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Abstract 

The study of dipole relaxation time for water molecules at 293
0
K is an important aspect from physics / communication / 

electronic engineering point of view since it gives rise to the dielectric absorption losses for r.f. fields up to about 3 x10
10

 Hz of 

frequencies. Here molecular (dipole) relaxation time is analyzed and calculated for the water molecules at temperature of 293
0
K. 

This assumes that the water medium is an intermediate one to a solid state and a gaseous state. The molecule of the water 

undergoes coupled mass vibrations on one hand and simultaneously it has an average thermal velocity on other hand as given by 

the kinetic theory of gasses. In other words, this is a quasi-stationary: quasi moving system of the molecules, where 

molecule-molecule collisions take place which are described by gas kinetics. The expression which is obtained for the molecular 

collision frequency, determines the dipole relaxation time coming in the picture of relaxation spectrum in r.f. region for the water 

molecules. The present theory given here determines fairly well the value of dipole relaxation time for water at temperature of 

293
0
K, viz., the relaxation time is experimentally located near the free space wavelength of 1 cm in the relaxation spectrum of 

water. Purpose of this work is to show in a simple manner, how dipole relaxation time for water molecules at 293
0
K comes in the 

analysis of scattering of the dipoles at collisions with each other. 
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1. Introduction 

The study of dipole relaxation time for water molecules at 

293	�K (where	0K is Degree Kelvin) is an important aspect 

from physics/communication/electronic engineering point of 

view since it gives rise to the dielectric absorption losses for r.f. 

fields up to about 3 x 10�� Hz of frequencies. This property is 

useful in microwave heating for microvan-oven for cooking 

food etc.  

Now consider a neutral system of water molecules having N
 

molecules per unit volume of it near room temperature 

(~293	�K). Here the water is considered as pure. The water 

here under consideration is of macroscopic dimensions. Each 

molecule of the water is associated with a permanent dipole 

moment of magnitude µ. These molecules of the water are 

known as polar molecules. In the absence of an applied r.f. 

electric field to the water, there is no preferred direction for the 

dipole moments, and as such the vector sum of all the µs in 

any direction is zero, meaning thereby the dipoles are 

thermally oriented randomly in the water near room 

temperature (~ 293	0K). 

When the water is subjected to a r.f. electric field, then the 

(permanent) dipoles experience a torque and tend to align 

(with a slight preferential orientation) in the direction of 

(which is parallel to) the field for the normal case of 

(laboratory) field(s) near room temperature (~ 293	� K), 

against their original (thermal) random orientation as 

mentioned above, and this produces a polarization termed as 

orientation polarization, for instance refer to Von Hippel (1954 



16 D. P. Nandedkar:  Analysis of Dipole Relaxation Time for Water Molecules at Temperature of 293	�K  

 

pp. 38) [1] and Dekker (1961, Secn. 3.4) [2]. Here for General 

reference refer also to Stark 1914 [3], Debye 1945 [4], 

Fro� hlich 1949 [5] and Cole and Cole 1941 [6], Buchnen, 

Barthel, Stauber 1999 [7], Thakur and Singh 2008 [8] and 

Zasetsky 2011 [9].  

When the field is switched on, then dipoles would not 

simultaneously tend to orient in alignment with the field. A 

time measure of the dipoles for tending to orient in alignment 

of them with the field against their original random orientation, 

is the dielectric relaxation time τ�.  The dipole relaxation 

time 	τ�  for the water molecules, is defined as the time 

required for the dipoles to orient in such a way that the 

polarization increases to [1 - (1/exp)] of its final value in the 

presence of the field (where ‘exp’ is the base of natural 

logarithm). In the definition of τ� , it is assumed that the 

polarization grows exponentially with time t (measured from 

the instant when the field is switched on), as follows: 

P�t� � P�∞��1 � exp��t/τ���.	        (1) 

Here P(t) is the polarization at time t, and P(∞) is the final 

value of the polarization. 

