
 
Physics Journal 

Vol. 1, No. 2, 2015, pp. 24-30 

http://www.aiscience.org/journal/pj  
 

 

* Corresponding author 

E-mail address: abdel_hafiez@yahoo.com  

The Group Theory as an Algebraic Approach for 
Prediction of Some Nuclear Structure 
Characteristics 

A. Abdel-Hafiez* 

Experimental Nuclear Physics Department, Nuclear Research Center, AEA, Cairo, Egypt 

Abstract 

An algebraic model depends upon the group theory emphasizes the coherent behavior of all of the nucleons. Among the kinds 

of collective motion that can occur in nuclei are rotations or vibrations that involve the entire nucleus. In this respect, the 

nuclear properties can be analyzed using the same description that is used to analyze the properties of a charged drop of liquid 

suspended in space. The algebraic collective model can thus be viewed as an extension of the liquid drop model, the algebraic 

collective model provides a good starting point for nuclear structure and then one could understand fission. For that purpose I 

have discussed and calculated some characteristics as the energy per particle, charge distribution, energy spectra for nuclei. 

Also, the collective potential-energy as a function of the internuclear distance and the potential as a function of the control 

parameter could be explained successfully as well.  

Keywords 

Group Theory, Algebraic Collective Model, Nuclear Structure 

Received: June 10, 2015 / Accepted: June 25, 2015 / Published online: July 16, 2015 

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license. 

http://creativecommons.org/licenses/by-nc/4.0/ 

 

1. Introduction 

The ACM (algebraic collective model) [1–7] is an algebraic 

version of the Bohr model [8] based on a dynamical group 

SU(1, 1)×SO(5) for which all the matrix elements needed in 

applications of the model are calculated analytically. It is a 

development of the computationally tractable version of the 

collective model [2] that enables collective model 

calculations to be carried out efficiently by use of wave 

functions that span modified oscillator series of SU(1,1) 

irreps (irreducible representations) [9,10] and complementary 

SO(5) wave functions. Modified oscillator SU(1,1) irreps, 

used previously by Davidson [11] in molecular physics, give 

bases of wave functions in which the expansions of collective 

model wave functions for deformed nuclei are an order-of-

magnitude more rapidly convergent than in a conventional 

harmonic oscillator basis. The method used in [2] for 

calculating model SO(5) wave functions was subsequently 

used [10] to develop an algorithm for computing SO(5) 

spherical harmonics and from them the SO(5) Clebsch-

Gordan coefficients needed for a complete algebraic 

expression [4] of the Bohr model. It followed that, with 

access to the required SO(5) Clebsch-Gordan coefficients, 

there was no longer any need to calculate wave functions or 

carry out integrations in applications of the ACM because 

they could all be expressed in terms of given analytical 

SU(1,1) matrix elements and SO(5)-reduced matrix elements 

[4–6, 11]. Thus, the SU(1, 1) × SO(5) dynamical group 

structure of the ACM enables the effective, but 

computationally intensive, methods of Bohr model 

calculations in a conventional U(5) ⊃ SO(5) basis [12, 13], 

as used in the Frankfurt code [14, 15], to be avoided. 

The algebraic collective model has been very successful in 

describing a variety of nuclear properties, especially energy 

levels in nuclei with an even number of protons and neutrons. 

These even nuclei can often be treated as having no valence 
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particles so that the Shell Model does not apply [16,17]. 

These energy levels show the characteristics of rotating or 

vibrating systems expected from the laws of quantum 

mechanics. Commonly measured properties of these nuclei, 

including broad systematics of excited state energies, angular 

momentum, magnetic moments, and nuclear shapes, can be 

understood using the collective model [18]. The shell model 

and the collective model represent the two extremes of the 

behavior of nucleons in the nucleus. More realistic models, 

known as unified models, attempt to include both shell and 

collective behaviors. 

The two most important developments in nuclear physics 

were the shell model and the collective model. The former 

gives the formal framework for a description of nuclei in 

terms of interacting neutrons and protons. The latter provides 

a very physical but phenomenological framework for 

interpreting the observed properties of nuclei. A third 

approach, based on variational and mean-field methods, 

brings these two perspectives together in terms of the so-

called unified models. Together, these three approaches 

provide the foundations on which nuclear physics is based. 

