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Abstract 

Germanium (Ge) and Silicon (Si) are widely used semiconductors in crystal diodes and transistors. So that study of mobility of 

intrinsic Ge and Si is an important aspect, in electronics/physics. In the present paper, coupled mass-vibrations of atoms in an 

intrinsic semiconductor, viz., Germanium or Silicon, are analysed near room temperature ~300	0K. Overall average of resultant 

mean square amplitudes of an atom in the semiconductor undergoing coupled mass-vibrations is regarded as collision-cross 

section for conduction electrons or valence holes colliding with the atoms. Here the electrons or the holes are regarded as free and 

forming a gas with appropriate thermal velocity at the temperature of the semiconductor under consideration. This determines the 

charge carrier’s collision frequency with the atoms. Whence an expression for mobility of the charge carrier is obtained 

considering distribution of free paths of the charge-carrier. The expression for mobility for isotropic scattering of the 

charge-carrier at its collision with an atom given here, is modified by comparing the calculated value of mobility at (~300	0K) 

with the value given in a physical table, for the case of anisotropic scattering. This analysis shows that the mobility of the 

charge-carrier viz., the electron or the hole, due to the charge carrier’s collisions with atom, varies as T��/� where T is the 

temperature of the semiconductor under consideration, a result also confirmed by previous investigators. Present analysis gives 

fairly well values of motilities near room temperature for Ge and Si. Purpose of this work is to illustrate in a simple manner, 

how mobility of the semiconductor comes in picture by anisotropic scattering of the electrons and holes at collisions with 

atoms in the semiconductor. The electrons undergo reverse anisotropic scattering and holes forward anisotropic scattering in 

Ge whereas both electrons and holes undergo forward anisotropic scattering at collisions with respective atoms in Si. 
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1. Introduction 

Germanium (Ge) and Silicon (Si) are widely used 

semiconductors in crystal diodes and transistors. So that study 

of mobility of intrinsic Ge and Si is an important aspect, in 

electronics/physics. The case of mobility of an intrinsic (that is 

a pure) semiconductor such as Ge or Si near room temperature 

(~300		K, where 		K is Degree Kelvin) has been considered 

by previous investigators viz., Seitz (1948) [1], Pearson and 

Bardeen (1949) [2], Pearson and Bardeen (1950) [3], Bardeen 

and. Shockley (1950) [4], Debye and Conwell (1954) [5], 

Morin and Maita (1954) [6], Fritzsche, (1955) [7], Dush and 

Newman (1955) [8], Brounstein, Moore and Herman (1958) 

[9]. Their analysis has shown that the mobility of the 

charge-carrier, viz., the electron or the hole due to interaction 

of charge-carrier waves with lattice waves varies as T��/�, 

where T is temperature of the semiconductor. Here for General 

Reference, refer also to Ashcroft and Mermin (1976) [10], 

Ziman (1972) [11], Callway (1974) [12], Sze (1981) [13] & 

Ibach and Luth (1991) [14].  

The present paper considers the analysis of mobilities of 

charge carriers in the intrinsic semiconductors viz., Ge and Si 
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near room temperature (~300		K), as an extension of the 

theory of coupled mass-vibrations of the fixed ions or atoms 

(which are devoid of one conduction electron each) as already 

given in the case of noble metals by Nandedkar (2015) [15]. 

The semiconductor which is dealt herewith is considered as 

very pure. 

The intrinsic semiconductor of this analysis is of macroscopic 

dimension. Here the intrinsic semiconductor, that is Ge or Si is 

regarded to consists of fixed (tetravalent) atoms (which are 

devoid of 4-valence electrons each) in its volume at regular 

intervals on an average. Each of the tetravalent atoms, shares 

its outer shell’s 4-valence electrons with the (nearest) adjacent 

4 atoms forming covalent bonds where each covalent bond 

contains a pair of two electrons. Thus, here all atoms are 

linked by covalent bonds. This semiconductor is known as a 

non-polar semiconductor. 

At temperature near room temperature (~ 300		 K), an 

individual electron of a covalent bond acquires sufficient 

energy due to the thermal agitation of the atoms to break the 

bond to become free. Such free electrons move about 

randomly in the semi-conductor similar to molecules in a gas. 

These electrons are referred to as conduction electrons in this 

analysis. 

When an electron escapes from a covalent bond to become 

free, then the empty space left behind is known as a hole 

which has a charge equal and opposite to that of an electron. 

The tendency of one remaining electron in the covalent bond 

is to form again an electron pair; for which it steals one 

electron from an adjacent pair of another covalent bond 

because of favourable situation arising due to thermal 

agitation. In this way the previous hole is now shifted to 

another place from which the electron is stolen. Thus once a 

hole is recreated it moves about in the semiconductor in a 

random fashion as do the free electrons. These free holes are 

referred to as valence holes in this analysis, where the mass of 

a hole on an average is considered same as that of an electron 

here. The number of holes is obviously equal to the number of 

electrons in the semiconductor.  