Equation (1) suggests that the differential equation for the 

(growth of) orientation polarization is of the form given by, 

�

��
�P�t�� � �	

�

� 
�P�t� � P�∞��.	        (2) 

Considering the r.f. electric field of instantaneous value E=E� 

exp (iwt), where E� is the peak value of the electric field, 

(w=2πf is the angular frequency of the field, f is the frequency 

of the field, t is the instantaneous time and i � √�1�. which 

is applied to the system of dipoles of the water molecules. The 

value of P(∞) is given by,  

P�∞� � ϵ��%& � 1�	E� exp�iwt�,        (3) 

where ϵ&  is the relative static permittivity of water with 

respect to free space [for water here near room temperature 

(~293	�K), %& is near about 80 (Clark, 1988, pp. 66) [10] and 

ϵ� is the permittivity of free space. Here it is considered that, 

it is %) which contribute to P�∞�	in eqn. (3), while dealing 

with the application of r.f. electric field to the system of 

dipoles of the water molecules. Using eqn. (3), eqn. (2) gives 

that, 

�

��
�P�t�� � �

�

� 
�P�t� � ϵ��ϵ& � 1�E� exp�iwt��.	  (4) 

Let the steady state solution of eqn. (4), be given by, 

P�t� � ϵ��ϵ&
∗ � 1�E� exp�iwt�,          (5) 

where %&
∗ is the relative complex r.f. dielectric constant of the 

water with respect to free space. Substituting eqn. (5) in eqn. 

(4), and solving gives that, 

ϵ&
∗ � 1 +

,-.�

�/0
� 
.	                (6) 

Here 

%&
∗ � %&

1 � i%&
11,	                 (7) 

where %&
1  is the relative r.f. permittivity of the water with 

respect to free space and %&
11 is the relative r.f. loss factor of 

the water with respect to free space. Further eqn. (6) on using 

eqn. (7), and separating the real and imaginary parts of the 

resultant expression gives that, 

ϵ&
1 � 1 +

,-.�

�/
2� 
2 ,	              (8) 

and 

ϵ&
11 �


� �,-.��

�/
2� 
2 .	               (9) 

The variations of the parameters �%&
1 � 1�/�%& � 1�  and 

%&
11/�%& � 1� with angular frequency w of the r.f. field are 

shown as in Fig. 1. Both these parameters depend on the 

product wτ� Here eqn.(8) and (9) are considered to hold good 

in the r.f. region of the spectrum of the electromagnetic waves 

up to a minimum of about 8 mm of the free space r.f. 

wavelength [for the water near room temperature (~293	�K))]. 

	
Fig. 1. (Theoretical) plot of �%&

1 � 1�/�%& � 1� and %&
11/�%& � 1� versus 

(logarithm of) angular frequency w of the r.f. electric field, for water at 

temperature of 293	�K. 

At wτ3 � �2πf�τ3 � 1, �%&
1 � 1�/�%& � 1�	 reduces 

approximately to half the initial value of �%&
1 � 1�/�%& � 1�, where 

%& >>1. For wτ3 > 1, it decreases down to low values further. 

The variation %)
11		  depends on the factor wτ�/�1 + w6τ�

6� 
which has a maximum at wτ� � �2πf�τ� � 1. 

Experimentally, the value of wτ� � �2πf�τ� � 1  (for 

example, as that given in Fig. 1) occurs when f corresponds to 

a free space wavelength which is located near 1 cm in the 

spectrum of r.f. waves (Von Hippel, 1954, pp. 38) [1] for water 

near room temperature(~ 293	�K). 

Here the dielectric absorption losses due to %)
11 in presence of 

the r.f. electric field, causes an increase in temperature of the 

water [which is due to the slight preferential alignment of the 
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dipoles against their original random orientation, now in the 

steady state] accounting for the heat losses {for the dielectric 

losses, refer to Dekker (1961, sec.3.5)[2]}. And a temperature 

T = 293	� K in the present analysis gives an average 

temperature attained by the water in presence of these heat 

losses relative to surroundings in equilibrium conditions. 