They need to be understood by everyone practicing or 

teaching nuclear physics, and all those who wish to gain an 

understanding of the foundations of the models and their 

relationships to microscopic theory as given by recent 

developments in terms of dynamical symmetries. 

 

Fig.    1. Flowchart for how algebraic models create related to collective and 

shell models. 

Some researches provided a simple presentation of the 

models and theory of nuclear collective structure, with an 

emphasis on the physical content and the ways they are used 

to interpret data. It also describes the extensions of these 

models to parallel unified models in which neutrons and 

protons move in a mean-field with collective degrees of 

freedom. The collective model (developed by Aage Bohr and 

Ben Mottleson), extends the liquid drop model by including 

motions of the whole nucleus such as quantized. Algebraic 

models is consider one of the mean field approximations and 

is related to both of the shell model and collective models by 

the way on figure 1. The harmonic oscillator shell model 

provides the formal framework for the description of nuclear 

structure. It is an exceedingly rich algebraic model with a 

wealth of dynamical subgroups chains and solvable 

submodels. 

2. Theory 

2.1. Derivation of the Hamiltonian for the 

Algebraic Collective Model 

Bohr considers the radius of a liquid drop model nucleus 

expanded in quadrupolar spherical harmonics 

���, �� = �	[1 + ∑ ������� �����, ��]          (1) 

R0 is the mean radius and �����, ��  is a second order 

spherical harmonic with � and � the usual polar angles. The 

parameters �� then give the shape, restricted of course to 

only quadrupolar deformation. We will adopt an equivalent 

set of shape parameters, given by the quadrupole moments of 

the nuclear density [19]. 

�� ∝ ���	�� 	�����, ��	���, �, ��               (2) 

Where {qm, m=0, ±1, ±2 }Rotate from the laboratory (space-

fixed) coordinates q to an intrinsic (body-fixed) frame of 

principal axes with coordinates ��. 
	�� = ∑ ����  ��� �Ω�                         (3) 

where  ���  is a five dimensional Wigner rotation matrix and 

Ω  represents the three Euler angles relating the intrinsic 

frame to that of the laboratory. Introducing the variables β 

and γ such that ��	 = "#$%&			,			��� = '
√� 	"%)*&  and we can 

write the original coordinates in terms of these new variables 

	���", &, Ω� =+���	 ��� �Ω�
		�

 

= "#$%&	 	�� �Ω� + ,
√� %)*&	� ��� �Ω� +  ���� �Ω�  (4) 

From the definition of ��		-*�	���  , γ is independent of the 

orientation and so gives the intrinsic shape, while the 

orientation is given by the three Euler angles Ω. Quadrupole 

deformations of a sphere yield ellipsoidal distributions, and 

Bohr shows [9] that γ∈[0,π/3] with γ=0 for a prolate (rugby 

football shaped) nucleus and γ=π/3 for an oblate (discus 

shaped) nucleus; (figure2). For intermediate values of γ the 

nucleus is triaxial, that is, it has no axis of symmetry 

The kinetic energy is proportional to the ℝ/ Laplacian which 

in these coordinates is given by  

∇�= '
,1 	 22, 	"3 	 22, −	 ',5 	Λ7� 	≡ 	∆� − '

,5 	Λ7�	         (5) 
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Where Λ7� = '
:;�<= 	 22= %)*3&	 22= + ?

1	∑ @AB5
:;�5�=�5CBD �

<E�' , .Where 

Λ7� is the quadratic SO(5) Casimir operator. {GA', GA�, GA<}are the 

SO(3) angular momentum operators in the intrinsic frame. 

