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Abstract 

In present paper three-dimensional isothermal Lattice Boltzmann Method have been used to simulate the motion of bubble. 

The above model is unified with another two dimensional non-isothermal model in order to reduce computational cost. Firstly, 

it is ensured that the surface tension effect and Laplace law are properly implemented. Secondly, effect of governing 

dimensionless numbers on terminal Reynolds number and terminal shape of bubble are investigated in 3D and 2D simulations. 

Different flow patterns in various dimensionless numbers are obtained and by changing the dimensionless number, terminal 

change of bubble’s shape are seen. The error of 2D solution is calculated. The results show that with increasing terminal 

Reynolds number increase the difference between 2D and 3D solutions and in high Reynolds number, 2D simulation for this 

phenomenon is not acceptable.  
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1. Introduction 

In scientific point, many phenomena in daily life are two-

phase or multiphase, for example, the raindrops motion; dust 

particles motion in the air or the wave motion on the sea 

surface and its failure modes are examples of two-phase 

issues occurs in nature. Two-phase fluid with many 

applications uses in industrial issues, for example, use in 

boilers. In boilers, combination of water and vapour as a two-

phase fluid has an important role in boilers design. 

In addition, two-phase fluid with main application is used in 

nuclear reactor design. As well as designing advanced tools 

like rocket engines, water purifiers and blood pumping 

machines need detailed knowledge in dynamic of multi-

phase flow.  

Checking the bubble motion in fluids is used in many 

applications such as petroleum and chemical industries and it 

is because of the mixture of gas and liquid broadly in these 

industries. The physical mechanism of two-phase flow is 

very complex. Thus, clear perception of two-phase flow 

mechanisms is not available. The numerical investigation in 

two-phase flows is significant due to disability of 

experimental investigations to access to the physical 

parameters in the bubble and droplet. Thus, numerical 

investigation is preferable for this phenomenon. 

The lattice Boltzmann method is almost new numerical 

techniques based on kinetic theory, which is used for 

investigation of fluid flows. In Comparison with the 

traditional CFD, LBM has some advantages such as easy 

process, simple and efficient implementation for parallel 

computation, simple and strong handling of complex 

geometries, etc. There are various versions, which provided 

for two-phase flows using Lattice Boltzmann method. 
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Gunstensen et al. [1] presented a multi component model 

based on two dimensional lattice-gas hydrodynamics. In their 

model two-particle distribution functions, red and blue, were 

introduced for studying two different fluids. Shan and Chen 

[2] offered a method for multicomponent and multiphase 

flows with regard microscopic interaction. Swift et al. [3] 

proposed a model for multiphase and multicomponent flows 

by using free energy approach. The main advantage of this 

model is the ability to include multi component and non-ideal 

thermodynamics of fluid in isothermal. It is worth 

mentioning that, in the all listed LBM two-phase models, the 

density ratio is intended less than 10, while in fact density 

ratio is more than 10 at most of the liquid-gas systems. Main 

problem in numerical solution of two-phase flow with large 

density ratio is numerical instability in interface. Inamuro et 

al. [4] offered a new model based on free energy approach 

for two-phase flow with high density ratio and investigated 

motion of a single bubble and many bubbles under buoyancy 

force in three dimensions(3D) simulation. Inamuro et al. [5] 

used their method to study rising of two droplets and their 

coalescence in a vertical and horizontal rectangular channel. 

In another study, Inamuro et al. [6] employed this model to 

simulate coalescence of two droplets with equal diameter 

with initial velocity in 3D and also of two droplets with 

unequal diameter in 3D [7] . Inamuro [8]carried out 

simulation of a set of bubbles in a branch channel, this 

geometry was utilized as a cooling system in air conditioning 

system. Yan and Zu [9] simulated horizontal movement of 

two bubbles with initial velocity in 3D channel. 

Yoshino and Mizutani [10] studied contact angel by adding 

wettability condition to Inamuro [4]  method. Yan and Zu [11] 

investigated the final shape of droplet on surface in different 

wettability and also they studied the final shape of droplet on 

partial wetting surface in 3D. In [12] Yan and Zu studied 

rising two bubbles, their coalescence and shape of droplet on 

partial wetting surface.  Later on making some changes on 

the original model was used by Tanaka [13, 14] for two 

dimensional and reactive flows. Tanaka et al. [13] simulated 

dynamic treatment of droplet on solid surface. Moreover, 

they used this model for investigation of boiling process [14] . 