Molecular interpretation of the relaxation time of water 

molecules, which is due to Debye, is as follows, for instance, 

refer to Von Hippel, 1954, pp. 38 [1]: 

According to the assumption of dominating friction, water 

molecules are considered to rotate under the torque γ of the 

electric field with angular velocity ∂θ/∂t proportional to this 

torque, or 

γ = ξ �:�� ,	                   (10) 

where ξ is a constant of proportionality, termed as the friction 

factor. ξ depends on the shape of the molecule and on the type 

of interaction it encounters. If the molecule is visualized as a 

sphere of radius ‘a’ rotating in water of viscosity η,  then 

according to Stoke’s law, classical hydrodynamics leads to the 

value, 

ξ = 8π	η	a>.	                 (11) 

When water is subjected to an electric field, then the dipoles 

experience a torque and tend to align in the direction of the 

field. This produces a polarization termed as the ‘orientation 

polarization’ as mentioned before. When the field is switched 

on, a certain time is required for the dipoles to orient in such a 

way that the polarization increases to [1-(1/exp)] of its final 

value in the presence of the field (where ‘exp’ is the base of 

natural logarithm). This time is the dipole relaxation time τ? 

(of Debye, say) for water molecules. Debye has calculated this 

time statistically by deriving the space orientation under the 

counteracting influences of the Brownian motion and of a time 

dependent electric field and has found, 

τ? = @
6AB,	                   (12) 

where k is Boltzmann constant and T is temperature of water. 

Combining eqns. (11) and (12), Debye has obtained for the 

spherical molecule of water, the relaxation time, 

τ? = CDEFη
AB .	                 (13) 

Now water at temperature (T = 293	�K), has the coefficient of 

viscosity η	 =	1 x 10.> Nw-sc/m
2
 (Clark 1988, pp. 62) [10]. 

If the radius ‘a’ of water molecule is taken as 2 A.U. or 2 x 

10.	�� m, then eqn. (13) gives τd = 0.2485(4) x 10.	�� sc. 

Thus the frequency f at which wτ? = (2πf) τ? = 1 (refer also 

to Fig. 1) is given by this value of f = 6.403(6) x 10
9
 Hz. This 

value of f corresponds to a free space wavelength of 4.681(3) 

cm. Thus, the relaxation time τ?  of water molecules 

corresponds to the free space wavelength of 4.681(3) cm, in 

the relaxation spectrum of water at temperature T = 293	�K. 

But experimentally the relaxation time for water molecules at 

temperature T = 293	� K is located near the free space 

wavelength of 1 cm in the relaxation spectrum as mentioned 

by Von Hippel (1954, pp. 38, fig. 4.2) [1]. Although there is a 

difference in the theoretical and experimental values of the 

free space wavelengths at which the relaxation time is located 

in the relaxation spectrum of water at temperature T = 293	�K, 

still the essence of the model of Debye is that even if it is 

approximate, this approach postulates that the orientation of 

water molecules leads to a simple relaxation spectrum in r.f. 

region of electromagnetic waves, similar to that as shown in 

Fig. 1. 

In the present paper an analysis of dipole relaxation time of the 

molecule in water at temperature T = 293	�K is carried out as 

an extension of the theory of coupled mass- vibrations of ions 

or atoms in noble metals or intrinsic germanium and silicon as 

considered previously by Nandedkar (2015) [11] and 

Nandedkar (2015) [12]. 

