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Abstract 

Control of magnetic levitation systems suffer from coupled physics regardless of control. Feedback control is used to robustly 

reject disturbances, but is complicated by this coupling. Improved performance is possible by decoupling dynamic disturbance 

torque, an attractive solution provided by the physics-based control design methodology. Promising approaches include 

elimination of virtual-zero references, manipulated input decoupling, sensor replacement and disturbance input decoupling. 

This paper compares the performance of the physics-based control to control methods found in the literature typically 

including cascaded control topology and neglecting factors such as back-emf. 
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1. Introduction 

Physics based control is a method that seeks to significantly 

incorporate the dominant physics of the problem to be 

controlled into the control design. Some components of the 

methods include elimination of zero-virtual reference, 

observers for sensor replacements, manipulated input 

decoupling, and disturbance-input estimation and decoupling. 

2. Physics-Based Control 

2.1. Zero-Virtual References 

Zero-virtual references are implicit with cascaded control 

loops. When inner loops reference signals are not designed 

otherwise, the cascaded topology results in zero-references, 

where the inner loop states are naturally zero-seeking. It is 

generally understood that if any control system demands a 

positive or negative rate, the inner position loop (seeking 

zero) would essentially be fighting the rate loop, since a 

positive or negative rate command with quiescent initial 

conditions dictates non-zero position command. Elimination 

of the zero-virtual reference may be accomplished by using 

analytic expressions for both position and rate eliminating the 

nested, cascaded topology. Using analytic expressions for 

both position and rate commands implies the utilization of 

commands that both correspond to achieving the same 

desired endstate, essentially eliminating the conflict between 

the position and rate commands inherit in the cascaded 

topology. 

2.2. Sensor Replacement 

Due to simplicity of the approach, observer-based 

augmentation of motion control systems is becoming a 

ubiquitous method to increase system performance [Ohmae, 

Matsude, Kaniyama, Tachikawa, 1982], [Yoon, Jung, Too, 

Sul, 2007], [Yang, Deng, 2005]. The use of observers also 

permits (in some cases) elimination of hardware associated 

with sensors, or alternatively may be used as a redundant 

method to obtain state feedback. 

Velocity sensors may be eliminated using speed observers 

based on position measurement. Estimation is robust to 
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parameter variation and sensor noise. Both position and 

velocity estimates may be used for state feedback eliminating 

the effects of sensor noise on the state feedback controller.  

Luenberger (Figure 1) and Gopinath (Figure 2) observer 

topologies will be compared. Luenberger-styled observers 

(henceforth simply referred to as Luenberger observers) are a 

simple method to estimate velocity given position 

measurements. Additionally, the Luenberger observer may be 

used to provide estimates of external system disturbances, 

since the observer mimics order of actual systems dynamic 

equations of motion. When used the Luenberger disturbance 

observer bestows robustness to system parameter variations. 

Often used terminology is maintained in [Yoon, Jung, Too, 

Sul, 2007], [Yang, Deng, 2005] where the modification of the 

signal chosen as the disturbance estimate establishes a 

“modified” Luenberger observer.  The modified Luenberger 

observer as referred in the cited literature is clearly superior 

(with respect to disturbance estimation) to the nominal 

Luenberger observer, so it is assumed to be the baseline 

Luenberger observer for disturbance estimation.  

 

Figure 1. Luenberger-Styled Velocity Observer. 

 

Figure 2. Gopinath-Styled Velocity Observer. 

References [Yoon, Jung, Too, Sul, 2007], and [Yang, Deng, 

2005] improve estimation performance by augmenting the 

architecture with a second, identical Luenberger observer. 

The two observers are tuned to estimate velocity and external 

disturbances respectively. The approach improves estimation 

accuracy and system performance, but still suffers from 

estimation lag, so improved methods should be available if 

estimation lag is eliminated.  