When the electrons move randomly in the semiconductor, they 

have encounters with the broken covalent bonds resulting in 

rejoining of the broken covalent bonds leading to 

electron-hole recombination of the electrons and holes. The 

density of electrons and holes in the intrinsic semiconductor 

rises to such a level that the rate of recombination of electrons 

and holes equals their rate of generation at the temperature of 

semiconductor under consideration, which denotes the steady 

state. The order of electron or hole density which is intrinsic 

charge carrier density (in the steady state) is known to be 10��  

m�� 
in Ge and 10��  m�� in Si - refer to Croissettee (1974, 

table 1-2, pp. 28) [16], near room temperature (~300		K). 

Here the result of mobility of the charge-carrier (viz., the 

electron or the hole) on an average does not depend on the 

intrinsic charge-carrier density. In this analysis the intrinsic 

charge-carrier density is large enough to use method of 

gas-kinetics for various results analyzed herewith. Here the 

density of atoms in the intrinsic semiconductor is extremely 

large as compared to the intrinsic-charge carrier density. 

In calculations of mobilities of the charge carriers in this 

analysis, attention is confined to homogenous and isotropic 

media whose properties are the same in every part and in every 

direction. This rules out consideration of directional properties 

of the crystalline media provided by Germanium and Silicon, 

and only average values are treated. 

Further it is assumed that the fixed atoms of the semiconductor 

undergo thermal mass-vibrations at temperature T of it. The 

fixed atoms in the semiconductor are elastically bond with 

respect to each other. Coupled mass- vibrational modes of the 

atoms are associated with elastic waves in transverse and 

longitudinal modes of Debye-type in the semiconductor. 

Conduction electrons here form a free electron-gas at 

temperature T (where an electron of the gas has an average 

thermal velocity v�  = ��8kT π	m�� �,	here k is Boltzmann 

constant and 	m� is mass of the electron), so also valence 

holes form a free hole-gas at the same temperature T (where 

the hole of the gas has an average thermal velocity v�  = 

��8kT π	m�� �.	 Here 	m�  is mass of the hole). Atoms, 

electrons and holes are all in thermal equilibrium at 

temperature T of the semiconductor. 

When a d.c. electric field is applied to the semiconductor, then 

the conduction electrons or the valence holes acquire drift 

velocities (since charge of an electron is equal and opposite to 

that of a hole, so that the respective drift velocities of the 

electrons and holes are oppositely directed) limited by 

collisions of the electrons or the holes with the atoms 

undergoing coupled mass-vibrations. The collision 

phenomenon is described in terms of electron-atom or 

hole-atom collisions using gas-kinetics. While dealing with 

the collision frequency, velocity of the electron or the hole 

appropriate to average thermal velocity at temperature T of the 

semiconductor is taken into account. The collision frequency 

can be determined by gas-kinetics, if effective collision 

cross-section of electron-atom or hole- atom collisions in the 

semiconductor be known. In the present paper, an expression 

for overall average of resultant mean square amplitudes of 

coupled mass-vibrations of an atom is obtained and is 

regarded as the effective collision cross-section for the 

electrons or the holes. Whence knowing the collision 

frequency, the mobility of electron or hole is obtained, 
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considering the distribution of free paths of the charge-carrier. 

This treatment assumes that on an average, the mass of an 

electron is equal to the mass of a hole which is the free 

electron mass. The scattering of an electron or a hole with the 

atom is treated as isotropic. And the expression for mobility of 

the charge-carrier at the isotropic scattering is modified by 

comparing the calculated value of mobility at T = 300		K 

with the value as given in a physical table from Croissette 

(1974, table 1-2, pp. 28) [16], for the case of anisotropic 

scattering. This analysis shows that the mobility of the 

charge-carrier viz., the electron or the hole, due to the 

charge-carrier’s collisions with atoms, varies as T��/� where 

T is the temperature of the semiconductor under consideration. 

The Method of Analysis of this research-paper consists of 

following sections for this article: 

2. Mass vibrations of the fixed atom 

3. Collision frequency of the charge-carrier 

4. Mobility of the charge-carrier 

5. Numerical analysis 

followed by 

6. Conclusions 

2. Mass Vibrations of the Fixed 

Atom 

A fixed atom of the semiconductor (of Ge or Si) is assumed to 

undergo thermal mass-vibrations at temperature T of it. If M� 
be the mass of the atom having f as frequency of the 

mass-vibrations, then its equation of motion, say along x-axis 

can be written as follows, 

M� ������ + 4π�f�M�x = 0,	            (1) 

where x is the value of displacement of the atom from its 

equilibrium position, at the instantaneous time t, when its 

acceleration is ∂�x	/'(�.  