Here the water medium is considered as an intermediate one to 

a solid-state and a gaseous-state. The water molecule 

undergoes coupled mass-vibrations at the temperature T 

(=293	�K) on one hand and on other hand it possesses an 

average thermal velocity v
	= (8kT/πM
)�/6  as given by 

the kinetic theory of gases. Here k is Boltzmann constant and 

M
 is the mass of water molecule. Such a system of the water 

molecules is in thermal equilibrium at the temperature T 

(=293	�K), to which the r.f. electric field is applied [- where 

the dielectric absorption losses due to %&11	 in presence of the 

r.f. electric field, causes an increase in temperature of the 

water accounting for the heat losses. And the temperature T 

(= 293	� K) in the present analysis denotes an average 

temperature attained by the water in presence of these heat 

losses relative to surroundings in equilibrium conditions]. The 

thermal equilibrium is brought into the picture by 

molecule-molecule collisions in the water which are described 

by gas kinetics, where a molecule has got the coupled 

mass-vibrational mode and also simultaneously has an 

average thermal velocity. In other words, this is a quasi- 

stationary: quasi-moving system of the molecules of water 

undergoing coupled mass-vibrations and having the average 

thermal molecular velocity at temperature T (=293	�K) of the 

water under consideration, resulting in molecule-molecule 

collisions bringing about the thermal equilibrium. 

The effective collision cross-section of molecule-molecule 

collisions is considered as proportional to the overall average 

of the resultant mean square amplitudes of the water molecule 
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undergoing coupled mass-vibrations at the temperature T 

(= 293	� K). It is assumed that the water molecules are 

elastically bound with respect to each other so far as the 

coupled mass-vibrational modes are concerned. And further, 

the coupled mass-vibrational modes of the molecules are 

associated with the elastic waves in transverse mode of Debye 

type in the water. Only average values are treated in the 

calculations of transverse elastic wave velocity needed for the 

effective collision cross-section of the molecule-molecule or 

molecular collisions. 

Then knowing the molecular collision frequency, the 

relaxation time of the molecular collisions is obtained 

considering it to the reciprocal of the collision frequency, 

which has dimension of time. 

This relaxation time is considered the same as the dipole 

relaxation time of the dipoles associated with the water 

molecules and interacting with the r.f. electric field. 

The method of analysis of this research-paper consists of 

following sections for this article: 

2. Mass-Vibrations of the Water Molecule 

3. Molecular Collision Frequency and Dipole Relaxation Time 

4. Numerical Analysis and  

5. Conclusions 

followed by Appendix which gives List of Symbols used.  

2. Mass-Vibrations of the Water 

Molecule 

Here analysis of mass-vibrations of the water molecules is 

carried out assuming that they are quasi-stationary. 

Now consider one of the water molecules. The Molecule of 

the water is assumed to undergo thermal mass-vibrations at 

temperature T (=293	�K) of it. If M
  be the mass of the 

molecule having f 1 as the frequency of the mass-vibrations, 

then its equation of motion, say along x-axis can be written as 

follows: 

M
 �2L
��2 + 4π6N16	M
	x = 0,	       (14) 

where x is the displacement of the molecule from its 

(quasi-stationary) position of equilibrium at instantaneous 

time t when it has an acceleration of ∂2
x/∂t

2
. Eqn. (14) is an 

equation of Simple Harmonic Motion. 

The average potential energy V
 of the molecule over a cycle 

of its vibrations is given by, 

V
 = 2π6N16M
	x�
6 ,	            (15) 

where x�
  is the r.m.s. value of the amplitude of the 

mass-vibrations of the molecule along x- axis. 

If the weight factor to have V
 at temperature T be defined by 

the Boltzmann factor, viz., 

P(V
) = exp P− QR
ABS,	            (16) 

where k is Boltzmann constant, then the average value of 

x�
	6 i.e. xT�
6  over various values of x�
6  for the molecular 

mass-vibrator with frequency N1can be obtained by averaging 

all values of x�
6 	with the weight factor given by eqn.(16). 

