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Abstract 

Using the fluctuation electromagnetic theory and Lorentz transformations, we have developed a self-consistent description of 

radiation heat transfer and dynamics of large perfectly black spherical bodies when moving in photonic gas with relativistic 

velocity. Radiation force acting on a body in the reference frame of the background radiation is found along with the rate of 

heating (cooling) and the power of emitted and absorbed electromagnetic radiation. Apart from the general physical meaning, 

the results can be used in studying evolution of cosmic bodies and their thermal radiation. 
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1. Introduction 

The problem of blackbody friction and calculating the drag 

force acting on a charged particle moving through a thermal 

bath has attracted attention since pioneering work by Einstein 

and Hopf [1]. Much later, the problem of blackbody friction 

in the case of small neutral particles was considered in more 

detail within the framework of fluctuation electrodynamics 

[2–6]. In 1968, several authors have calculated the drag force 

acting on a perfectly black spherical body from the point of 

view of an observer in arbitrary uniform motion with respect 

to the c.m. of the radiation [7–10], i. e. in the frame of 

reference co-moving with particle. This is important in 

context of the interesting possibility of detecting the Earth 

motion with respect to the c. m. of the blackbody radiation. 

However, the corresponding expression for radiation force in 

the reference frame of blackbody radiation was not obtained, 

and the important issues concerning the dynamics and 

intensity of emission and absorption of thermal photons were 

not discussed. 

At the same time, the issues of dynamics and the drag force 

calculation, thermal radiation and heating (cooling) of 

moving small and large-sized bodies are closely interrelated. 

In particular, a moving body has its own local temperature 

and emits thermal photons into vacuum, whereas the 

blackbody friction leads to the energy dissipation, heating 

and radiation of the body. Therefore, a comprehensive 

solution to this problem requires calculating the intensity of 

thermal radiation and radiation force both in the reference 

frame of radiation (RFR) and in the reference frame co-

moving with the body. All these characteristics (in RFR) are 

crucially important for an external observer. 

For a small dielectric particle moving in photonic gas 

(blackbody radiation), the power of emitted and absorbed 

radiation was calculated in [11, 12], using the formalism of 

fluctuation electrodynamics and the long-wavelength 

approximation R λ<<  ( R  and λ  are the particle radius 

and the characteristic wavelength of radiation). However, for 

a perfectly black particle in the short-wavelength 

approximation R λ>>  (geometrical optics approximation), 
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a self-consistent solution to this problem is still absent. This 

work aims at filling this gap, and the results provide a useful 

link between the limits R λ<<  and R λ>> , forming a 

closed physical picture. Apart from the general physical 

meaning, the results can be used in studying evolution of 

cosmic bodies and their thermal radiation. 

2. Theory 

Figure 1 shows the problem statement and the frames of 

reference Σ , ′Σ  used in what follows. The reference frame 

Σ  (RFR) is the frame of reference of blackbody radiation 

with local temperature 
2

T , and ′Σ  is the rest frame of a body 

with local temperature 
1

T . In RFR Σ , the body is moving in 

the direction of the positive x -axis with velocity V cβ=
 
( c  

is the speed of light in vacuum). 

 

Figure 1. Geometrical configuration and reference frames corresponding to 

the vacuum background ( Σ ) and particle ( 'Σ ). 'Σ  moves along x′+  with 

velocity V . 

We adopt the geometrical optics approximation (short-

wavelength approximation) 
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Then, according to [7], the dissipative force acting on a 

particle in ′Σ , is given by 
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Stefan-Boltzmann constant. Moreover, the energy density of 

an equilibrium electromagnetic field (photonic gas) is given 

by [7] 
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The validity of (2), (3) is easily verified using the energy-

momentum tensor of the equilibrium electromagnetic field 

(written in Σ ) [13] 

( )T p u u pgµν µ ν µνε= + −                     (4) 

where 4

2

4
/ 3,

B
p T

c
ε ε σ= = ; , 0,1,2,3µ ν = . By 

transforming Tµν  into ′Σ , the quantities 
x

F ′  and ε ′  are 

expressed through the components of tensor Tµν′  [7]. 

