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Abstract 

With aid of computer simulation it is studied a 1-dimensional frequency distribution function of the particles which make 

forced oscillations along the y-axis and noise-excited Brownian walks along the x-axis on the plane exhibiting spatially non-

linear non-homogeneous friction. The particle oscillations and their Brownian walks appear due to a joint action both of simple 

harmonic (sinusoidal) force and impulse noise. It is stated that the frequency distribution function depends very much on the 

starting point that the particles begin their movement and the given point position variation changes its form sometimes so 

much that its different visible shapes look as the ones of absolutely different frequency distribution functions which do yield by 

means of distinctly different ordinary differential equation systems. Thus we reveal a phenomenon of visible “disintegration” 

of the one-peak frequency distribution function into the two-peak one having the deepest pit between the peaks. 
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1. Introduction

A problem of how determinism and chance interplay each 

other in nature phenomena stays one of the most important 

fundamental questions standing in front of science up till 

now. Widespread systematic investigations directed to 

research the given problem are started recently relatively. In 

doing so random walk researching is making both in random 

and non-random environments [4]. To researchers’ surprise 

the investigations showed very often that a stochastic action 

of random noise stabilizes behaviour of system dynamics 

rather than insets chaos inside it [1-3]. There are a lot of 

references (see, for instance, [6-8]), where influence of noise 

on the periodically forced particles dynamics and their 

Brownian random walk are studied separately. A usual 

approach to examine an impact of fluctuations on the 

particles dynamics consists in that to include into an ordinary 

differential equation systems that describe it terms which 

generate or multiplicative noise or additive noise rather than 

both ones. Our approach to researching of the Brownian 

walk dynamics of particles that undergo a persistent action of 

periodic impulse noise along one axis and are forced to 

oscillate along another one consists in the following. With 

aid of ordinary differential equation systems we model 

dynamics of particles on the plane with non-linear non-

homogeneous friction. Studying an influence of monotone 

friction increasing to the particle movement dynamics that 

arises under the standard “white” noise we reveal a 

phenomenon of the aforesaid dynamics response which lies 

extremely far of that can be expected. 
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2. Mathematical Model 

Creating the mathematical model of particles dynamics we 

assume that a) they all start from the same initial point that 

coincides, as a rule, with the point (0, 0); b) the particles do 

not interact one another; c) dynamics of any of the particles 

controls by the same system of stochastic ordinary 

differential equations. For the sake of convenience and 

simplicity we assume in doing so that: 1) the regular 1-

dimensional periodic force acts on the particles along the y -

axis; 2) its magnitude depends on time as a sinusoid; 3) 

impulse magnitudes of irregular 2-dimensional impulse noise 

all are identical; 4) directions which impulses act on the 

particles from all are different and vary at random; 5) friction 

at the plane point depends on both its co-ordinates. Other 

reasons that are used for the model creation and are not 

mentioned here can be found in [14, 15]. Anyway we 

research numerically solutions of the following system of 

stochastic ordinary differential equations: 
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Here by f , g are denoted the magnitudes of stochastic and 

regular forces respectively, ( )tδ  is the Dirac’s function 

pointing out the impulse action time, ∆ is a while between 

two successive noise impulses and 3,1415926π = … . The 

parameters , ,a bΓ  control with non-linearity and spatial non-

homogeneousness of friction along the plane and the 

parameter c is the free oscillation frequency of particle in 

the friction-free plane and ω  is the external regular force 

frequency. Straightforward corollary of such the kind choice 

of co-ordinate system is expected the Brownian walk 

dynamics should be observed along the x -axis.  