Thus. 

xT�
6 = U L R2 V(QR) �L RWX
U V(QR) �L RWX

.	           (17) 

Using eqns. (15) and (16), eqn. (17) gives on solving the 

integral that, 

xT�
6 = AB
(6DYZ)2[R.	                (18) 

Similarly for the directions of vibrations of the molecule along 

y- and z- axes, it can be shown that, 

yT�
6 = AB
(6DYZ)2[R,	               (19) 

and 

zT�
6 = AB
(6DYZ)2[R,	              (20) 

respectively. Whence the resultant average of mean square 

amplitudes of the molecular mass-vibrations averaged with 

the Boltzmann factor i.e. R_�
6  is given by, 

R_�
6 = xT�
6 + yT�
6 + zT�
6 = >AB
(6D`Z)2[R.	     (21) 

The quasi-stationary molecules of the water are considered to 

have elastic bindings with respect to each other. These 

molecules are assumed to undergo mass-vibrations at 

temperature T (= 293	0K) of the water in the presence of 

transverse elastic (acoustic) waves existing in the water. 

Frequency of the mass-vibrations of the molecules is 

considered to be the same as that of the transverse elastic wave 

(acoustic wave) of Debye type. 

Considering the water as continuous medium, so far as the 

propagation of transverse elastic waves are concerned, the 

number of transverse elastic wave modes per unit volume of 

the water denoted by Z
(f 1) ∂f 1  in frequency interval ∂f 1 
between f 1 and f 1 + ∂f 1, is given by 

Z
(f 1) ∂f 1 = 4πf 16 P 6bcFS ∂f 1,	         (22) 

using a similar approach as mentioned in the case of transverse 

elastic wave modes in noble metals/intrinsic Ge & Si in a 

previous paper by Nandedkar (2015) [11]/Nandedkar (2015) 
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[12]. Here in the water longitudinal elastic waves are 

considered not to exist. Here v�  denotes the velocity of 

transverse elastic wave in water. This analysis assumes that 

the linear dimensions of the water are extremely large as 

compared to the inter-molecular distance(s). The water is of 

macroscopic dimensions and of conventional sizes. 

If N
  is the density of molecules in the water, then there 

would be 3N
  modes of elastic waves per unit volume 

because there are 3N
 degrees of freedom per unit volume for 

mass-vibrations of the molecules along three mutually 

perpendicular axes. This limits the maximum frequency of the 

wave. If minimum frequency be taken zero for all practical 

purposes and maximum be denoted by Debye frequency fd1  

of cut-off, then, 

U Z
(f 1) ∂f 1 = 3N
`eZ� ,	           (23) 

meaning thereby coupled mass-vibrational modes of the 

molecules take place in the presence of elastic wave modes in 

the water. And further each of the molecules has a band of 

frequency ranging 0 to fd1  for all practical purposes, when the 

linear dimensions of the water are extremely large as 

compared to the inter molecular distance(s). 

Further using eqn. (22) in eqn. (23), eqn. (23) gives 

U 4πf 16 P 6bcFS ∂f 1 = 3N
`eZ� .	         (24) 

Solution of eqn. (24) gives, 

fd1 = PfgRbcFhD S�/>,	              (25) 

where it is assumed that the elastic wave velocity is 

independent of frequency. 

Coming to eqn. (22), Z
(f 1) gives the weight-factor to have 

the elastic waves of molecular mass vibrations at frequency f 1. 
Further the average of R_�
6  with respect to the weight-factor 

Z
(f 1) is given by, 

〈R_�
6 〉 = U k_ R2 	lRm`Zn �`ZoeZX
U lR(`Z) �`ZoeZX

.	           (26) 

Using eqns. (21), ((22) and (23), eqn. (26) gives, 

〈R_�
6 〉 = U p Fqr
m2soZn2tRuCD`

Z2v 2wcFx�`
ZoeZX

>gR ,	      (27) 

which on simplification gives that, 

〈R_�
6 〉 = PABDyS P 6bcFS fd1 ,	               (28) 

where, 

ρ = M
N
,                  (29) 

gives the density of the water. 

Using eqn. (25), eqn. (28) gives that, 

〈R_�
6 〉 = {P6ADyS PfgRhD S
�/> �

bc2| T.	        (30) 

Equation (30) gives the overall average of the resultant mean 

square amplitudes of the mass-vibrations of the molecule in 

the water undergoing coupled mass-vibrations at temperature 

T (= 293	�K) of it, where the molecule is considered in the 

quasi-stationary state of this analysis. 