The average potential energy of the atom over a cycle of its 

vibrations is given by, 

V� = 2π�f�M�x+�� ,	                (2) 

where x+� is r.m.s. value of amplitude of the vibrations of the 

atom along x-axis. 

If weight factor to have the average potential energy V� at 

temperature T be defined by Boltzmann factor, viz, 

P-V�. = exp 1− 34
567,	               (3) 

where k is Boltzmann constant, then the average value of x+��  

i.e . x8+��  over various values of x+�� 	 for the atomic 

mass-vibrator with frequency f can be obtained by averaging 

all values x+�� 	with the weight factor given by eqn. (3). Thus, 

x8+�� = 9 �:4� ;-34. ��:4<=
9 ;-34. ��:4<=

,	             (4) 

Using eqns. (2) and (3), eqn. (4) gives on solving the integral 

that, 

x8+�� = 56
-�>?.�@4                   (5) 

Similarly for the directions of vibrations of the atom along y- 

and z- axes, it can be shown that, 

A8BC� = 56
-�>?.�@4,	                 (6) 

and 

DB̅C� = 56
-�>?.�@4.	                 (7) 

Whence resultant average of mean square amplitude of the 

atomic mass- vibrations averaged with the Boltzmann factor 

i.e. RG+��  is given by, 

RG+�� = x8+�� + y8+�� + z8+�� = �56
-�>?.�@4.	        (8) 

Atoms of the semiconductor are elastically bound with respect 

to each other. These atoms are assumed to undergo 

mass-vibrations at temperature T of the semiconductor, in 

presence of elastic waves existing in the material. Frequency 

of mass- vibrations of the atoms is considered to be the same 

as that of elastic waves. 

Considering the semiconductor as a continuous medium so far 

as the propagation of elastic waves is concerned, the number 

of modes of elastic waves per unit volume in the material 

denoted by Z�-f. ∂f in the frequency interval f between f and f 

+ ∂f is given by 

Z�-f. ∂f = 4πf� K �LMN +
�
LONP ∂f,	         (9) 

where Z�-f.  = number of elastic wave modes per unit 

volume per unit frequency interval at frequency f in the 

semiconductor that means Z�-f. gives the weight factor to 

have the elastic waves or atomic mass-vibrations at frequency 

f, using a similar approach as adopted in the case of the fixed 

ions or atoms of the noble metals by Nandedkar (2015) [15]. 

Here v� denotes the velocity of transverse elastic wave and 

vQ 	denotes the velocity of longitudinal elastic wave in the 

semiconductor. This analysis assumes that the linear 

dimensions of the semiconductor are extremely large as 

compared to the inter-atomic distance(s). The semiconductor 

is of macroscopic dimensions and of conventional sizes. 
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If N is the density of atoms in the semiconductor then there 

would be 3N modes of elastic waves per unit volume because 

there are 3N degrees of freedom per unit volume for mass 

vibrations of the atoms along three mutually perpendicular 

axes. This limits the maximum frequency of the wave. If 

minimum frequency be taken zero for all practical purposes 

and maximum be denoted by Debye frequency fR of cut-off, 

then, 

9 Z�-f. ∂f = 3N?T	 ,               (10) 

meaning thereby coupled mass-vibrational modes of the 

atoms take place in presence of the elastic wave modes in the 

semiconductor. And further, each of the atoms has a band of 

frequency ranging 0 to fR  for all practical purposes, when 

linear dimensions of the semiconductor are extremely large as 

compared to the interatomic distance(s). 

Further using eqn. (9) of the present analysis in eqn. (10), eqn. 

(10) gives that 

fR = 1�UV>7
�/� K �LMN +

�
LWNP

��/�,        (11) 

assuming elastic wave velocities to be independent of 

frequency. 

Coming to eqn. (9), Z�-f. gives the weight factor to have the 

elastic waves or atomic mass-vibrations at frequency f. 

Further average value of RG+��  with respect to the weight factor 

Z�-f. is given by 

〈RG+�� 〉 = 9 ZG:4� [4-?. �?\T=
9 [4-?. �?\T=

.	             (12) 

Using eqns. (8) to (11), eqn. (12) gives, 

〈RG+�� 〉 = ]1 5>^7 K �LMN +
�
LWNP

�/� 1�UV>7
�/�_ T,	     (13) 

where 

ρ	= M�N,                   (14) 

gives the density of the semiconductor. Here M� is mass of 

atom of the semiconductor. 

If characteristic temperature θR  for the semiconductor be 

defined by, 

θR = a?T
5 ,	                  (15) 

where h is Planck constant, then eqn. (15) on using eqn. (11), 

gives 

θR = a
5 ]1�UV>7

�/� K �LMN +
�
LONP

��/�_.	       (16) 

Eliminating the factor b-2/v��. + -1/vQ�.c  from eqns. (13) 

and (16), the value of 〈RG+�� 〉 is given by, 

〈RG+�� 〉 = d1�a�>7
� K U

5^eT�Pf T.	           (17) 

Equation (17) gives the overall average of the resultant mean 

square amplitudes of the mass-vibrations of the atom in the 

semiconductor undergoing coupled mass-vibrations at 

temperature T of it. 