3. Simulation Result Analysis 

In order to find the frequency distribution function for the 

particle set consisting of the 2000 particles and to show how 

its shape varies as random particle walk time increases from 

time 0T = until to 240T = , we solve (1) numerically 2000 

times with the 2000 very different random number series and 

then form a few graphs of the frequency distribution function 

at certain checking times 50;T = 100; 150;  200 and 240T = , 

of course. Integration step size with respect to time that we 

use is equal to
42 10−⋅ . Duration of a noise impulse ∆ as well 

as that of a while between successive impulses are always 

equal to
310−

 and 
34 10−⋅  respectively. The other parameter 

values we used in process of making computations are fixed 

in all calculations in such a manner: 3Γ = ,
3310b −= ⋅ ,

625c = , 7.5f = , 2500g = , 25ω = . As for values of the 

parameters a and s , they are varied and pointed out at every 

time separately. Some of the graphs (that are associated with 

time 240T = ) are presented below. All the graphs display 

the particle frequency distribution function along the x -axis. 

In Fig. 1-5, this function is computed for the particles that 

start from the point (0,0) and, in Fig. 6, the one is computed 

for the particles that start from the point (-0.3,-0.3). Besides, 

all the graphs (but one that is presented in Fig. 5) are 

computed with 0s = . As for the graph in Fig. 5, it is found 

with 18s = . Further, the graphs in Fig. 1-4 are results of 

computation with values of the parameter a  that are equal to 

10, 30, 60 and 100 respectively, and the ones in Fig. 5-6 are 

found with 60a = . 

Observing the first four graphs associated with successive 

enlarging of the parameter a  from 10a =  up to 100a =  and 

comparing the frequency distribution functions presented there 

one can easily make the following infers. Keeping in mind a 

discreteness of presentation of the frequency distribution 

function data one can easily find that the diagram described in 

Fig. 1 is an approximation of continuous one-peak function. 

This function is non-symmetric respecting its top. Considering 

left-hand and right-hand parts of the graph separately one can 

easily see that the ones are very different and distinguish each 

other distinctly. So, if to take in account distortion of the 

frequency distribution function graph shape that do appear due 

to a finite step of data presentation, one can easily see then that 

the left-hand part is monotone increasing curve while the 

right-hand part is although the monotone decreasing curve but 

its rate of decreasing with respect to x  varies so much that we 

can easily distinguish three distinct fractions in it. In doing so 

the right-hand graph part middle fraction demonstrates 

tendency to become an origin of “disintegration” of the one-

peak distribution into the two-peak one. The frequency 

distribution functions presented in Figs. 2-4 are an evident 

confirmation of the just aforesaid. Considering these graphs 

successively one can observe that the more the friction value 

changes alone the x -axis the more narrow both left and right 

parts of the distribution, the deeper pit between the parts, the 

higher the main (left) peak. And on the contrary, the less the 

friction changes the less the distributions contract along the x -

axis. The just aforesaid is well-seen under examination the 

graphs in Figs. 2-4 too. In doing so the graph in Fig. 4 shows it 

by the best visible form among the two-peak frequency 

distribution function presented there. There is the deepest pit 

between the peaks too. One more point we want to attract 

attention is that the pit between the left-hand and right-hand 
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parts of the distributions in Figs. 2-4 coincides with a vicinity 