Methods to improve estimation performance will be 

presented. Together with estimation improvement, motion 

control will be enhanced with disturbance input decoupling 

(which also aids estimation performance). 
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2.2.1. Manipulated Input Decoupling (MID) 

Manipulated input is the actual variable that can be modified 

by a control design. Very often in academic settings control u 

is the goal of a design, but in reality a voltage command is 

sent to a control actuator, and this voltage command should 

be referred to as the true manipulated input. The importance 

of this distinction lies in the fact that electronics may not 

properly replicated the desired control u, unless the control 

designer has accounted for internal disturbance factors like 

the resistive effects of back-emf (inherit in any electronic 

device where current is generated and modified in the 

presence of a magnetic field). The manipulated input signal 

should be designed to decouple these effects. 

2.2.2. Disturbance Input Decoupling (DID) 

Augmentation of speed observers with a command 

feedforward path permits near-zero lag estimation, even in a 

single-observer topology. Elimination of estimation lag 

improves estimation accuracy which subsequently improves 

the performance of the motion controller. 

Augmentation of the motion controller with disturbance input 

decoupling extends the bandwidth of nearly-zero lag 

estimation considerably again even in a single-observer 

topology. 

The estimates from the observer are frequently used for state 

feedback eliminating the requirements for both velocity 

sensors and position measurement smoothing. Adding 

command feedforward to the observer establishes nearly-zero 

lag estimation with good accuracy. Furthermore, augmenting 

the motion controller with disturbance input decoupling 

improves motion control. 

3. Zero-Virtual References & 
MID 

Actuators contain electronics that often contain other force or 

torque motors. Motors associated with electronics are 

cascaded inner-loops, and they are often paid less attention in 

the control design. Such cascaded inner loops often reduce 

the overall system bandwidth due to zero-virtual references. 

Lacking designed references, the cascaded inner loops seek 

zero. Design engineers should consider eliminating zero-

virtual reference and decoupling the cascaded electronics to 

increase overall system performance. Consider four voice-

coil force actuators (figure 3), and pay particular attention to 

the fact that force output is coupled due to back-emf and 

armature resistance which physically desire to seek a virtual-

zero reference. 

 

Figure 3. Voice coil actuator.  

Note the presence of cross coupled armature resistance and back-emf 
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Figure 4. Decoupling armature resistance. 
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An initial goal is to regulate i(t) to regulate fem, (since i(t) 

and fem are identical variables for this class of machines) to 

get well-behaved dynamics for the motion states. Since 

velocity-dependent back-emf complicates the electrical 

dynamics (it is cross-coupled state feedback), feedback 

decoupling was implemented. Especially since Ke and Kf are 

often quite high, back emf can be quite a factor if not dealt 

with. Note that positive feedback for approximately nulls Ke. 

Next, the effects of voice-coil resistance Rp were decoupled 

(figure 5) with feedback decoupling (i.e. decouple the effects 

of the armature resistance). Neither of these activities 

(decoupling back-emf and armature resistance) improves 

dynamics stiffness rather they yield well behaved force 

modulators. As a matter of fact, decoupling back-emf results 

in system inertia being the only remaining system 

disturbance rejection property. 

 

Figure 5. Voice coil actuator with decoupling of armature resistance and back-emf. 

The figure below (figure 6) is a simplified block diagram that 

assumes the back-emf and armature resistance have been 

decoupled (driven to near-zero). Mason’s rule analysis 

(similar to the one done for decoupling armature resistance in 

figure 4) demonstrates that decoupling yields unity gain 

current regulators. 

Notice this remains strictly true as the armature resistance 

estimation is accurate. In reality, it is okay if it is not strictly 

true. The goal is to reduce the effects of armature resistance 

to allow the active resistance to dominate yielding well-

behaved current regulators (i.e. within the regulators 

bandwidth, the behavior is nearly exactly as desired). Since 

these are the cascaded low energy states that feed the high 

energy motion states, the active resistance was tuned to a 

high bandwidth, 100 Hz (resulting value of Ra=4). 

 

Figure 6. Well-behaved force voice-coil actuator. 

 

Figure 7. Voice-coil state block diagram with virtual-zero reference. 
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After decoupling back-emf and armature resistance, the now-

dominant active resistance that may be tuned for system 

performance.  