In addition to Inamuro [4] , Lee and others have presented 

their proposed method in two-phase fluid flows with high 

density difference [15-18] . 

Inamuro model [4] is a 3D model so has high computational 

cost, Tanaka [14] added derivative of pressure tensor term to 

Inamuro [4] model for simulation of boiling in two 

dimensions and it increases computational cost in two 

dimensions. The difference between the presented model and 

former one [14] , which derived from Inamuro’s model [4], is 

this model can simulate two-phase phenomenon with density 

ratio about 1000, while in former study [14] density ratio is 

about 50. 

In this paper for the first time is used Inamuro’s model in 

large density ratio about 1000 in two dimensions. First in this 

paper, by applying this model to ensure the proper 

functioning of the effect of surface tension in high density 

ratio about 1000. For this purpose, two tests have been 

conducted: the first test was related to a two dimensional 

square bubble, placed in a liquid. In the second test, two 

circular bubbles have been placed side by side and their 

approach was modelled. After that the Laplace law has been 

checked, and then the effect of dimensionless numbers for a 

bubble rising by buoyancy force have been investigated both 

3D and 2D. The results of two-dimensional and three-

dimensional solution were compared. 

2. Methodology 

In the present paper, the method introduced by Inamuro [4] is 

employed. Two distribution functions are used,
i

f is used to 

calculate order parameter which distinguish two phases, and 

ig  is implemented to calculate a predicted velocity of the 

two-phase fluid without a pressure gradient. The particle 

distribution functions ( , )
i

f x t  and ( , )
i

g x t with velocity 
i

c and 

at point x and time t is calculated by following equations [4]: 

( , ) ( , )c

i i if x c x t t f x t+ ∆ + ∆ =                       (1) 

( , ) ( , )c

i i ig x c x t t g x t+ ∆ + ∆ =                      (2) 

c

if and
c

ig are equilibrium distribution functions, ∆x  is 

spacing of square lattice, ∆t is time step in the scale of LBM 

during which particles move in lattice spacing. Order 

parameter φ distinguishes two phases and the predicted 

velocity *
u  of the multi-component fluid is defined 

according to two particle velocity distribution function as : 

8

0

,i
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fφ
=

=∑                                   (3) 
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=

=∑                                (4) 

Equilibrium distribution functions in Eqs. (1) and (2) are 

described as: 
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where g  is the gravitational acceleration, and ρ   ,
L

ρ   , µ
are density, density of liquid and viscosity of liquid, 

respectively, which are determined regarding to density ratio 

(e.g. if 50
L G

ρ ρ = then 50
L

ρ = , 1
G

ρ =  and 50
L G

µ µ = ). 

fk is a constant parameter which determine the width of the 

interface and 
gk is a constant parameter which determines the 

strength of the interfacial tension. E is the weighting factor, c 

is the particle velocity. H and F are the constant parameters 

and are defined as: 
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4 1 1
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1, ... 0,

3
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And 
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                 (8) 

where subscripts α and β  show Cartesian coordination, αβδ
is the Kronecker delta. 

In Eq. 5 
0

p is thermodynamic pressure which would be 

defined as: 

2

0

1

1
p T a

b
φ φ

φ
= −

−
                       (9) 

where a, b and T are the free parameters to determine 

maximum and minimum values of φ . The following 

approximations are used to calculate derivatives of Eqs.(5, 6, 

8): 
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The density in interface is determined by maximum and 

minimum of the order parameter for *

Lφ  and *

Gφ  liquid and 

gas phases through following relation: 

*

*
* *
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      (12) 

Gρ and Lρ are the density of gas and liquid phase, 

respectively, L Gρ ρ ρ∆ = − , 
* * *

L Gφ φ φ∆ = − , 

( )* * * 2L Gφ φ φ= + . The viscosity µ  in interface is defined as 

follows: 

( )G
L G G

L G

ρ ρµ µ µ µ
ρ ρ

−
= − +

−
                  (13) 

Where Gµ  and Lµ are the viscosity of liquid and gas phase 

respectively. Surface tensionσ is shown by: 

2

gk d
ρσ ξ
ξ

∞

−∞

 ∂=  ∂ 
∫                        (14) 

where ξ  represents the coordinate normal to the interface. 