The following analysis is based to great extent on the 

relationships [11, 12] 

2Q Qγ′ =ɺ ɺ                                       (5) 

1 2 x

dQ
I I I F V
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 ≡ − = − + 
 

                          (6) 

2 /
x x
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where 
1

I  and 
2

I  denote the power of emission and 

absorption in Σ ; Qɺ  and Q′ɺ  are the rates of particle heat 

exchange in Σ and ′Σ ; 
x

F  and 
x

F ′  are the forces acting on 

the particle in Σ and ′Σ , respectively. Originally, equations 

(5)—(7) were obtained using the long-wavelength 

approximation R λ<<  which is opposite to (1). However, as 

shown in Appendix, these relations are also valid in the case 

R λ>> . It is worth noting that the equations similar to (6), 

(7) were obtained earlier by Polevoi [14] in the problem of 

vacuum friction between two semiinfinite half-spaces in 

relative motion. In the general case, Eqs. (6), (7) appear due 

to the condition of quasistationarity / 0,dW dt = with W

being the energy of the fluctuation- electromagnetic field (see 

[11, 12] for more details), and their validity is independent of 

the ratio between R  and λ . 

Further calculations are very simple. According to the Stefan-

Boltzmann law, the power (intensity) of thermal radiation in 

′Σ  is given by 

4 2 4

1 1 14BI T R aTσ π′ = =                        (8) 

The power of absorbed radiation in ′Σ  is obtained using the 

relation between 
2

I ′  and ε ′ : 

2

2 4
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c
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Using (9) and (3) yields 
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On the other hand, the rate of particle heating (cooling) in ′Σ  

takes the form 

2
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Using (5) and (11) one obtains the equation of heating 

(cooling) in Σ  
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Moreover, by inserting (2) and (12) into (7) we obtain the 

radiation force 
x

F  

4 4
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1

3
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c
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                    (13) 

From (13) it follows that, in contrast to
x

F ′ , radiation force 

x
F  in Σ  contains the contributions from absorbed 

background radiation (the second term) and that emitted by 

the particle (the first term). The same situation takes place for 

dielectric particles in the long-wavelength approximation [11, 

12]. Finally, by inserting (12) and (13) into (6) one obtains 

4 4

1 2( )I a T T= −                           (14) 

Surprisingly, Eq. (14) does not depend on the particle 

velocity and formally reduces to the result familiar in the 

static case. However, paradoxality of this fact vanishes if we 

take into account that the particle will reache a steady-state 

temperature as a result of heat exchange with background 

radiation (assuming that 
2

)T const= , defined by the 

condition (see the next Section) 

0Q Q′ = =ɺ ɺ                                    (15) 

From (12) and (15) the steady-state temperature of a moving 

perfectly black body is given by 

( )1/ 4
1/2 2

2 1 / 3sT T γ β= +                        (16) 

Inserting (16) into (14) yields the stationary imbalance of 

radiation and absorption 

4 2 2

2 (1 / 3) 1sI aT γ β = + −                     (17) 

Both 
s

T  and 
s

I  depend on the particle velocity, as it could be 

expected. Formulas (12)–(14) and (16), (17) are the main 

results of this work. In the case when a large-sized particle is 

not perfectly black and is characterized by the absorptivity 

a
a ( 0 1

a
a< < ), and emissivity 

r
a  ( 0 1)

r
a< <

 
these 

formulas can be trivially modified. In the case when the 

particle is characterized by the dielectic and magnetic 

properties, Eqs. (5)–(7) have to be used along with Eqs. (A7) 

and (A13). 