3. Molecular Collision 
Frequency and Dipole 

Relaxation Time  

If N
  be the molecule density in the water, Q
  be the 

effective collision cross-section for the molecular collisions 

and v
  be the average thermal molecular velocity 

considering one of the molecules in quasi-moving state at 

temperature T (=293	�K) given by kinetic theory of gases, viz., 

v
 = P hABD[RS
�/6	,	              (31) 

then the molecule-molecule or the molecular collision 

frequency ν�
 using gas-kinetics is given by, 

�3� = N
	Q
 v
              (32) 

Here the effective collision cross-section is considered as 

proportional to 〈R_�
6 〉  i.e. to the overall average of the 

resultant mean square amplitudes of the mass-vibrations of the 

molecule in the water undergoing coupled mass-vibrations at 

temperature T (= 293	� K) of it as given by eqn. (30), 

considering-quasi stationary state of the rest of the molecules 

other than the one in quasi-moving state with the average 

thermal velocity given by eqn. (31), where N
 >> 1. And 

	Q
 for the spherical water molecule in the present analysis is 

considered here as given by, 

Q
 = π〈R_�
6 〉.                 (33) 

Eqn. (33), using eqn. (30) gives that 

Q
 = π {P6ADyS PfgRhD S
�/> �

bc2| T.	         (34) 

Further using eqns. (31) and (34) in eqn. (32), eqn. (32) gives 

that 

ν�
 = N
π {P6ADyS PfgRhD S
�/> P �bc2S P

hA
D[RS

�/6| T>/6,	     (35) 

where ν�
  gives the collision frequency of the water 

molecules. 



20 D. P. Nandedkar:  Analysis of Dipole Relaxation Time for Water Molecules at Temperature of 293	�K  

 

Now 1/ν�
 has the dimensions of time. And 1/ν�
 is denoted 

by τ�
. The value of τ�
 is given by, 

τ�
 = �
��� =

pP2qs�SP��R�s S�/Fv �wc2xP
�q

stRS
�/2u

��

gRD T.>/6,	     (36) 

using eqn. (35). In the present analysis it is considered that 

τ�
 of eqn. (36) as given by gas- kinetics is the relaxation 

time of molecule-molecule collisions/molecular collisions or 

it is relaxation time between collisions of the (water) 

molecules. 

Now come to eqn. (30). Here 〈R_�
6 〉 is treated as the overall 

average of the resultant mean square amplitudes of the 

mass-vibrations of the molecule (of the dipole) in the water 

undergoing coupled mass-vibrations at temperature T 

(=293	�K) of it. Further, eqn. (31) gives the average thermal 

velocity of the molecule (of the dipole) and eqn. (34) gives the 

effective collision cross-section of the molecule (of the dipole) 

collisions of the water molecules, respectively. Eqn. (36) 

represents the dipole relaxation time of the collision process 

having the collision frequency ν�
  of eqn. (35) at 

temperature T (=293 	0K) for the water molecules. 

When the water is subjected to the r.f. electric field, then the 

dipoles experience a torque and tend to align in the direction 

of the field. This produces the orientation polarization, and 

would give rise to a relaxation spectrum similar to that given 

in Fig. 1 as mentioned in Secn.1. Here T (=293	�K) gives the 

average temperature attained by the water in the presence of 

dielectric absorption losses due to %)11 relative to surroundings 

in equilibrium conditions, in the presence of r.f. electric field 

which is applied to the system of dipoles of water molecules. 

In short, the orientation polarization of water molecules in the 

presence of r.f. electric field(s) would lead to a relaxation 

spectrum similar to that as show in Fig. 1, which is 

characterized by a molecular (dipolar) relaxation time of τ�
 

as given by eqn.(36) at the temperature T (=293	�K) of the 

water under consideration. 

4. Numerical Analysis 

If ρ be the density and M� be the molecular weight of water, 

then the density of molecules (or dipoles) in the water, is given 

by 

N
 =	g�y[� ,	                 (37) 

where NE is Avogadro’s number. 

