$$
-& =

ω¿* A��/ωB
ω*Ó��* .                                 (124) 

The conductivity of the plasma corresponding to eqn. (124), 

viz., σp , is given by: 

σ� = ω.Ñ�� = ω¿*5&��
ω*Ó��* =

()�*��
_)�ω*Ó��*�,        (125) 

using eqn. (122c). 

Equations (123) and (125) give the values of relative 

permittivity with respect to free space and r.f. conductivity of 

the plasma in the absence of a d.c. electric field. Here the 

plasma considered, is a weakly ionized medium where 

electron-molecule collisions are of main importance at 

thermal equilibrium temperature of the ambient.  

Equations (123) and (125) are the forms of the expression for 

relative permittivity with respect to free space and r.f. 

conductivity of a weakly ionized plasma, similar to that 

occurring in the case of the ionosphere {for instance refer 

Ramo, Whinnery and Van Dauzer 1970 [14] and Ratcliffe 

1959 [15]–where electrons make collisions with gas 

molecules at ambient temperature ~ 300	/ K which are 

basically due to Appleton and Chapmen (Appleton and 

Chapmen 1932) [6]}.  

In the plasma model proposed in this paper, electrons, ions 

and neutral molecules are considered to be in thermal 

equilibrium at ambient temperature T. The electrons in this 

model, where density is N� and temperature is T are referred 

to as ‘slow-electrons’. These slow electrons from about 1% 

part of the electrons in the other group in the plasma, which 

are characterized by density N�× and temperature T�× which 

can be determined by the technique of Langmuir’s probe 

method. The electrons having density N�×  and temperature 

T�× can be referred to as relatively ‘fast-electrons’ as against 

the ‘slow-electrons’ which are characterized by density N� 
and temperature T. Condition of overall charge neutrally in 

the plasma is experimentally verified here, where electrons, 

ions and neutral molecules are in thermal equilibrium at 

temperature T of the ambient, in the case of positive column 

of glow discharge of air. 

Thus the present model of weakly ionized plasma leads, to 

the similar expression for plasma frequency due to Tonks and 

Langmuir (Tonks and Langmuir 1929) [5] and, to the similar 

expression for the complex dielectric constant of the plasma 

basically due to Appleton and Chapman (Appleton and 

Chapman 1932) [6] – as the limiting cases. 

Moreover the experimentally determined value, of charge to 

mass ratio of an electron that is e / m� is less than the actual 

value of e / m� with an error of 1.3586%, which is due to 

experimental limitations. Further the value of the classical 

radius of an air molecule viz., R_ obtained by the analysis 

given here is 1.0799 x 10��/m. This is of the same order of 

the classical radius of any type of a gas molecule viz., air 

which is 10��/ m as given by gas-kinetics.  
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