3. Collision Frequency of the 
Charge-Carrier 

The charge-carriers i.e. either the (conduction) free electrons 

or the (valence) free holes are in thermal equilibrium with the 

fixed atoms in the semiconductor, whose temperature T is near 

room temperature (~300		K). Here the free electron-gas or the 

free hole-gas is similar to the gas of molecules with the 

average thermal velocity vg of either charge-carriers having a 

mass mg as given by, 

vg = 1h56>ij7
�/�.                (18) 

Here and in the following analysis. the subscript ‘c’ denotes 

particular type of the charge carrier i.e. either the electron or 

the hole. The subscript ‘c’ is to be read as e for an electron or p 

for a hole. Thus for the electron and the hole, eqn. (18) gives, 

v� = 1 h56>ik7
�/�,	               (19) 

and 

v� = K h56>ilP
�/�.               (20) 

When on an average m� = m�= mg = m (the free electron 

mass) as assumed in this analysis, then vg=v� = v�. 

If q0 be the effective collision cross-section and N be density 

of atoms in the semiconductor, then the collision frequency 

νg+ of the charge-carriers with the atoms, using gas kinetics is 

given by, 

νg+ = Nq	vg.	               (21) 

In the present analysis, it is assumed that q	  is the same as 

〈RG+�� 〉 which means that the effective collision cross-section is 

the same as overall average of resultant mean square 

amplitudes of the fixed atom undergoing coupled 

mass-vibrations at temperature T of the semiconductor as 

given by eqn. (17). Thus 

q+ = 〈RG+�� 〉.	                 (22) 

Here q+ is the same for either the electron or the hole. 
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Using eqns. (17), (18) and (22), eqn. (21) gives, 

νg+ = dN� 1�a�>7
� K �

^eT�P 1
h

>5ij7
�/�f T�/�.	     (23) 

Thus for the electron and the hole in the semiconductor, eqn. 

(23) gives that, 

ν�+ = dN� 1�a�>7
� K �

^eT�P 1
h

>5ik7
�/�f T�/�,	     (24) 

and 

ν�+ = ]N� 1�a�>7
� K �

^eT�P K
h

>5ilP
�/�_ T�/�.	     (25) 

When on an average m� = m�= mg = m (the free electron 

mass) as assumed in this analysis, then νg+ = ν�+  =	ν�+. 

4. Mobility of the 
Charge-Carrier 

In the semiconductor the free (conduction) electron-gas or the 

free (valence) hole-gas is similar to the gas of molecules when 

temperature T of the semiconductor is near room temperature 

(~300		K). In the present analysis, distribution of free paths of 

the charge-carriers is taken into account. 

The collisions that determine the free-paths of the 

charge-carriers in the semiconductor, are random events. This 

being true, some free-paths would be long and other free-paths 

would be short. On the basis of random motion of the 

charge-carriers, an expression is obtained for ‘distance 

distribution’. 

If one charge-carrier has a collision frequency νg+ with the 

atoms in the semiconductor having an average thermal 

velocity vg = 1h56>ij7
�/�

at temperature T (~300	K) of the 

material, then ag+=	νg+/vg gives average number of collisions 

made by the charge-carrier in its unit length of path and the 

probable number of collisions made by this charge-carrier in 

travelling a distance ∂sg+ would be ag+ ∂qg+. Let Cg6 be the 

total number of charge- carriers in the semiconductor. Out of 

these charge carriers, let cg6 be number of charge carriers that 

have travelled a distance sg+ without having collisions. The 

number of these charge-carriers having collisions between sg+ 

and sg++ ∂sg+  would be proportional to cg6  itself and the 

length of the path, or the charge in cg6 due to the collisions is 

given by, 

∂cg6 = −	ag+cg6∂sg+,            (26) 

where	ag+	is the constant of proportionality in this case and 

negative sign shows that ∂cg6	decreases as ∂sg+  increases. 

Eqn. (26) gives the number of charge-carriers with free-paths 

between sg+ and sg++ ∂sg+ numerically. 

Equation (26) can be integrated to give, 

cg6 = Ag6	exp-−ag+sg+..	         (27) 

where Ag6	 is a constant of integration. At sg+= 0, since there 

are no collisions, so that ccT = CcT. Thus Ag6	 = CcT in eqn. 