Further if m�is 1-unified mass unit, then the mass of a water 

molecule M
 is given by 

M
 = m�M�.	               (38) 

The transverse elastic wave velocity v� in the water can be 

shown to be given by {a similar approach as adopted in case of 

the noble metals/intrinsic Ge & Si by Nandedkar (2015) [11]/ 

(2015) [12]}, 

v� = P�Zy S
�/6,	                 (39) 

where �1 is (bulk) modulus of rigidity for water. 

Table 1 gives the values of molecular weight M� of water, 

density ρ and (bulk) modulus of rigidity �1 for water from 

Clark (1988, pp.57-58, 62) [10]. The values of ρ and �1 are 

at T =293�K. T denotes temperature of the water. Calculated 

values of, N
,v� and M
 are also given in Table 1. 

Table 1. Physical constants of Water at T = 293	�K. 

Mm � �1 ��, �� �� 

  ��.� x ��.�� x ��.� x ���� 

(kgm-mol) (kgm/��) (Nw/m2) (�.�) (m/sc) (kgm) 

18.01(6) 998 2.05 3.336(5) 1.433(2) 2.991 (4) 

The values of overall average of the resultant mean square 

amplitudes of the mass vibrations of the water molecule 

〈R_�
6 〉,	the effective collision cross section  Q
, the average 

thermal velocity v
 , the collision frequency ν�
  and the 

relaxation time τ�
 as given by eqns. (30), (33), (31), (32) 

and (36) respectively, are calculated using Table 1. These 

values refer to the water molecule or the dipole associated 

with the molecule. Here the temperature T of the water is 

293	�K. The calculated results are given in Table 2. 

Table 2. Various Parameters Associated with the Molecular (Dipole) 

Relaxation Time for the water at T = 293	�K. 

〈 _¡�� 〉 ¢� �� £¡� ¤¡� 

x ���� x ���� x ��.� x ��.�� x ���� 

(��) (��) ( m/sc) (sc-1) (sc) 

2.871 (7) 9.021(7) 5.867(9) 1.766(3) 5.661(6) 

Thus here the effective collision cross section Q
 is 9.021(7) 

x 10.6� m6, and the collision frequency ν�
 is 1.766(3) x 

10��	sc.� , where sc stands for second. This gives the 

molecular or dipole relaxation time τ�
 of 5.661(6) x 10.�6 

sc for the water at temperature T = 293	�K. 

5. Conclusions 

The frequency f at which angular frequency w of the r.f. field 

satisfies the condition wτ�
 = (2πf)τ�
 = 1 (similar to that 

as shown in Fig. 1), gives the value of f = 2.811(1) x 10�� Hz. 

This corresponds to the free space wavelength of 1.066(4) cm, 

at the temperature T= 293	� K for the water [- here the 

dielectric absorption losses due to %&11	in presence of the r.f. 

electric field, causes an increase in temperature of the water 

accounting for the heat losses. And the temperature T 

(= 293	� K) in the present analysis denotes an average 
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temperature in the presence of these heat losses relative to 

surroundings in equilibrium conditions]. 

Further, experimentally the relaxation time of water at 

temperature T of 293	� K corresponds to a free space 

wavelength located near 1 cm in the relaxation spectrum of 

water, as mentioned by Von Hippel ([1954, pp.38, fig.4.2 [1]), 

whereas present analysis also detects that the relaxation time 

of water at temperature T of 293	�K corresponds to a free 

space wavelength of 1.066(4) cm, that is, located near 1 cm in 

the relaxation spectrum of water. So present analysis fairly 

well predicts that the relaxation time of water at temperature T 

of 293	�K corresponds to a free space wavelength of 1.066(4) 

cm, that is, located near 1 cm in the relaxation spectrum of 

water. 