3. Kinetics of Heating/Cooling 
and Dynamics of the Particle 

It is interesting to compare the time-scale of particle 

deceleration and the time needed to reach a steady-state 

temperature. The dynamics equation in RFR has the form 

21
x

d mV
F

dt β

 
  =
 − 

                           (18) 

Along with the temporal velocity dependence in the left-hand 

side of (17), we must take into account the change in the 

particle mass due to the radiation and absorption. With 

allowance for this fact Eq. (18) takes the form [12] 

3

x

dV
m F

dt
γ − ′=                           (19) 

Substituting (2) into (19) yields 

4

2
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4
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mc

β
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                  (20) 

After integrating (20) one obtains 

4

2

2
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where ( ) 1/ 2
2 2

( ) 1 ( ) /t V t cγ
−

= − , ( ) 1/2
2 2

(0) 1 (0) /V cγ
−

= − , 

(0)V  and ( )V t  are the velocities at the moments 0t =  and 

t . From (21), the characteristic deceleration time is given by 

2 2

4 4

2 2

3

8 8
V

B

mc R c

aT T

ρτ
σ

= =                    (22) 

where ρ  is the particle density. For example, the time 
V

τ  for 

an icy H2O particle at 20R cm= , 3
1 /g cmρ ≈  and 

2
100T K=  is 9

12 10Vτ ≈ ⋅
 
years, i. e. close to the age of the 

Universe. 

To analyze the kinetics of heating, we represent Q′ɺ  in the 

form (
s

C  is the specific heat capacity) 

1

1 1 1
( ) s

s s s

dCdTdQ d dm
C mT C m C T mT

dt dt dt dt dt
γ γ γ

′
= = + +

′ ′  
 (23) 

With allowance for the identity 2/ /dm dt Q cγ= ɺ  from (5) 

and (23) one obtains 
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1 1
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dCdT
C m Q C T c mT

dt dt
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Since 2

1 / 1sC T c <<  at any possible temperature of solids, the 

corresponding term in (24) can be omitted. Moreover, 

assuming 
s

C const= , substituting (12) into (24) and 

introducing the reduced variables of time / Qtτ τ=  (with 

3

23

s

Q

B

C R

T

ρτ
σ

= ), and temperature 
1 2

/x T T= , Eq. (24) takes the 

form 

4
2(1 / 3)

dx x

d
γ β

τ γ
= + −                   (25) 

As follows from (25), the magnitude of x  tends to the 

steady-state value ( )1/4
1/2 2

2/ 1 / 3s sx T T γ β= = +  

irrespectively of the initial value (provided that the 

background temperature 
2

T  is constant). The characteristic 

time of this process is of order 1 and decreases with 

increasing γ . Therefore, the time scale of particle 

heating/cooling is determined by the value of parameter 
Qτ . 

However, at ~ 1γ  the approximation 
s

C const=  becomes 

insufficiently correct, and the steady-state temperature should 

be determined from (24), depending on the behavior of the 

function 
1

( )
s

C T . 

Comparing 
Qτ  and 

V
τ  yields 10 142

2

8
/ 10 10

3

s

Q V

C T

c
τ τ − −= ≈ ÷  

at typical values 3
10 10 /sC J K kg= ÷ ⋅  and 3

2 10 10T K= ÷ . 

Therefore, the process of heating/cooling proceeds much 

faster than the process of deceleration. 

4. Conclusions 

A self-consistent description of radiation heat transfer and 

dynamics of large particles moving with relativistic velocity 

in photonic gas has been developed. Radiation force acting 

on a particle in the reference frame of the background 

radiation is found. Initially, the difference between emission 

and absorption intensities does not depend on the particle 

velocity being described by the Stefan-Boltzmann law. It is 

shown that the process of heating/cooling proceeds much 

faster than the process of deceleration and the particle 

acquires a steady-state temperature proportional to the 

temperature of the backround radiation. In this case, the 

intensity of thermal radiation is proportional to the gamma-

factor squared being considerably higher than the intensity of 

absorbed radiation. Further on, the particle is gradually 

slowing down and its kinetic energy is fully converted into 

radiation. With slight modification, these results can be 

applied to not perfectly black bodies. For the bodies with 

well defined dielectric and magnetic properties the results 

can be obtained numerically. 