Since *
u  is not divergence free ( )*( . 0)u∇ ≠ some corrections 

are imposed on *
u . Flow velocity u  which should satisfy 

continuity equation ( ). 0u∇ =  is obtained as: 

*
u u p

Sh
t ρ

− ∇= −
∆

                              (15) 

*.
.

p u
Sh

tρ
 ∇ ∇∇ =  ∆ 

                           (16) 

where Sh U c= is a dimensionless number which is 

employed by Inamuro[4], p
 
is lattice pressure. The 

following distribution function is used to calculate pressure: 

*

1 1 1
( ) ( ) ( ) ( )

3

n n n n

i i i i i i

h

u
h x c x h x h x E P x E x

x

α
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+ ∂
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∂

       (17) 

where n is the number of iteration and the relaxation time hτ
is defined as: 

1 1

2
hτ

ρ
= +                            (18) 

The pressure is attained by: 

8

0

i

i

p h
=

=∑                            (19) 
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The iteration of Eq. (17) would be continued until 

1n np p ρ ε+ − <  is satisfied in the whole domain.  

3. Result 

3.1. Validation of Two-Phase Solution 

Since the most important and sophisticated part of an 

analysis of two-phase flow is related to dynamic interface 

between two fluids, first step for the demonstrating accuracy 

of the flow simulation is checking this issue. Two tests were 

carried out for this issue. In the first test, deformation of a 

two dimensional square bubble that has been placed in filled 

environment of liquid has been shown. According to effects 

of surface tension between two fluids, the bubble tends to 

change to steady state with the lowest interface. According to 

simulation results shown in Fig. 1, bubble shape has changed 

by passing the time and became like a circle. This issue 

shows the effects of surface tension, which are important part 

of two-phase flow analysis, are properly. This test is used as a 

credit of two-phase solution by Mousavi et al. [19] .  

 

Fig. 1. A square droplet deformation at lattice time steps for density difference 50.  

 

Fig. 2. A square droplet deformation at lattice time steps for density difference 1000.  

This test has been done for large density ratio (1000). As 

Inamuro in [4] mentioned, increasing of density ratio leads to 

increasing the iteration numbers to achieve desired results. 

As Fig. 2 shows, deformation occurred in more iterations. 

For a static bubble, the velocity must be zero at all points in 

equilibrium condition. However, in two-phase numerical 

methods, a spurious nonphysical velocity is created around 

the bubble near the interface. Indeed today, the numerical 

methods are improving for decreasing this spurious velocity 

[20]. Because of this spurious non-physical velocity in 

numerical methods, weak vortices are created around the 

droplet and bubble, near interface these velocities have been 

called parasitic flow. Fig. 3 shows a parasitic flow around a 

bubble in an equilibrium condition in one of the performed 

simulations. 

 

Fig. 3. The parasitic flow around a bubble.  
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In second test, two circular bubbles with same diameter L/3 

have been located adjacent to each other. In this simulation 

the distance between two bubbles, density and viscosity are 

equal to 0/05, 1 and 0.01, respectively. Due to effects of 

surface tension and Van der Waals forces, these bubbles 

approach and finally a circular larger bubble is created. The 

results of this simulation have been shown in Figs. 4-5. This 

test has been used as a credit of two-phase solution [18, 19].  

 

Fig. 4. Coalescence of two bubbles in density ratio 50.  

 

Fig. 5. Coalescence of two bubbles in density ratio 1000. 

3.2. Laplace Law 

Laplace law represents the correlation between inner in
P and 

outer pressure out
P  of bubble with interfacial tension σ  

between two fluids. Based on Laplace law there is formula 

for a two dimensional bubble [1]: 

in outP P
R

σ− =                                   (20) 

Surface tension during the compressibility and isothermal 

flows is one of the constant properties of two fluids. 

Therefore, it can be concluded that a linear relationship exists 

between the pressure difference between the inside and 

outside the bubble with the inverse radius in the same 

conditions without changing its properties. Fig. 6 shows the 

performed simulation and obtained pressure has been 

satisfied nicely the Laplace law in Lattice Boltzmann Method. 

This test has been done as credit of two-phase solution in [1, 

3, 18, 19].  
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(b) 

Fig. 6. Simulation for Laplace law (a) density ratio 50 and (b) density ratio 

1000.  