SO(5) acts in ℝ/ as orthogonal transformations that leave the 

magnitude β fixed. Thus SO(5) can affect only the shape 

coordinate γ or the orientation Ω, and any potential 

independent of these coordinates must therefore be SO(5) 

invariant. SO(3) acts in ℝ<  as a physical rotation of the 

nuclear distribution. Thus it affects only the orientation Ω, 

and since it leaves β fixed it is a subgroup of SO(5). The 

embedding of SO(3) in SO(5) is specified up to conjugacy by 

requiring the irreducible three dimensional SO(3) rotations of 

a distribution in ℝ< to induce an irreducible five dimensional 

SO(3) action upon the quadrupole space ℝ/. 

 

Fig. 2. Nuclear shape for various limiting values of the parameters β and γ. 

The two deformed cases depicted with β > 0 have axial symmetry indicated 

by the axes. 

Consider a nucleus with a spherical equilibrium shape that 

makes only small displacements in q. This is a five 

dimensional harmonic oscillator, since there are five 

independent modes of oscillation qm. This is not to be 

confused with oscillations in physical 3-space we are in the 

space of quadrupole moments ℝ/.  

The Hamiltonian is that of a simple harmonic oscillator in the 

quadrupole coordinates 

	I:J = �ℏ5
�L ∑ M�M�� + ?

5NO�∑ �����          (6) 

where classically πm
=Bq

m
. B is a mass parameter and ω is an 

angular frequency, both independent of mode m. In practice 

these can be determined from experiments with nuclei that 

exhibit such vibrational spectra. In theory they can be 

computed using 

hydrodynamical arguments in the liquid drop picture, 

although such calculations must be corrected for various 

single particle shell effects such as pairing. 

We can make the usual transformation to boson creation and 

annihilation operators 

					��P = −QLR�ℏ 	�S� + )Q '
�LℏR 	MS� , �� = −QLR�ℏ 	�S� −

)	Q '
�LℏR MS�                                             (7) 

With T��, ��P U = V�� . These excitations are viewed as 

phonons each carrying angular momentum 2. 

The Hamiltonian in equation (6) becomes 

	I7:J = ℏO�∑ ��P 	�� + W
5��                      (8) 

and in the algebraic collective model coordinates the 

Hamiltonian becomes 

																			I7:J = − ℏ5
�L ∇� + '

�NO�"�                     (9) 

2.2. Algebraic Collective Model 

The eigen functions of γ-independent Hamiltonians can be 

classified according to the chain [20].  

SU�1, 1� ×	SO�5� ⊃	
λ	 	υ 	τ	

U�1�	 ×	SO�3� ⊃	SO�2�
] ℓ _    (10) 

where λ labels a SU(1, 1) irreducible representation and ] a 

basis. SU(1, 1) acts as scale transformations on the radial 

coordinate β, and SO(5) acts as orthogonal transformations in 

the space of quadrupole moments. The situation is analogous 

to that of a particle interacting with a central potential in real 

3-space, such as an electron in a hydrogen atom where the 

symmetry group is SU(1, 1) × SO(3). ] is the analogue of 

the principal quantum number and υ is the analogue of the 

angular momentum quantum number. 

The algebraic model adopts the SU(1, 1) × SO(5) 

decomposition of the Bohr model Hilbert space. Basis states, 

labelled according to the subgroup chain (1), are of the form 

	|ab cc]	d	τ	ℓ	_e = 	 |ab cc]	e	⊗	|dcc	τ	ℓ	_e              (11) 

The states { |ab cc]	e , ] = 0,1,2, …… }are a basis of an irrep 

ab  of SU(1,1). We include the subscript υ on the SU(1,1) 

label because in our generalized basis these labels depend 

upon the seniority. The states { c|dc	τ	ℓ	_e,_ = 	−ℓ,−ℓ +
1,…… , ℓ}  are a basis for an irrep of SO(5). The τ	and	ℓ 

values appropriate for a state of seniority υ are given by the 

SO(5) ↓ SO(3) branching rule. Tensor products of these states 

therefore span a representation of the direct product group 

SU(1,1) × SO(5). We can give these states realizations in the 

collective coordinates {β,γ,Ω}as 

	|ab cc]	e	⊗	|dcc	τ	ℓ	_e ↦ ��mn�"�	�τ	ℓ	_b �&, Ω�         (12) 