Neglecting armature resistance and back-emf decoupling, the 

resultant dynamic stiffness is: 

( ) ( )( )
4

v pd

2 4

a rsas risa p p f e p

M L sF ( s )

V ( s ) b s K K L s R K K L s
=

+ + − +          (2) 

The effects of decoupling may be observed on dynamic 

stiffness by setting an terms to zero to expose the individual 

effects of each loop on disturbance rejection. 

4. Sensor Replacement: 
Observers 

This section of the paper evaluates the effect of observer 

types on two, observer-based, incremental motion format, 

state feedback motion controllers with a cascaded current 

loop applied to the dc servo drive in Figure 4 with state 

feedback decoupling, but not disturbance input decoupling 

(to be performed in a later section of the paper). 

 

Figure 8. DC servo drive (cascaded current loop). 

Table 1. Parameter Values and Variable Definitions. 

Jp = 0.015x10-3 Kg-m2 polar moment of inertia 

KT = 0.14 Nm/Amp torque constant 

Ke = 0.14 volts/rad/sec back-emf constant 

Rp = 2.6 ohms armature resistance 

Lp =4.3 milli-henries armature inductance 

es = applied terminal voltage in volts 

Ia = armature current in amperes 

mag = electromagnetic air-gap torque (moment) = KTia 

eb = inducted (back emf) voltage = Keωm in volts 

ωm =load angular velocity in rad/sec 

θm = load angular position in rad 

Part 1 Observer Gain Tuning 

For desired observer eigenvalues λ1=12.5, λ2=50, λ3=200, 

desired motion controller gains (tuned for disturbance 

rejection) λc1=6, λc2=25, λc3=100, and current regulator gain 

λi=800, the general form of the characteristic equation may 

be equated to the specific observer forms, controller form and 

current regulator form revealing gains. Tuning was directed 

in the problem statement to be identical to permit apples-to-

apples comparison of effects on estimation accuracy. 

Luenberger Tuning (actual current):  

C.E.= (s+λ1)(s+λ2)(s+λ3) =  Jp
^

s3+ bo s2s + Kso s + Kiso   (3) 

bo = Jp
^

( λ1+ λ2+ λ3)                (4) 

Kso =Jp
^

([ λ1( λ2+ λ3)+ λ2 λ3] Kiso = Jp
^

( λ1 λ2 λ3)      (5) 

Gopinath Tuning: 
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Equating coefficient of ‘s’ and solve for gains:  

(s+λ1)(s+λ2)(s+λ3)= Jp
^

s3 + (Jp
^

Rp
^

+Ke
^

K1)s2 + Ke
^

K2s + Ke
^

K3   (7) 

K1 = 
Jp
^
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^
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^

Rp
^
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^

            (8) 

K3 = 
Jp
^

Lp
^

Ke
^

 ( )λ1λ2λ3                     (9) 

K2 = 

Jp
^

Lp
^

(λ1 λ2+ λ3)-Jp
^

Rp( )λ1(λ2+ λ3)+ λ2 λ3

Ke
^

   (10) 

Motion Controller:  

(s+λc1)(s+λc2)(s+λc3) =Jp
^

s3+ ba s2s + Ks s + Kis      (11) 

Current regulator: (s+λi) = Lps+Ra         (12) 

While the Luenberger observers diverge very close to the 

maximum tuned bandwidth (even with parameter errors), the 

Gopinath observer diverges at a lower bandwidth when errors 

are present. Since both observers contain a current-

feedforward element, you will see nearly zero-lag properties 

out to the bandwidth of the feedback observer controller. 

Clearly, disturbances (in the form of modeling errors here) do 

not influence low frequency estimation (likely due to the 

addition of integrators in the observer controllers). The 

Gopinath observer was particularly sensitive to errors in Kt 

indicating its reliance on the feedforward estimation path.  
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Notice in particular in Figure 10 that zero-lag estimation 

occurs even with inaccurate Kt (albeit with non-zero 

estimation frequency response at all frequencies). 