3.3. Independence of Mesh 

To do this, two different tests have been performed. In the 

first test, Laplace law has been performed for various grids 

and note that the related slop is equal to surface tension so 

the values have been obtained and compared in different 

grids. In second test, three different grids 200×100, 100×50, 

300×150 have been used and the bubble final regimes have 

been compared. The results of the first test have been shown 

in Fig. 7 and table 1, due to these results, suggested grid 

number 100 is for length of the domain, because of the 

equality of surface tension force in 100×100 and 120×120 

grids. 

 

Fig. 7. Laplace law in different grids.  

Table 1. The surface tension force in lattice unit In different grids.  

120×120 100××××100 80××××80 60××××60 Mesh 

0.0081 0.0082 0.0088 0.0094 Surface tension 

The results of second test have been shown in table 2; the 

final shape of the bubble is not true in grid 50×100 by 

changing of dimensionless numbers in comparison with 

previous works. However, the final shapes of the bubble and 

flow regimes in 200×100,300×200 grids are equal. In this 

paper, 200×100 grid has been used in order to avoid 

increasing the computational cost. 

Table 2. Flow regimes in different dimensionless numbers.  

150×300 100×200 50×100 
Dimensionless 

numbers 

Spherical spherical Spherical = =1, 0.001E M  

Ellipsoidal ellipsoidal Spherical = =5, 0.001E M  

ellipsoidal cap ellipsoidal cap Spherical = =116, 266E M  

Disc disc Ellipsoidal = =20, 0.0001E M  

spherical cap spherical cap ellipsoidal cap = =42, 0.001E M  

Skirt skirt Skirt = =339, 43E M
 

3.4. Rising Bubble 

In this section, the bubble motion in a fluid-filled 

environment has been investigated. The dimensionless 

numbers of this phenomenon are Morton 

( 2

L L G LM ( )µ ρ ρ ρ σ= − 3g ), Etvos (
L GEo ( )ρ ρ σ= − 2g D ) 

and Reynolds numbers (
L L

Re ρ µ= DV ) which V is final 

velocity of the bubble and D is the initial diameter of the 

bubble. The opposite boundaries have the periodic boundary 

conditions. The grid 100×200 has been used. The initial 

diameter of the bubble has been30-lattice unit.  

Behaviour comparison of bubble has been indicated that 

bubble deformation is a function of Etvos and Morton 

numbers [4] . According to the terminal shape of bubble 

which vary in different dimensionless numbers, various 

patterns of flow in two-phase flow are divided to six major 

groups are shown in Fig. 8 : 1)spherical, 2)ellipsoidal, 

3)ellipsoidal cap, 4)disk, 5)spherical cap, 6)skirt [4] . 

The results have been represented in dimensionless time 

= nT t t  with =
n
t d g where t is number of iteration. 

When the bubble move upward, at first, the bubble starts to 

move due to density difference with the surrounding fluid 

leads to buoyancy force. The drag force on the bubble is 

because of the bubble motion in the fluid and if the bubble 

does not burst, will reach to the constant velocity and shape. 

In this mode, buoyancy force is equal to drag force and the 

bubble continues to move with the constant velocity. 

In Fig. 8 in right column, density linear contours with 

velocity vectors have been drawn for related dimensionless 

1/R

P

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

1/R

P

0 0.05 0.1 0.15
0

0.0005

0.001

0.0015

120*120

100*100

80*80

60*60



 Physics Journal Vol. 1, No. 1, 2015, pp. 1-9 7 

 

numbers when the shape of bubble is stable and in left 

column, movement and shape of the bubble have been shown 

in different dimensionless times. As seen in Fig. 8, the shape 

of the bubble is the same for each of the regimes in last 

dimensionless times due to equivalence between buoyancy 

and drag forces and stable bubble. As the flow is unstable in 

Fig. (8.f), the bubble bursts and some of its parts separate 

after T=5. As seen in Fig. 8, bubble deformation is such as 

concavity in the bottom of the bubble. In the lower part of the 

bubble, it should balance itself with its inside pressure, 

because of the hydraulic pressure, convexity in liquid and 

concavity inside the bubble has been formed. The larger 

pressure difference creates the larger vortex around the 

bubble and as a result, deformation of bubble is more. 