of 0x ≈ . We are sure that it is not by chance and is connected 

with a specific position of 0x =  being the start point for the 

particles. The frequency distribution function graphs presented 

in Figs. 5-6 and associated with the acting friction that is less 

essentially than that generated by 60a =  confirm this. Indeed, 

considering these graphs in detail one can see that the ones 

have the sufficiently deep pits inside close vicinities of the 

particle set start points which coincide with 0x =  and 

0.3x = − respectively. Let us notice also that the shapes of 

both the graphs are similar. Moreover, considering the 

aforementioned graphs one can say that the latter looks, on the 

whole, like as the former shifted along the x -axis on 0.3  to 

the left. Although decreasing of the plane friction rate is 

reached in both the cases differently: in the former, we 

decrease the exponent by 18s = − while, in the latter, we shift 

the start point to the point ( , ) ( 0.3, 0.3)
o o
x y = − − . Both the 

graphs (as all the others, a propos) show also that their left-

hand parts are wider than the right-hand ones. Further, if to 

pay more attention to the last two graphs and, in particular, to 

analyze their function shapes in detail as well as to compare 

their real plane friction rates that control the particle set 

Brownian walks along the x -axis with the ones (function 

shapes and friction rates respectively) that are generated by the 

parameter values 10a =  and 30, one can easily observe the 

following. Rates of the active friction that yield the frequency 

distribution function graphs presented in Figs. 5-6 are more 

than that yielded by 10a =  and, simultaneously, less than that 

yielded by 30a = . Keeping it in mind and considering the 

graphs in Figs. 1, 2, 5-6 all together we can then make such 

infers. 1) If monotone increasing of the medium friction along 

the x -axis is relatively weak, then its influence for the 

experimentally computed frequency distribution function 

graph shape is very weak ever for after long time of the 

particle Brownian walk and appears itself as a hint to possible 

(in the course of time) bifurcation of the well-known usual 

frequency distribution function portrait. 2) And if the aforesaid 

monotone increasing of the medium friction along the x -axis 

strengthens slightly, the aforementioned hint becomes more 

clear in view of a deep hole in the usual frequency distribution 

function portrait that appears near the particle set start points 

whose positions coincide with 0x =  (see Fig.5) and 0.3x = −  

(see Fig.6) respectively. 3) When increasing of the friction 

becomes strengthened considerably it results then in the usual 

frequency distribution function portrait bifurcation and 

appearance of the new kind frequency distribution function 

shape having two tops with one bottom and looking like a 

joint of the two usual ones (see Fig. 2). 4) Further increasing 

of the medium friction makes relatively small changes to the 

new-found function shape. 5) Summarizing all the just 

aforesaid we can think of the medium friction rate that it plays, 

in a sense, a role of “time acceleration”. Really, one can make 

a conjecture that, in Fig. 1, we have the portrait of 

experimental frequency distribution function which is 

associated with “relatively short” for 10a =  observing time 

240T = and with increasing the observing time length far 

beyond 240T = one should expect to obtain its portrait 

looking at first like that in Figs. 5-6 and then like that in Figs. 

2-4.  

 

Fig. 1. Histogram of experimental frequency distribution function for 10a = at 240T = . 
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Fig. 2. Histogram of experimental frequency distribution function for 30a = at 240T = . 

 

Fig. 3. Histogram of experimental frequency distribution function for 60a = at 240T = . 
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Fig. 4. Histogram of experimental frequency distribution function for 100a = at 240T = . 

 

Fig. 5. Histogram of experimental frequency distribution function for 60a = at 240T = . 
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Fig. 6. Histogram of experimental frequency distribution function for 60a = at 240T = . 

4. Conclusions 

As a result of number numerical experiments that simulate 

the Brownian walk particles along the plane exhibiting the 

spatial friction non-linearity characterizing by its increasing 

as x rises, we find that monotone increasing of the 

nonlinearity rate can lead to so large changes in the 

frequency distribution function graph shape that it looks like 

completely different from the one we observe usually. 

Namely, studying the frequency distribution function of the 

particles that walk randomly in homogeneous media we 

observe the one-top frequency distribution function while, in 

the non-homogeneous media with non-linear friction, the 

frequency distribution function graph can look like 

completely differently as a union of two such the one-top 

function graphs. In other words, the friction nonlinearity can 

lead to (and really result in) a bifurcation of the frequency 

distribution function. Bearing in mind that the pit associated 

with the frequency distribution function bifurcation arises 

and then continues to settle in the particle start point vicinity 

one can easily guess and make an infer of that the Brownian 

walk dynamics of the stochastic oscillators in non-linear non-

homogeneous media depends very essentially on a point the 

ones start from. In doing so it can occur (and takes place, as 

we observed above, really) that the resulting dynamics will 

yield the distribution function whose density will have the 

deepest local minimum in the oscillator start point vicinity. 

In other words, a probability to encounter the oscillator in the 

given vicinity is small enough. It shows, in particular, that 

chaotic systems in non-linear non-homogeneous media can 

possess the very unusual interesting features.  
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