��mn�"�  is a radial wave function and �τ	ℓ	_b �&, Ω�  is a 

hyperspherical harmonic. 
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For a particle of mass m in ℝ<under the influence of a central 

potential V (r) the Hamiltonian is  

	I7ℝD = �ℏ5
�� ∇ℝD� + ����                         (13) 

Where ∇ℝD�  is the Laplacian on ℝ< . In spherical coordinates 

we have 

																		∇ℝD� = '
o5

2
2o �� 	 22o − '

o5 	GA�                     (14) 

Where GA� is the quadratic SO(3) Casimir operator 

											GA� = − '
:;�p 	 22p 	%)*� 2

2p − '
:;�5p 	 22∅5       (15) 

The Hamiltonian I7ℝD  is rotationally invariant, i.e., it has 

static SO(3) ⊃ SO(2) symmetry and solutions are labeled 

with the two quantum numbers ℓ	_. The wave functions are 

separable rℓ	_	��, �, �� = �ℓ	���	�	_ℓ	 ��, �� and the functions 

�	_ℓ	 ��, �� which satisfy the eigenvalue equation 

	GA�	�	_ℓ	 ��, �� = ℓ�ℓ + 1��	_ℓ	 ��, ��           (16) 

are the spherical harmonics. The standard definition has 

							�	_ℓ	 ��, �� = Q�ℓs'3t 	 	�ℓ uΩ�'��, ��v,	          (17) 

where Ω��, �� is an element of the coset space SO(3) / SO(2) 

and 	�ℓ �Ω� is a Wigner	  –function [14].  

2.3. Algebraic Collective Shape Phase 

Transition Potential 

In this part we investigate of deformation in the Bohr 

collective model by studying a spherical vibrator to soft rotor 

shape phase transition. The general Hamiltonian of a system 

exhibiting a transition is of the form  

	I7��� = �1 − ��I7' + �I7�                     (18) 

where α is the tunable parameter. The two non-commuting 

Hamiltonians I7'-*�I7�  possess different dynamical 

symmetries, each corresponding to a phase of the system. 

Using equation (9) we get 

I7' = − ℏ
�
2N ∇� +

1
2NO�"� 

	I7� = − ℏ5
�L ∇� + ?

5LR5��,5s
w1
x5�                 (19) 

where we've included a unit of quadrupole length b. From 

equation (18), the phase transition Hamiltonian is therefore 

	I7��� = − ℏ5
�L ∇� + ?

5LR5[�'��y�,5sy
w1
x5]        (20) 

Where ∇�  is the ℝ/  Laplacian of equation (5), B is a 

collective mass parameter, and O 

is a vibrational angular frequency. It will be convenient to set 

z = {ℏ/N	O equal to 1 

and write B = M B0, so that the mass parameter M is 

dimensionless, and to set the unit 

of energy	ℏO = 1. The Hamiltonian then becomes 

	I7��� = ?
5}�

∇5
~s�'��y��,5sy�,1�               (21) 

Then the phase transition potential is 

�y�"� = ~
5 T�'��y�,5sy,1U                          (22) 

This phase transition potential exhibits a critical point α=0.5 

at which the coefficient of the β2
 term vanishes. For α ≤ 0.5 

the minimum is at β=0, while for α > 0.5 it is β = [(2α-

1)/2α]
1/2

. 

2.4. The Collective Model Wavefunctions 

We give the ground state r	 itsproper time development  

	r	��� = r		��;���/ℏ                            (23) 

and its density distribution  

	�	��� = �r	���� ∑ V�� − �;��;�' �r	����	        (24) 

Consider the time-dependent wave function 

	r��� = r	��;���/ℏ + �r���;���/ℏ            (25) 

for infintismal � , where r�  is an excited eigenstate of the 

nucleus. The density distribution for this time-dependent 

wave function, unlike that for a stationary state, oscillates 

harmonically about its ground state distribution 

	���, �� = �r���� ∑ V�� − �;��;�' �r���� = �	��� +2� cos���� 	�	���� + �����      (26) 

Where �	���� is the transition density 

	�	���� = �r	� ∑ V�� − �;��;�' �r��            (27) 

Now r��� is a good time-dependent wave function for the 

Hamiltonian. Thus it follows that the motion is not damped, 

it cannot lose its energy to any other mode, and it is therefore 

meaningfully described as a normal oscillation. 