(27). And then eqn. (27) is rewritten as follows: 

cg6 = Cg6exp-−ag+sg+..	         (28) 

If ∂cg6	be the number of charge -carriers having a free path of 

length between sg+  and sg++ ∂sg+ , then the expression for 

mean free-path λg+ of the charge-carrier is given by, 

λg+ = 9 uj: �vjw
vjw

vjw	 .	             (29) 

As, 

∂Cg6 = |∂cg6| = ag+	cg6 ∂sg+ = ag+Cg6exp-−ag+sg+. ∂sg+,	  (30) 

so that eqn. (29) gives that, 

λg+ = 9 uj:�j:vjw	���-��j:uj:. �uj:
vjw = �

�j:
y
	 .	     (31) 

Thus the distribution of free paths of the charge-carrier is 

given by eqn. (28), using eqn. (31) as follows: 

cg6 = Cg6	exp-−sg+/λg+..	         (32) 

Eqn. (32) shows that, the number of free-paths of length 

greater than a given distance is a decreasing exponential 

function of the distance and further only 36.78(8) per cent of 

CCT of charge-carriers have free-paths of length equal to λco. 

Now if one charge-carrier starts with zero initial velocity, in 

the presence of a d.c. electric field E�  applied along, say 

parallel to x-axis, in the semiconductor after each collision, 

then the distance xg+  it travels in time tg+  with constant 

acceleration fg+, is given by, 

xg+ = ?j:�j:�
� .	                (33) 

The average distance xg+ over the range of charge-carrier’s 

free-path is now considered with a varying time tg+ = sg+ / 

vg given by the ratio of the free-path sg+ to average thermal 

velocity vg of the charge-carrier. 

Now the acceleration fg+ of the charge carrier in the presence 

of field E� is given by (e/mg)E�, where e is the magnitude of 

charge of the charge-carrier. So eqn. (33) gives that, 

xg+ = �
� 1�|}ij7 1uj:Lj 7

�.           (34) 

Further the average of xg+ i.e. 〈xg+〉 using eqn. (32) is given 

by, 
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〈xg+〉 % 9 �j: �vjw
vjw

vjw
	 ,	            (35) 

where ∂Cg6 / Cg6  is the proportion of the charge-carriers 

having free-paths of lengths between sg+ and sg++ ∂sg+  as 

given eqn. (30). 

Using eqns. (30) and (34), eqn. (35) gives that, 

〈xg+〉 % �|}
�ijλj:Lj� 9 sg+� 	exp-2sg+/λg+. ∂sg+y

	 ,	    (36) 

where ag+= 1/λg+ is the relation used as given by eqn. (31). 

Solution of eqn. (36) gives that, 

〈xg+〉 % �|}λj:�
ijLj� .	                 (37) 

The average drift velocity 〈vg+〉 of the charge-carrier is taken 

as the average distance 〈xg+〉 divided by the relaxation time 

τg+	 between collisions which is the average time taken 

between the collisions. Using gas kinetics, the value of τg+ is 

given by, 

τg+ % λj:
Lj ,	                     (38) 

so that, 

〈vg+〉 % 〈�j:〉
�j: % �|}

ij
1λj:Lj 7.	            (39) 

But, 

Lj
λj:

% νg+ % �
�j:,	               (40) 

by gas-kinetics where νg+  is the charge-carrier’s collisions 

frequency. Thus eqn. (39) gives, 

〈vg+〉 % Ug� % �|}
ij�j:,	              (41) 

where, 〈vg+〉  = Ug�  is the average drift velocity of the 

charge-carrier parallel to x-axis. 

In the present analysis it is assumed that the average velocity 

Ug� as given by eqn. (41), remains the same before and after 

scattering of the charge carrier by an obstacle in the form of an 

atom in the semiconductor at a collision. This is illustrated 

with reference to Fig. 1(a and b). 

	
Fig. 1. Isotropic scattering of a charge-carrier by an obstacle in the semiconductor. 

With reference to fig.1 (a), θg = π/2 is the angle of scattering 

of the charge carrier on its collision with the atom. Fig. 1(b) 

shows that as a result of the scattering process the velocity of 

the charge carrier parallel to x axis remains unaltered retaining 

its original value of as given by eqn. (41). This situation 

illustrated with reference to Fig. 1(a and b) is referred to as the 

case of isotropic scattering of the charge-carrier at its collision 

with an atom characterized by θg = π/2. 

Coming to eqn. (41), the ratio 
�j}
|} , which is mobility	kg+ of 

the charge-carrier, is given by, 

kg+ % �j}
|} %

�
ij

�
�j:.	            (42) 

For the electron and hole, eqn. (42) gives, 

k�+ % �k}
|} %

�
ik
. �
�k:,	           (43) 

and 

k�+ % �l}
|} %

�
il
. �
�l:.	            (44) 

The average drift velocities of the charge-carriers viz., U�� 

and U��  for the electron and the hole respectively as 

determined by eqns. (43) and (44) in the presence of electric 

field E�  in the semiconductor parallel to x-axis, are 

oppositely directed because the sign of charge of an electron is 

opposite to that of a hole. 