 

Fig. 8. Different flow regimes in different dimensionless numbers.  

In Fig. (8. a) the mentioned vortex area approximately has 

not been formed so the shape of bubble is stable. From Fig. 

(8. b) onward the size of this area have been increased so the 

bubble deformation have been increased. Fig. (8. a) bubble 

deformation is not large, as is evident from the definition of 

dimensionless numbers, with the increasing of Etvos number 

as shown in Figs. (8.a) and (8.b) buoyancy force has been 

increased and thus deformation of bubble is more. The 

surface tension decreases by increasing Etvos number, 

because the surface tension is resistance to deformation, in 

other hand, increasing of Etvos number causes the increasing 

of deformation. Moreover increasing of Morton number 

causes increasing of bubble deformation but have less effect 

on bubble deformation, because the Morton number relates 

with the surface tension in power 1/3 as seen on Figs. (8.d) 

and (8. e).  

According to different dimensionless times in Fig. 8, 

changing dimensionless numbers has showed that required 

time for passing the length of the channel has been changed 

and this represents the change in velocity and terminal 

Reynolds. In Table 3, the terminal Reynolds number values 

have been calculated 

 

Fig. 9. Streamlines at different dimensionless numbers.  
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In Fig. 9, streamlines for these bubbles have been plotted. In 

the first three cases, vortices have been formed only inside 

the bubble but after Fig. (9.d) vortices have been formed 

under the bubble that called bubble trail. Bubble trail leads to 

turbulent flow around the bubble. 

In the Fig. 10, the obtained results are in good agreement in 

compared to Inamuro’s three dimensional study [4].  

 

Fig. 10. Comparison of result of this study, , and Inamaru’s three 

dimensional study [4].  

Table 3. Obtained Re number.  

Error of 2D 

simulation 
The Re of 3D The Re of 2D 

Dimensionless 

number 

%1.76 4.54 4.62 -31) Eo=1,M=10  

%3.77 22.81 21.95 -32) Eo=5,M=10  

%1.73 7.5 7.63 3) Eo=116,M=266  

%4.49 109.8 105.08 -44) Eo=20,M=10  

%7.04 100.55 93.47 -35) Eo=42,M=10  

%18.30 29.45 34.84 6) Eo=43,M=339  

Moreover, this phenomenon has been simulated in three 

dimensions and the three-dimensional results have been 

compared with two-dimensional results. Table 3 shows the 

values obtained for Reynolds number in both cases. Results 

of 3D have been compared with two-dimensional simulation 

and error of 2D solution has been calculated. The results 

show that assumption two-dimensional flow at low terminal 

Reynolds number have less error than the high Reynolds 

number and in case of unstable bubble due to high terminal 

Reynolds number, error of 2D simulation is large. It is 

established fact now that most phenomena in real world are 

simulated in 2D such chip devices cooling. 

According to the presented results, by comparing Reynolds 

numbers in f mode, 2D numerical simulation error is large. 

Therefore, in this case, the bubble is ruptured and in 2D 

simulation bubble, rupture cannot be modelled. 

By comparing Figs. 1-4, it is concluded that in a large density 

ratio, the same results can be achieved by more iterations. 

The results are given mainly in density ratio of 50, only an 

example of density ratio 1000 carried out (Fig. 11); 

According to tests conducted indicate that this method is 

efficient and accurate in large density ratio. 

  

Fig. 11. Rising bubble in density ratio 1000, = =15, 1E M
. 
 

4. Conclusion 

In this paper, Inamuro’s model has been used to simulate the 

rising bubble in 3D. The obtained results for the terminal 

Reynolds number and shape of bubble have been shown very 

good agreement with the Inamuro's results. Then, because of 

the high computational cost Inamuro's model, by combining 

Tanaka and Inamuro’s model; Inamuro's model has been used 

in two-dimensional coordinate system. According to the 

results of release test of a square in a fluid environment and 

placed two bubbles together and Laplace law can be used 

safely this method. By comparing the results, changing in 

dimensionless numbers have been caused changing in gravity 

force and surface tension. So different flow regimes occur 

and Etvos number have a greater impact on the flow regime 

than the Morton number. By comparing, the results of two-

dimensions and three-dimensions have calculated error of 2D 

simulation. By increasing Re number increases error of two-

dimensional solution.  
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