3. Results and Discusions 

The energy per particle as a function of density for 

symmetric nuclear matter is shown in Fig.3 we noticed that 

the energy per nucleon is negligible for low densities and 

become more and more significant as the densities increases. 

The symmetry energy is defined from the energy per nucleon 

E/A as follows  
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�:����	� = ?
� 	�2

5�/�
2�5 ���		  where V = ��� − ���/�  is the so 

called asymmetry parameter and 
�
� �*, V� = �

� �*, V = 0� +
	V��:���*�. In Fig. 4 we show the results for the energy per 

particle in the case of a system composed of neutrons only. 

We find that E/A is sharply increasing at very high densities. 

In Fig.5 Charge distribution of 
208

pb is calculated in 

comparison with experimental data, we could see that there is 

a great agreement between my calculations and the given 

experimental data. 

 

Fig. 3. Energy per particle in symmetric nuclear matter as a function of 

density (in units of the nuclear saturation density ρ0 = 0.16 fm-3). 

 

Fig. 4. Energy per particle in neutron matter as a function of density (in units 

of the nuclear saturation density ρ0 = 0.16 fm−3) 

 

Fig. 5. Charge distribution of 208pb. The experimental charge 

distribution(open square ) is that of Ref. [21]. 

The tendency of particles to couple pairwise to zero spin 

configurations has been recognized for a long time for the 

following reasons: 

(i) Even-even nuclei invariably have zero spin ground states. 

(ii) The low-lying spectra for even-even nuclei are 

particularly simple. There is an energy gap 

corresponding to the energy required to break a zero spin 

pair, below which only collective states appear. Figure 6 

contrasts the spectra for some typical neighbouring even-

even, even-odd, and odd-odd nuclei. 

(iii) The last nucleon is less strongly bound in an odd-mass 

nucleus than in the neighbouring even-even nuclei, 

where it can form part of a pair. 

Figure 7 shows the 
12

C + 
12

C nuclear molecule along with the 

collective potential energy landscape as a function of the 

internuclear distance and the alignment between the two 

deformed nuclei. The potential curves are presented for fixed 

orientation of the two 
12

C intrinsic symmetry axis relative to 

the internuclear axis, the three axes being coplanar. 

Figure 8 shows a plot of the phase transition Potential as a 

function of the transition parameter α which clearly shows 

the emergence of a potential well for α > 0.5. This well 

serves to stabilize a nonzero mean value of β and so gives 

rise to deformation. 
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Fig. 6. Energy spectra for neighboring even-even, even-odd and odd-odd 

nuclei. 

 

Fig. 7. The collective potential-energy landscape for the 12C + 12C nuclear 
molecule as a function of the internuclear distance and alignment, V(R, θ1, 

φ1 = 0, θ2, φ2 = 0).  

 

Fig. 8. The potential as a function of the control parameter α. A critical point 

is reached as α passes through 0.5, whereafter there is a well about β = 

[ (2α-1)/2α]1/2. 

4. Conclusion 

I have presented an algebraic collective model and illustrated 

its utility in several nuclear structure calculations. The 

purpose of my calculations was not only to find agreement 

with any particular experiment, but also to refine the Bohr 

model so that it can be brought to bear on a wider class of 

topics currently of interest. The results from our investigation 

indicate that the collective model has more to contribute to 

nuclear structure physics than might have been thought.  

I have presented the energy per particle in both symmetric 

nuclear matter as function of density and in neutron matter as 

a function of density. At high densities the nucleon spectral 

function is modified significantly. Also, Charge distribution 

of 
208

pb could be calculated. Energy spectra for neighboring 

even-even, even-odd and odd-odd nuclei could be explained. 

The collective potential-energy landscape for the 
12

C + 
12

C 

nuclear molecule as a function of the internuclear distance 

and The potential as a function of the control parameter could 

be explained successfully as well.  
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