Further substituting the value of νg+ from eqn. (23) in eqn. 

(42), eqn. (42) gives, 

kg+ % 1 �
ij
7 dN� 1�a�>7

� K �
^eT�

P 1 h
>5ij

7�/�f
��
T��/�,	  (45) 

and for the electron and hole, eqn. (45) gives, 
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k�+ = 1 �ik7 dN� 1�a�>7
� K �

^eT�P 1
h

>5ik7
�/�f�� T��/�,	  (46) 

and 

k�+ = K �
ilP ]N� 1�a�>7

� K �
^eT�P K

h
>5ilP

�/�_
��
T��/�   (47) 

when on an average, m�= m� = m (the free electron mass) as 

assumed in this analysis, then eqns. (45) to (47) give that kg+ 

= k�+ = k�+ .  

The differences in the values of electron mobility k�+ (or kg+) 

and hole mobility k�+  (or kg+) when temperature T of the 

semiconductor (that is Ge or Si) is 300	0K as obtained by the 

present analysis, and those tabulated in a physical table 

(Croissette 1974, table 1-2, pp.28) [16] for electron mobility 

k��  and hole mobility k��  at 300 
0
K, are attributed to 

anisotropic scattering of the charge-carriers at their collision 

with atoms in the semiconductor and are discussed in the next 

section of this paper here. 

5. Numerical Analysis 

If N�is Avogadro’s number, ρ and M� are density and atomic 

weight of the semiconductor respectively, then 

N= N�ρ/M�                 (48) 

where N is the density of atoms in the semiconductor. 

Table 1 gives physical constants of Ge and Si viz., atomic 

weight MA and density ρ from Croissetee (1974, table 1-2, 

pp.28) [16] and characteristic (Debye) temperature θR from 

Kittel (1960, table 6.3, pp.132) [17]. Calculated values of N 

are indicated in the last column of Table 1. 

Table 1. Room Temperature (~300	0K) Values of Physical Constants of Ge 

and Si. 

Seimconductor MA ρ �� N 

 (kgm-at) (kg/m3) (0K) (m-3) 

Ge 72.6 5.32 x10� 366 4.413(5) x 10�h 
Si 28.1 2.40 x 10� 658 5.144(2) x 10�h 

Table 1 gives room temperature (~300	0K) average values for 

various parameters in the case of intrinsic Ge and Si. In the 

present analysis, when temperature T of the semiconductor is 

near room temperature, then variations of various parameters 

given in Table 1 with respect to temperature of the 

semiconductor are neglected and all these parameters are 

treated as constants. 

Knowing N, ρ and θR , value of effective collision 

cross-section is calculated using eqn. (22) and (17). Value of 

the average thermal velocity of the charge-carrier (electron or 

hole) i.e. vg = v�= v�, when the mass of an electron m�= the 

mass of a hole m�  = the mass of a free electron m, is 

calculated from eqn. (18). Knowing �		and vg, the value of 

charge-carrier (electron or hole) collision frequency i.e. 

νg+ =	ν�+ = ν�+, when m� = m� = m, is obtained using eqn. 

(23). From the values of vg and νg+, the value of mean free 

path of the charge-carrier (electron or hole) i.e. λg+	= λ�+ = 

λ�+  when m�  = m�  = m, is obtained using eqn. (40). 

Knowing νg+ , the value of mobility of the charge-carrier 

(electron or hole) i.e. kg+= k�+= k�+  , when m� = m� = m, is 

calculated from eqn. (45). These calculated values of �		, vg 

(= v� = v� ), νg+-= 	 ν�+  = ν�+. , λg+	 (= λ�+  = λ�+ ) and 

kg+(= k�+= k�+) are shown in Table 2 for Ge and Si where 

temperature T of the semiconductor is 300 
0
K. 

Table 2. Values of �		, vg, νg+, λg+	and kg+ for Ge and Si at T=300	0K. 

Semi- ��	 = 〈�G��� 〉 �� ��� λ��	= λ�� = λ�� ���= ���= ��� 
conductor x���� x ���� x����� x ��� x ��� 

 (m2) (m/sc) (sc-1) (m) (m2/V/sc) 

Ge 1.346(2) 1.076(1) 6.393(6) 1.683(1) 2.751(3) 

Si 1.076(1) 1.076(1) 5.956(9) 1.806(5) 2.953(0) 

Table 3. Values of k�+, k�+, k�� and k�� for Ge and Si at T = 300	0K. 