Apart from the general theoretical meaning, the results can be 

used in studying evolution of cosmic bodies and their thermal 

radiation. Rather typical velocities of cosmic bodies may 

reach 10
3
–10

4
 km/s. Though in the state of thermal 

equilibrium of the system consisting of the solid particles and 

photons the difference between emission and absorption 

decreases, the observation of this difference may be an 

indication of internal dynamics in protostellar clouds to the 

outside observer. 

Appendix 

First we recall the known relativistic transformations of the 

electric density current j, the electric and magnetic fields E, 

B, polarization P and magnetization M corresponding to the 

Lorentz transformations from ′Σ  to Σ : 

( )
x x

j j Vγ ρ′ = − ; 
y yj j′ = ; 

z z
j j′ =                      (A1) 

x x
E E′ = ; ( )y y zE E Bγ β′ = − ; ( )z z yE E Bγ β′ = +     (A2) 

x x
B B′ = ; ( )y y zB B Eγ β′ = + ; ( )z z yB B Eγ β′ = −     (A3) 

x x
P P′ = ; ( )y y zP P Mγ β′ = + ; ( )z z yP P Mγ β′ = −      (A4) 

x x
M M′ = ; ( )y y zM M Pγ β′ = − ; ( )z z yM M Pγ β′ = +    (A5) 

Consider the Joule dissipation integral in ′Σ  

3 3

x x y y z zd r j E j E j E d r′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + +∫ ∫j E ,       (A6) 

where the angular brackets ...  imply the total quantum-

statistical averaging. In (A6), the integration is performed 

over the volume of the particle and we extend it to the whole 

space. This is implicit in what follows for all integrals. 

Substituting (A1), (A2) into (A6) yields [15] 

3 2 3

xd r F V d rγ − ′ ′ ′= +∫ ∫jE j E ,           (A7) 

where 
x

F  is the x-component of the Lorentz force 

3 31
d r d r

c
ρ= + ×∫ ∫F E j B               (A8) 

Writing the density current in 'Σ  

rotc
t

′∂′ ′= +
′∂

P
j M                         (A9) 

and substituting (A9) into (A6) we get 
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3
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�

�

 (A10) 

In the last line of (A10), the integral over an infinitely remote 

surface equals zero, while the third term is zero due to 

stationarity of electromagnetic fluctuations. Then it follows 

from (A10) 

3 3Q d r d r
t t

′ ′∂ ∂′ ′ ′ ′ ′ ′ ′= = +
′ ′∂ ∂∫ ∫

P M
j E E Bɺ     (A11) 

Substituting (A2)–(A5) into (A11) and making use simple 

transformations with allowance for 

1
dt dtγ −′ = , 3 1 3

d r d rγ − ′=  one obtains 

3 2 3d r d r
t t t t

γ
′ ′∂ ∂ ∂ ∂′ ′ ′+ = +
′ ′∂ ∂ ∂ ∂∫ ∫

P M P M
E B E B   (A12) 

From (A12) we can see that the quantity 

3Q d r= +∫ P E M Bɺ ɺ ɺ  

is transformed from Σ  to ′Σ  according to Eq. (5), namely: 

2Q Qγ′ =ɺ ɺ                                   (A13) 

Since we did not use any restrictions on the value of the body 

radius R, Eq. (A13) is valid irrespectively of the ratio 

between the radius and characteristic wavelength λ  of 

radiation. As already was said, Eqs. (6), (7) are the 

consequence of the quasistationarity of the fluctuation-

electromagnetic field, and therefore, along with Eq. (7), they 

have the general character. 

It is also worth noting that using (A13), Eq. (A7) takes the 

form 

3 3 3 31
d r d r d r d r

c
ρ = + × ⋅ + + 

 
∫ ∫ ∫ ∫jE E j B V P E M Bɺ ɺ  (A14) 

Eq. (A14) generalizes the analogous equation for small 

polarizable particle with fluctuating dipole moments d and m 

[15]: 

( )( )3

( )

/x

V

d r F V dQ dt= ∇ + ⋅ + + ≡ +∫ jE dE mB V dE mBɺ ɺ  (A15) 

In contrast to (A14), Eq. (A15) is valid under the condition 

R λ<< . 
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