 

Figure 9. Comparison of estimation accuracy frequency response functions 

for incorrect Jp^ . Luenberger (blue) Gopinath (red); dotted = -20% error, 

solid = 0% error; dashed = +20% error. 

 

Figure 10. Comparison of estimation accuracy frequency response functions 

for incorrect Kt=Ke. Luenberger (blue) Gopinath (red); dotted = -20% error, 

solid = 0% error; dashed = +20% error. 

One suggestion for improved command tracking is to remove 

feedback decoupling as done here replacing it with 

feedforward decoupling permitting the disturbance torque to 

excite the decoupling. One other thing: Note the maximum 

phase lag of 90 degrees. Such a maximum would be expected 

in a system with a command feedforward control scheme. 

Since the feedforward path would remain nearly zero-lag, the 

90-degree phase lag would be creditable to Shannon’s 

sampling-limit theory. Since there is no command 

feedforward control in this scheme, the lack of a maximum 

phase shift of 180 degrees (for a double integrator plant) is 

puzzling. 

 

Figure 11. Frequency Response Functions for the motion control system. 

Observer tuning (not the current loop tuning) determines the 

maximum frequency for nearly zero-lag accurate estimation. 

Since the commanded and actual current are nearly identical 

(also with zero lag) out to the higher current loop bandwidth, 

it was expected that the effects of commanded versus actual 

current are mitigated by feedback decoupling (i.e. we exceed 

the observer bandwidths before there is an appreciable 

difference in commanded versus actual current).  

Actually, the Luenberger observer was sensitive to output 

noise associate with actual current. The noisier actual current 

signal does not pass through a smoothing integrator before 

going directly into the plant dynamics. On other hand, the 

Gopinath observer compares the estimated and 

actual/commanded current (i.e. current estimation error) 

through a smoothing integrator in the observer controller and 

also passes a portion through a separate smoothing integrator 

associate with angular rate estimation. Thus, the Gopinath-

styled observer was insensitive to commanded versus 

measured current due to feedback decoupling. The 

Luenberger observer may be made less sensitive to the 

difference between commanded and actual current (and other 

system noises and errors) by using the actual rotation angle 

as input to the observer (Figure 13). As a matter of fact, this 

iteration resulted in the best performance for the evaluated 

case of sinusoidal sensor noise demonstrating the least mean 

error. 

5. Disturbance Input 
Decoupling 

This paragraph reformulates the Yoon paper’s dual observer-

based DID system consistent with physics-based control 

methods and furthermore evaluates opportunities in the 

proposed structure. Physics-based methods recommend 1) 

disturbance input decoupling followed by 2) state feedback 

decoupling of system cross-coupling, then 3) elimination of 

virtual zero references, then finally adding active state 



278 Timothy Sands:  Improved Magnetic Levitation Via Online Disturbance Decoupling  

 

feedback with full state references. Note the observer 

structure is different with added command feedforward 

shown in Figure 12 & Figure 13.  

 

Figure 12. Luenberger-styled observer with command feedforward. 

 

Figure 13. Decoupled motion control w/DID & Luenberger observer with command feedforward. 

Emphasize velocity estimation for state feedback of motion 

controllers. The improvements achieve near-zero lag, accurate 

velocity estimation as displayed in Figure 16 and Figure 17 for 

clarity. The larger scale of Figure 17 reveals the advantages 

over the most recently proposed improved methods. High-

frequency roll-off is drastically improved by addition of 

command feedforward (of the true manipulated input) to the 

Luenberger observer. Additional inclusion of disturbance input 

decoupling in the motion control system improves velocity 

estimates in the observer, essentially eliminating roll-off and 

estimation lag. This later claim is more clearly displayed in the 

zoomed response plot in Figure 16.  