Semiconductor ��� ��� ��� ��� 
 (m2/V/sc) (m2/V/sc) (m2/V/sc) (m2/V/sc) 

Ge 2.751(3) x 10�� 2.751(3) x 10�� 3.9 x 10�� 1.9 x 10�� 
Si 2.953(0) x 10�� 2.953(0) x 10�� 1.5 x 10�� 0.5 x 10�� 

 

Table 3 gives values of k�+ (electron mobility) and k�+ (hole 

mobility) of the present analysis together with values of k�� 
(electron mobility) and k��  (hole mobility) as given in a 

physical table (Croissette, 1974, table 1-2, pp.28) [16] for Ge 

and Si, when temperature T of the semiconductor is 3000K. 

Here values of k�� and k�� are of very pure semiconducting 

material. 

The discrepancy between the two values of motilities viz., k�+, 
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k�+ and  k��, k�� in Table 3 is explained as follows: 

In the present analysis it is assumed that the average velocity 

Ug� of the charge-carrier given by eqn. (41), viz., 

Ug� % eE�
mgνg+,	 

remains the same before and after scattering of the 

charge-carrier on its collisions with an obstacle in the form of 

an atom of the semiconductor. 

The case of isotropic scattering having scattering angle θg= 

π/2, is already illustrated in Fig. 1 (a and b). 

	
Fig. 2. Anisotropic scattering of a charge-carrier by an obstacle in the semiconductor. 

Now another case of scattering, when θg ≠ π/2 is illustrated 

with reference to Fig. 2 (a and b), and is regarded as the case of 

anisotropic scattering. Here θg is an arbitrary angle chosen. 

With reference to Fig. 2(a), let θg  ≠ π/2 be the angle of 

scattering of the change-carrier on its collision with the 

obstacle in the form of the atom. Fig. 2(b) shows that as a 

result of the scattering process, the velocity Ug� as given by 

eqn. (41) is changed to Ug� (1 - cos θg). When Ug� changes 

to Ug�  (1-cos θg ), then let νg6  be defined as modified 

collision frequency in these circumstances. Whence eq. (41) is 

modified to 

Ug�-1 2 cos	θg. % �|}
ij�jw,	           (49) 

which gives, 

Ug� % �|}
ijb�jw-��g+u	ej.c	.	             (50) 

If with reference to eqn. (50), Ug� is to remain same before 

and after scattering in comparison with eqn. (41), then 

comparison of the two expressions gives, 

�j:
�jM % 1 2 cos	θg.	                 (51) 

This model assumes that 	θg  is a constant for the given 

semiconductor of the present analysis under consideration. 

If mobility for a charge-carrier is inversely proportional to 

collision frequency, then it follows that 

5jM
5j: %

�j:
�jw % 1 2 cos	θg,	            (52) 

using eqn. (51). Here kg� is charge-carrier’s mobility when 

collision frequency is νg6.	  And kg+  is charge-carrier’s 

mobility when collision frequency is νg+.	 
Further eqn. (52) gives that, 

θg % cos�� 11 2 5jM
5j:7.	             (53) 

In the present analysis, θg is an arbitrary angle of scattering 

chosen. The present analysis holds good when θg  lies in 

general between 0 to π. When 0 < θg  < π/2, then this is 

considered as a case of forward anisotropic scattering. 

Whereas when π/2 < θg < π, then this is regarded as a case of 

reverse anisotropic scattering. And θg = π/2 gives the case of 

isotropic scattering. 

Coming to eqn. (53), the scattering angle θ� for an electron 

and the scattering angle θP for a hole, is given by, 

θ� % cos�� 11 2 5kM
5k:7,	            (54) 

and 

θ� % cos�� K1 2 5lM
5l:P.	            (55) 

The value of θ� and θ� calculated from eqns. (54) and (55) 

for Ge and Si using Table 3 are given in Table 4. 

Table 4. Values of θ�, θ�, ν�� and ν�� for Ge and Si at T = 300	0K. 

Semiconductor �� �� ��� ��� 
 (degrees) (degrees) (sc-1) (sc-1) 

Ge 114.6(8) 71.97(6) 4.510(3) x10�� 9.258(2) x 10�� 
Si 60.52(5) 33.83(1) 1.172(7) x 10�� 3.518(2) x 10�� 
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Table 4 shows that, the electrons in Ge undergo reverse 

anisotropic scattering whereas the holes in it undergo forward 

anisotropic scattering (since θ� > 90	 and θ� < 90	 in the 

case of Ge). Whereas both electrons and the holes in Si 

undergo forward anisotropic scattering (since θ� < 90
0
 and 

θ� < 90
0
 in the case of Si). 

Further from eqn. (51), the value of νg6  is given by, 

νg� = �j:
��g+u	ej.	                  (56) 

For the electron and the hole, eqn. (56) gives, 

ν�� = �k:
��g+u	ek,	                (57) 

and 

ν�� = �l:
��g+u	el.	                 (58) 

Calculated values for ν��	and ν�� using the values of νg+ = 

ν�+ = ν�+ from Table 2 and the values of θ� and θ� as given 

in Table 4 are also given in Table 4 for Ge and Si.  