Now refer to Secn. 1, Fig. 1 of the present paper, as well as 

Von Hippel (1954, pp.38, fig. 4.2 [1]) - (which has break for 

free space r.f. wavelengths shorter than about 8 mm)], which is 

considered to hold good in the r.f. region of spectrum of 

electromagnetic waves up to a minimum of about 8 mm of the 

free space r.f. wavelengths for water of this treatment. In the 

present paper, it is considered that for the free space r.f. 

wavelengths shorter than about 8 mm, the thermal energy of 

the dipole of water at temperature T=293 	0K is insufficient to 

align the dipole (of molecule) of water because of the torque 

experienced by it (in presence of r.f. electric field) against the 

force due to molecular collision (- here also refer to Kittel, 

1960, pp.176 [13], for corresponding views on the water 

model of Debye). 

Thus the present model given in this paper determines fairly 

well the molecular (dipole) relaxation time for water at 

temperature of 293	�K, which is experimentally located near 

the free space wavelength of 1 cm in the relaxation spectrum 

of water. 

The analysis of this paper assumes that for the water under 

consideration, it is possible to define the dipole relaxation time 

for the water molecules by eqn. (36), which is based on 

assumption of eqn. (14). 

Appendix 

List of Symbols Used 

N
 = water molecules per unit volume 

	0K = degree Kelvin 

µ = magnitude of permanent dipole moment associated with 

water molecule 

§3 = dipole relaxation time of water molecule (general) 

P(t) = polarization at time t 

P(∞) = steady state final polarization 

exp = base of natural logarithm 

i = √−1 

ϵ& = relative static permittivity of water with respect to free 

space 

ϵ� = permittivity of free space 

E = Instantaneous value of r.f. electric field at time t  

E� = peak value of the r.f. electric field 

f = frequency of r.f. electric field 

w = angular frequency of r.f. field = 2πf 
%&∗  = relative complex dielectric constant of water with 

respect to free space 

%&1	 = relative r.f. permittivity of the water with respect to free 

space 

%&11	 = relative r.f. loss factor of the water with respect to free 

space 

γ = torque of the electric field with reference Debye model 

∂θ/∂t = molecular angular velocity with reference Debye 

model 

ξ = a constant of friction factor with reference Debye model 

η = coefficient of viscosity of water 

a = radius of water molecule with reference Debye model 

τ? = dipole relaxation time of water molecule with reference 

Debye model 

T = temperature 

k = Boltzmann constant  

M
 = mass of water molecule 

f 1 = frequency of the mass-vibrations of water molecule 

V
 = average potential energy of the water molecule over a 

cycle of its vibrations 

x = displacement of the molecule from its (quasi-stationary) 

position of equilibrium at instantaneous time t when it has an 

acceleration of ∂2
x/∂t

2 

x�
 = r.m.s. value of the amplitude of the mass-vibrations of 

the molecule along x- axis 
 

P(V
) = weight factor to have V
 at temperature T defined 

by the Boltzmann factor 

xT�
6  = average value of x�
	6  over various values of x�
6  

along x-axis 

yT�
6  = average value of y�
6  over various values of y�
6  

along y-axis 
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zT�
6	  = average value of z�
6  over various values of z�
6  

along z-axis 

R_�
6  = resultant average of mean square amplitudes of the 

molecular mass-vibrations averaged with the Boltzmann 

factor considering 3-axes of co-ordinates 

Z
(f 1) = number of transverse elastic (acoustic) wave modes 

per unit volume per unit frequency interval in the water 

v� = velocity of transverse elastic (acoustic) wave in water 

fd1  = Debye frequency of cut-off 

P¨	= density of water  

〈R_�
6 〉 = average of R_�
6  with respect to the weight-factor 

Z
(f 1) 
Q
  = effective collision cross-section for the molecular 

collisions 

v
 = average thermal molecular velocity of water 

ν�
 = molecule-molecule or molecular collision frequency 

in water 

τ�
 = dipole relaxation time for water molecules = 1/ν�
 (of 

this paper)  

M� = molecular weight of water 

NE = Avogadro’s number 

m� = 1-unified mass unit 

�1 = (bulk) modulus of rigidity for water 
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