The cascaded control topology should be eliminated adding 

full command references. Command feedforward control 

should be added. The electro-dynamics should not be ignored 

in the analysis. It causes the illusion that force is the 

manipulated input as opposed to current (the true 

manipulated input) resulting in lower bandwidth. Neglecting 

the electrodynamics results in an analysis that is inadequately 

reinforces the experiments. Yoon refers to “disturbances 

forces generated by the current controller” to explain the 

difference between experimentation and analysis. Decoupling 

the electro-dynamics will improve performance even without 

full command references. Without manipulated input 

decoupling (MID), you have an implied zero-reference 

command for current. Assuming an inductor motor’s 

electronics, decoupling Ke should dramatically increase 

disturbance rejection isolating the electrical system. The 

paper utilizes a dual observer to permit individual tuning for 

disparate purposes (DID and velocity estimation), but then 

implies using identical observer gains! That makes no sense. 

Instead of using identical gains, eliminate one of the 

observers to simplify the algorithmic complexity. 

Alternatively, utilize different gains optimized respectively 

for velocity and disturbance estimation. A first step for 

comparison requires repetition of the Yoon paper results. 

Equations (3), (4), and (5) in the Yoon paper are plotted in 

Figure 14, which should duplicate figure (5) in the Yoon 

paper. Note the slightly different result was achieved only in 

the case of modified observer (not the proposed dual-

observer method).  

Next, equations (6), (7), and (8) in the Yoon paper were 

plotted in Figure 15, which duplicates Yoon’s figure 6. Again, 

notice a slight difference this time with the estimation FRF of 

the basic Luenberger observer. According to the paper’s plots 

in figure 6, the modified observer estimates more poorly than 

the nominal observer by dramatically overestimating 

velocity. This clearly indicates a labeling-error in the paper’s 

figure. Also, the Luenberger observer does not estimate well 

within the observer bandwidth, so my results displayed here 

seems more credible. The difference is negligible considering 

the performance to be gained using physics-based 

reformulation. 
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Figure 14. Nominal response comparison: Solid-black line is Luenberger 

observer; Blue-dashed line is Modified Luenberger observer; Red-dotted line 

is no compensation. 

 

Figure 15. Response comparison: Solid-black line is Luenberger observer; 

Red-dotted line is Modified Luenberger observer; Blue-dashed line is Dual 

Observer. 

The reformulation results in the estimation FRF with DID 

and command feedforward is displayed Figure 16 & Figure 

17. Immediately notice that addition of the command 

feedforward to the modified Luenberger observer yields 

nearly-zero lag estimates, far superior to the Yoon paper 

(which omitted the command feedforward path in what they 

call an observer). It is a premise of the physics-based 

methodology that the title “observer” implies nearly-zero lag 

estimation, so one might argue that the Yoon paper really 

utilizes a state filter rather than a state observer. 

 

Figure 16. Observer Improvements estimation comparison: Solid-blue line 

is Modified Luenberger observer with command feedforward; Red-dashed 

line is Modified Luenberger observer with command feedforward and 

disturbance input decoupling. 

 

Figure 17. Observer Improvements estimation comparison: Solid-blue line 

is Modified Luenberger observer with command feedforward; Red-dashed 

line is Modified Luenberger observer with command feedforward and 

disturbance input decoupling; Dashed-black line is Dual Observers. 

The results using the physics-based methodology are clearly 

superior despite relative algorithmic simplicity. Adding the 

command feedforward permits accurate, near-zero lag 

estimation of velocity without a velocity sensor. Furthermore, 

disturbance input decoupling increases system robustness and 

permits accurate estimation inaccuracy even when unknown 

disturbances are present. Certainly, accounting for the 

electrodynamics should always be done rather than 

neglecting them as “system noise” as done in the Yoon paper. 
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6. Conclusions 

Physics based control is a method that seeks to significantly 

incorporate the dominant physics of the problem to be 

controlled into the control design. Some components of the 

methods include elimination of zero-virtual reference, 

observers for sensor replacements, manipulated input 

decoupling, and disturbance-input estimation and decoupling. 

Decoupling dynamic disturbance torques is an attractive 

solution provided by the physics-based control design 

methodology. This paper compares the performance of the 

physics-based control to control methods found in the 

literature typically including cascaded control topology and 

neglecting factors such as back-emf. 

Recommendation: Use enhanced Luenberger-styled 

observers w/actual θ(s) for such plants. 
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