Coming to eqn. (56) the modified expression for mobility 

kig+ of the charge-carrier considering anisotropic scattering 

at the collision, is given by replacing νg+ in eqn. (42) by νg� 
as given by eqn. (56), and kg+ by kig+ in eqn. (42), where 

this model assumes that θg  is a constant for the given 

semiconductor of the present analysis under consideration. 

Thus eq. (42) gives, 

kig+ = �
ij

�
�jM = �

ij
��g+u	ej
�j:	 .	           (59) 

Using eqn. (23), eqn. (59) gives (Nandedkar 1983) [18] that, 

kig+ = 1 k�j7-��g+u	ej.
]U�1N���7

�� �
� T� ¡1

¢
�£�j7

�/�_
T��/�     (60) 

as an expression for the modified mobility of the 

charge-carrier considering the anisotropic scattering at the 

collision with respect to that given by eqn. (45) for the case of 

isotropic scattering. Eqn. (60) for the electron and hole gives 

that, 

ki�+ = 1 k�k7-��g+u	ek.
]U�1N���7

�� �
� T� ¡1

¢
�£�k7

�/�_
T��/�       (61) 

and 

ki�+ = K k�lP¤��g+u	el¥
]U�1N���7

�� �
� T� ¡K

¢
�£�lP

�/�_
T��/�       (62) 

where on an average, mg = m� = m� = m (the free electron 

mass) is the assumption in this analysis. Here ki�+ or ki�+ 

does not depend on an average on the intrinsic charge carrier 

density. The intrinsic charge carrier density [of which order is 

known to be 10��  m�� in Ge and 10��	m��  in Si for the 

intrinsic semiconductor near room temperature (~3000K) - 

refer to Croissette (1974, table 1-2, pp. 28) [16], is large 

enough to use method of gas kinetics for various results 

analyzed herewith. Here the density of atoms in the intrinsic 

semiconductor (refer to Table 1) is extremely large as 

compared to the intrinsic charge-carrier density. 

Here the average drift velocities of the charge-carriers as 

determined by eqns. (61) and (62) in the presence of applied 

d.c. electric field in the semiconductor are oppositely directed, 

since the sign of charge of an electron is opposite to that of a 

hole. 

Equation (61) or (62) shows that the mobility of the 

charge-carrier viz., the electron or the hole due to the 

charge-carrier’s collisions with atoms, varies as T��/� where 

T is the temperature of the intrinsic semiconductor (viz. Ge or 

Si) under consideration. This analysis assumes, that θ�	or θ� 

is a constant and does not depend on the temperature T of the 

non-polar semiconductor (viz., Ge or Si) under consideration 

and that the semiconductor is very pure. The values of θ�	and 

θ� are given in Table 4 for Ge and Si. 

6. Conclusions 

Equation (61) or (62) shows that the mobility of the 

charge-carrier viz., the electron or the hole due to the 

charge-carrier’s collisions with atoms, varies as T��/� where 

T is the temperature of the intrinsic semiconductor (viz. Ge or 

Si) under consideration. This analysis assumes, that θ�	or θ� 

is a constant and does not depend on the temperature T of the 

non-polar semiconductor (viz., Ge or Si) under consideration 

and that the semiconductor is very pure. The values of θ�	and 

θ� are given in Table 4 for Ge and Si. 

Table 4 shows that, the electrons in germanium undergo 

reverse anisotropic scattering whereas the holes in it undergo 

forward anisotropic scattering because scattering angle for 

electrons i.e. θ�  = 114.6(8) degrees > 90 degrees, and 

scattering angle for holes i.e. θ�  = 71.97(6) degrees < 90 

degrees in the case of Ge. Whereas both electrons and the 

holes in Si undergo forward anisotropic scattering because 

scattering angle for electrons i.e. θ� = 60.525 degrees < 90 

degrees, and scattering angle for holes i.e. θ�  = 33.83(1) 

degrees < 90 degrees in the case of Si. 

The present analysis of this paper assumes that for the intrinsic 

semiconductor viz., Ge or Si under consideration, it is possible 
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to define the charge-carrier collision frequency by eqns. (23) 

and (40). 

In the present analysis, the average drift velocity of the 

charge-carrier in the semiconductor is limited due to its finite 

value of mobility in presence of a d.c. electric field and so that 

d,c. energy and hence power associated with normal 

component of the average drift velocity (refer to Figs. 1 and 2) 

with respect to d.c. electric field parallel to x- axis is scattered 

over randomly at the collisions with the atoms, thereby 

increasing temperature of the semiconductor both by the 

electrons and by the holes, accounting for the heat losses. And 

the temperature T in the present analysis denotes an average 

temperature attained by the semiconductor in presence of 

these heat losses relative to surroundings in equilibrium 

conditions. 
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